Lecture 21: Dimensionality Reduction (Il)

e Kernel PCA
e Multi-dimensional scaling

e Self-organizing maps

November 26, 2007 1 COMP-652 Lecture 21

Recall: Principal Component analysis (PCA)

e Letxi,...xm,n € R" be the data
e Consider the scatter matrix (covariance matrix):

1 m
T
S=— g XiX;
m 4
=1

e The principal components v; are the eigenvectors of S:

SVj :)\jvj,j:1,...n

e The eigenvectors are normalized: v} v; = 1

e We sort these vectors in the decreasing order of the
corresponding eigenvalues

e You can pick the first K components, or determine k based on
how much variance is accounted for

e The data will be represented by projectingitontov;,2 =1,...k

November 26, 2007 2 COMP-652 Lecture 21

Recall: Difficult example

PCA will make no difference between these examples

November 26, 2007

COMP-652 Lecture 21

What we want

Ground truth
Moisy examples
Corrupted
Feconstructed

November 26, 2007

COMP-652 Lecture 21

Making PCA non-linear

go to some different feature space ¢(x;) € RN

would help us deal with the circle

Similar idea to support vector machines

Suppose that instead of using the points x; as is, we wanted to

E.g. using polar coordinates instead of cartesian coordinates

In the higher dimensional space, we can then do PCA

The result will be non-linear in the original data space!

November 26, 2007 5

COMP-652 Lecture 21

PCA in feature space (l)

spaceis > " ¢(xi) =0
The covariance matrix is:

The eigenvectors are:

CVjZ)\jVj,jZl,...N

want to work with kernels:

K (xi,%;) = 6(x:)T d(x;)

Suppose for the moment that the mean of the data in feature

We want to avoid explicitly going to feature space - instead we

November 26, 2007 6

COMP-652 Lecture 21

PCA in feature space (ll)

e Re-write the PCA equation:
R T :
— N o(xi)b(xi) vy = Ajvi,i=1,...N
miz

e So the eigenvectors can be written as a linear combination for
features:

e So finding the eigenvectors is equivalent to finding the

coefficients aj;,j =1,...N,i =1,...m

November 26, 2007 7 COMP-652 Lecture 21

PCA in feature space (lll)

By substituting this back into the equation we get:
1 m m m
— > d(xi)(xi)T <Z ajl¢(xl)> =X) ao(x)
mi =1 =1

e We can re-write this as:

1 ™m m m

— > o(xi) (Z aji K (%, Xl)) =X) ao(x)

i=1 1=1 1=1

A small trick: multiply this by ¢(x;)” to the left:

1 m

— > o(xn) T b(xi) (Z aji K (%, Xz)) =X > ao(xp) T o(x))
=1 =1

=1

By plugging in the kernel and rearranging (Doina does this on
the board) we get: K?a; = m)\;Ka,

November 26, 2007 8 COMP-652 Lecture 21

PCA in feature space (1V)

e We can remove a factor of K from both sides of the matrix (this
will only affect eigenvectors with eigenvalues 0, which will not be
principle components anyway):

Kaj = m)\j aj

e We have a normalization condition for the a; vectors:
m m
VJTVj =1= Z Zajlajkqﬁ(xl)Tgb(xk) =1= a?Kaj =1
k=11=1

e Using the above equation again we get:)xjmajTaj =1,y
e For a new point x, its projection onto the principal components
is:

m

d(x)"v; =D ajd(x) o) =D ajiK(x,x;)
i=1

=1

November 26, 2007 9 COMP-652 Lecture 21

Normalizing the feature space

In general, the features ¢(x;) may not have mean 0
We want to work with ¢(x;) = ¢(x:) — = S, B(xx)

The corresponding kernel matrix entries are given by:

K (x,x1) = (x1)" d(x;)

After some algebra, we get:
K=K-21,/,K+1,,,K1;/,,

where 14 ,, is the matrix with all elements equal to 1/m

November 26, 2007 10 COMP-652 Lecture 21

Summary of kernel PCA

1. Pick a kernel

2. Construct the normalized kernel matrix K of the data (this will
be of dimension m X m)

3. Find the eigenvalues and eigenvectors of this matrix \;, a;

4. For any data point (new or old), we can represent it as the

following set of features:

Yi = ZajiK(X,Xi),j =1,...m
=1

November 26, 2007 11 COMP-652 Lecture 21

Example: De-noising images

{21 IONA /121710
B B A e R S
i =Kl S e 7 vl B E

Result after kernel PCA, Gaussian kernel

A SIYION6] 7181710

(£

November 26, 2007 12 COMP-652 Lecture 21

PCA vs Kernel PCA

e Kernel PCA can give a good re-encoding of the data when it lies
along a non-linear manifold

e The kernel matrix is m x m, so kernel PCA will have difficulties
if we have lots of data points

e In this case, we may need to use dictionary methods to pick a
subset of the data

e For general kernels, we may not be able to easily visualize what
the image of a point is in the input space

November 26, 2007 13 COMP-652 Lecture 21

Multi-dimensional scaling

e |nput:
— An m x m dissimilarity matrix DS, where DS (i, j) is the
distance between instances x; and x;
— Desired dimension d of the embedding.
e Qutput:
— Coordinates z; € R for each instance i that minimize a
“stress” function quantifying the mismatch between distances
in DS and distances of the data representation in R<.

November 26, 2007 14 COMP-652 Lecture 21

Stress functions

Common stress functions include:

e The least-squares or Kruskal-Shephard criterion:
.. 2
> > (DS(,j) — |z — =)
i=1 j#i
e The Sammon mapping:

(DS(i, 5) — llzi — 21)”
ZZ DS (i, 7) ’

i=1 j#4

which emphasizes getting small distances correct.

Gradient-based optimization is usually used to find z;

November 26, 2007 15 COMP-652 Lecture 21

Self-organizing maps

e If the instances are vectors in k", try to stretch a “grid” of points

in n dimensions to approximate the data.

e The indices of the grid points indicate neighborhood

relationships

e E.g,in2D, G(i, j) is neighbor with G(i — 1, 7), G(i + 1, j),
G(i,7—1),G(i,5+1).

e The grid points are iteratively moved, "pulled”, by data points,
similar to how the centroids of K-means clustering move

around.

e The data can then be visualized by mapping each object to the

nearest grid point.

November 26, 2007 16 COMP-652 Lecture 21

Self-organizing maps

e Inputs:
- Aset D = {x1,...,Xm} of n-dimensional real vectors.
— A dimension for the grid (1,2 or 3 if we want to plot it.)
— Number of grid points along each dimension.

e OQutput: Coordinates GG in R" for each grid-point.

November 26, 2007 17 COMP-652 Lecture 21

SOM learning algorithm

e [nitialize the grid points.
e Repeat
— Choose a data point x at random.

— Find the nearest grid point; e.g., in 2D:
G(i",57) = argmin | G(7, j) — x]|

— Find the “neighborhood” of G* (4, 5)
— Move all points G in the neighborhood towards x:

G—G+as(x,G)(x—G)

where s(x, G) is a similarity function, equal to 1 if x = G

and decreasing with ||x — G| (e.g. Gaussian)

November 26, 2007 18 COMP-652 Lecture 21

Example

November 26, 2007 19 COMP-652 Lecture 21

Remarks

Typically the learning rate @ — 0 with time

The SOM builds a topographical map of the input space, putting

more points where the data is dense

Instances that are close in the input space will be mapped to
units which are neighbors in the grid.

If the data approximately lies on a curve or surface, the SOM
may capture that structure, but:

— Different runs can find different solutions.

— If we try to fit data on a 2D surface with a 1D grid, well. ..
More sophisticated versions of SOMs use different updating

rules, different neighboring functions

November 26, 2007 20 COMP-652 Lecture 21

