
COMP 250: Introduction to Computer Science
Assignment 3

Posted Tuesday, March 4, 2014
Due Monday, March 17, 2014

Please submit the homework through myCourses before midnight on the day it is due.

1. [30 points]Pascal’s triangle

The following pattern:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

is called Pascal’s triangle. The leftmost column and the diagonal consist of 1s. Each cell contains
the sum of the number immediately above, and immediately above and to the left. For example,
the number 6 in the 4th row is the sum of the 3 and 3 in row 3.

(a) [20 points] Write a Java class, called Pascal, with one static recursive method, called pascal-
Triangle, which takes as arguments two integers,m andn (in this order) and returns the num-
ber appearing in themth position of thenth row. For example, Pascal(4,0)=1, Pascal(4,1)=4,
Pascal(4,2)=6, etc. Your class should also have a main method, in which you should print the
triangle above by calling pascalTriangle appropriately.

(b) [5 points] Prove by induction that the sum of all elementsin thenth row of the triangle is2n.

(c) [5 points] Prove that if you start at any leftmost 1 (in a row i) in the triangle and take a
diagonal of any length(i, 0), (i+1, 1), (i+j, j) you obtain the element at location(i+j+1, j).

2. [30 points]Stacks and Queues

You can solve this problem either in pseudocode or in Java. Ifyou use Java, please use the generic
classes provided by the API.

(a) Write a method reverseQueue which takes as argument a queue and modifies it to have the
content reversed. You may use one stack as an additional datastructure. Give theO() for the
running time of your method.

(b) Write a method copyStack that takes as argument a stackS and returns a new stack containing
the same elements and in the same order asS. Before the method finishes, it must restore the
contents ofS to its original state (same contents in the same order). Besides the new stack
that the method returns, the only additional data structurethat it can use is a single queue.

1



The method may also use O(1) additional space. Give theO() for the running time of your
method.

3. [40 points]Sorting

Consider the Sorting package, available on the lectures webpage. In this problem, you will work
on adding one more algorithm to this package, as well as on benchmarking the code. Benchmark-
ing measures the actual running time of the algorithm (and isvery useful in empirical studies). The
purpose of this exercise is three-fold:

• To get you to implement some of the algorithms we discuss (andmake the leap from pseu-
docode to code)

• To get you used to looking at the Java API (so you know how to findinformation there on
your own)

• To show an example of (simple) performance evaluation in practice (rather than in theory)

(a) [10 points] Add a class called quickSort, with a method which implements the QuickSort
algorithm we discussed in class. You should pick as pivot themedian of the first, last and
middle elements in the array. Note that you may use extra methods as needed.

(b) [20 points] Write a new class called SortBenchmark. In this class, you will write a main
function which initializes an array of Integer objects of a size that is read from the command
line. You will use the java.util.Random class to generate the random values. Please read the
API documentation for this class (you will mainly be interested in the constructor that uses a
seed, and in the nextInt() method.

Once you create the array, call your quick sort algorithm to sort it, and measure its running
time. To do this, a method that will help you is currentTimeMillis() from the System class in
the java.lang package. Again, please look at the API to figureout what it does, and how to
call it. Print the running time of your algorithm.

Once you have sorted the array, re-initialize it withthe same random integers. You can do
this by setting the seed of the random number generator to thesame seed with which you
constructed it. Now call the mergeSort() algorithm which isprovided to you, measuring and
printing its running time as above. Repeat this process again with the selectionSort algorithm
that is provided.

(c) [10 points] Run an experiment with arrays of size 16, 256,1024, 4096. If possible, keep
increasing the size until you get errors for the memory size being too big. Repeat this exper-
iment 5 times.

Draw a graph (in Excel or your favourite graphing program) showing the running times you
obtained as a function of the size of the array (one line for each of the 5 repetitions, and for
each algorithm). Write a little report including the graph and a brief description of what you
found.

2


