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Notation: in this document, like in all lecture notes, we denote vectors with bold letters. So

x =


x1

x2
...

xn


would be a vector, and xi, i = 1 . . . n are the elements of the vector. We denote the transpose of a
vector by xT .

Suppose you have a constrained optimization problem in which you want to find:

min
w

f(w)

subject to k equality constraints:
hi(w) = 0, i = 1 . . . k,

where f and hi are arbitrary real-valued functions. In order to solve the problem, we will define a
“helper”, called the Lagrangian:

L(w, β) = f(w) +
k∑

i=1

βihi(w)

The newly introduced variables, βi, i = 1 . . . k are called Lagrange multipliers. Now, instead of finding
minw f(w), we will try to find minw maxβ L(w, β).

Why does this work? Consider that we are given some arbitrary w. Suppose that one of the
constraints is violated, i.e., hi(w) 6= 0 for some i. In this case, we can take the Lagrangian to ∞,
by setting the corresponding βi to an arbitrarily large positive (or negative) number (depending on
whether hi(w) > 0 or hi(w) < 0). If all constraints are satisfied, then L(w, β) = f(w). So we have:

max
β

L(w, β) =

{
f(w) if all constraints are satisfied
+∞ otherwise

So minw f(w) = minw maxβ L(w, β).
Now we converted our constrained optimization problem into an unconstrained optimization prob-

lem. In principle, we can solve this by taking the partial derivatives of L with respect to all the βi and
wj , and setting them to 0. If we cannot solve the resulting system for all parameters, then we can do
gradient descent or use other, fancier methods.
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Now let us assume we have a more complicated constraint optimization problem, in which there
are equality as well as inequality constraints:

min
w

f(w)

such that gi(w) ≤ 0, i = 1 . . . k

hj(w) = 0, j = 1 . . . l

In order to solve it, we will apply the same “helper” idea as above and define the generalized
Lagrangian:

L(w, α, β) = f(w) +
k∑

i=1

αigi(w) +
l∑

j=1

βjhj(w), (1)

where αi, i = 1 . . . k and βj , j = 1 . . . l are the Lagrange multipliers.
Now consider the quantity:

P(w) = max
α,β:αi≥0

L(w, α, β)

Consider again an arbitrary setting of w. If it violates some constraints (either gi(w) > 0 for some
i or hj(w) 6= 0 for some j), then we can use the same reasoning as above to show that P(w) = ∞.
Now suppose that the constraints are satisfied. Then hj(w) = 0, j = 1 . . . l, so the third term in (1)
is 0. For the second term, since gi(w) ≤ 0 i = 1 . . . k, and since we want to maximize, the best thing
to do is to set αi = 0 for all i for which gi(w) < 0. In this case, the second term is also 0. Putting all
these together, we get:

P(w) =

{
f(w) if all constraints are satisfied
+∞ otherwise

Hence, instead of computing minw f(w) subject to the original constraints, we can compute:

min
w
P(w) = min

w
max

α,β:αi≥0
L(w, α, β)

Let p∗ = minw P(w) denote the solution of the primal problem.
Now let us consider a similar-looking (and related) problem:

max
α,β:αi≥0

min
w

L(w, α, β)

This is called the dual optimization problem, and it is the same as the primal, except that the min
and max are reversed. Let d∗ be the value of this dual problem. Then it is easy to show that d∗ ≤ p∗

(you will show that this is true in homework 6). Hence, often the solution of the dual problem is used
to bound the solution of the primal problem. However, under certain conditions, we have d∗ = p∗

(and hence we can solve the dual problem instead of the primal problem). One set of conditions is
given the strong duality theorem (see, e.g, the book on support vector machines by Cristianini and
Shawne-Taylor):

• gi and hj have to be affine, i.e., they have to be of the form ai
Tw + bi

• the domain of w has to be convex

Note that there are other sets of assumptions (less restrictive) which also allow for p∗ = d∗. However,
for the purpose of SVMs, we only need to consider the conditions above.

2



When p∗ = d∗, let w∗, α∗ and β∗ be the parameters settings which achieve the solution of these
problems. These parameters settings have to satisfy the following conditions (which should be obvious
based on our discussion so far):

∂

∂wi
L(w∗, α∗, β∗) = 0, i = 1 . . . n (2)

∂

∂βj
L(w∗, α∗, β∗) = 0, j = 1 . . . l (3)

α∗i gi(w∗) = 0, i = 1 . . . k (4)
gi(w∗) ≤ 0, i = 1 . . . k (5)

α∗i ≥ 0, i = 1 . . . k (6)

These are called the Karush-Kuhn-Tucker (KKT) conditions. Condition (4), which is called the
complementarity condition will be especially important from our point of view. It implies that, if
α∗i > 0, then gi(w∗) = 0 (i.e., the constraint is active, which means that it holds with equality rather
than inequality).
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