Lecture 20: Hierarchical Clustering. Dimensionality Reduction (I)

e Hierarchical clustering methods
e Overview of dimensionality reduction

e Principal component analysis

November 19, 2007 1 COMP-652 Lecture 20

Hierarchical clustering

Organizes data instances into trees.

For visualization, exploratory data analysis.

Agglomerative methods build the tree bottom-up, successively

grouping together the clusters deemed most similar.

Divisive methods build the tree top-down, recursively

partitioning the data.

—

November 19, 2007 2 COMP-652 Lecture 20

What is a hierarchical clustering?

e Giveninstances D = {x1,...,Xm}.
e A hierarchical clustering is a set of subsets (clusters) of D,
C ={C,...,Ck}, where
— Every element in D is in at least one set of C'
— The C'; can be assigned to the nodes of a tree such that the
cluster at any node is precisely the union of the clusters at
the node’s children (if any).

November 19, 2007 3 COMP-652 Lecture 20

Example of a hierarchical clustering

Suppose D ={1,2,3,4,5,6,7}.
One hierarchical clustering is C' =

{{1},{2,3},{4,5},{1,2,3,4,5},{6,7},{1,2,3,4,5,6, 7}}.
In this example:

— Leaves of the tree need not correspond to single instances.
— The branching factor of the tree is not limited.
e However, most hierarchical clustering algorithms produce binary

trees, and take single instances as the smallest clusters.

November 19, 2007 4 COMP-652 Lecture 20

Agglomerative clustering

e Input: A set of instances and pairwise distances d(x, x’)
between them.
e QOutput: A hierarchical clustering
e Algorithm:
— Assign each instance as its own cluster on a working list V.
— Repeat
* Find the two clusters in W that are most “similar”.
* Remove them from W

* Add their union to W.
Until W contains a single cluster with all the data objects.

— The hierarchical clustering contains all clusters appearing in

W at any stage of the algorithm.

November 19, 2007 5 COMP-652 Lecture 20

How do we measure dissimilarity between clusters?

e Distance between nearest objects (“Single-linkage”
agglomerative clustering, or “nearest neighbor”):

min d(x,x)
xeC,x'eC’

e Distance between farthest objects (“Complete-linkage”

agglomerative clustering, or “furthest neighbor”):

max d(x,x)
xeC,x'eC’

e Average distance between objects (“Group-average”
agglomerative clustering):

1 ’
d(x,x
clio] 2o dex)

xeC,x’'eC’

November 19, 2007 6 COMP-652 Lecture 20

Dendrograms and monotonicity

e Single-linkage, complete-linkage and group-average
dissimilarity measure all share a monotonicity property:
— Let A, B, C be clusters.

— Let d be one of the dissimilarity measures.
- Ifd(A, B) < d(A,C) and d(A, B) < d(B,C), then
d(A,B) < d(AUB,(C).

e Implication: every time agglomerative clustering merges two
clusters, the dissimilarity of those clusters is > the dissimilarity
of all previous merges.

e Dendrograms (trees depicting hierarchical clusterings) are often
drawn so that the height of a node corresponds to the

dissimilarity of the merged clusters.

November 19, 2007 7 COMP-652 Lecture 20

Example: Dendrogram for single-linkage clustering

0.1

November 19, 2007 8 COMP-652 Lecture 20

Example: Dendrogram for complete-linkage clustering

09r

08r

071

0.6

051

04r

031

0.2r-

011

0 10, Il . 1
6285BEHEITEES6

November 19, 2007 9 COMP-652 Lecture 20

Example: Dendrogram for average-linkage clustering

04r

November 19, 2007 10 COMP-652 Lecture 20

Remarks

e We can form a flat clustering by cutting the tree at any height.

e Jumps in the height of the dendrogram can suggest natural
cutoffs.

November 19, 2007 11 COMP-652 Lecture 20

Divisive clustering

e Works by recursively partitioning the instances.

e But dividing such as to optimize one of the agglomerative
criteria is computationally hard!

e Many heuristics for partitioning the instances have been

proposed ... but many violate monotonicity, making it hard to
draw dendrograms.

November 19, 2007 12 COMP-652 Lecture 20

What is dimensionality reduction?

e Dimensionality reduction (or embedding) techniques:
— Assign instances to real-valued vectors, in a space that is
much smaller-dimensional (even 2D or 3D for visualization).
— Approximately preserve similarity/distance relationships
between instances.
e Some techniques:
— Linear: Principal components analysis
— Non-linear
* Kernel PCA
* Independent components analysis
* Self-organizing maps
* Multi-dimensional scaling

November 19, 2007 13 COMP-652 Lecture 20

What is the true dimensionality of this data?

® *°
c o uny S
[4
@’..0... .. ¢
. .’oo.‘ .
. .'. o ..O .‘.
[.‘ .‘ ° []
0o 9° ¢ °
8o
14 COMP-652 Lecture 20

November 19, 2007

What is the true dimensionality of this data?

Oq
.QO
°
o ®
o%
°
o®
°
%
e
o
°
o . °S°p ®e ° ’.o..
o ...°.~ ST .Qdo
°
[]
*
November 19, 2007 15 COMP-652 Lecture 20

What is the true dimensionality of this data?

o % .0 0.0 o% ° °®
. s s
a .
'y ~
....
~,° .. °
.o° oo §
o. ® o .0 ®
® .0. ° ®

November 19, 2007 16 COMP-652 Lecture 20

What is the true dimensionality of this data?

5 ®
® oo .o .
o ° PY) [
° o ©®
) [}
° ° ° °
° ° °
) g [} [}
° r
g °
° o ® °
°
. °
o ° ° ° ¢
° ° °
° ee © © ° ° °
° e °) °°® ®
°
° ° L4 ° e °
[] 'Y o °
° []
° ° ¢ e ©®
[] [} 4
° o ©
°
PY 'Y ¢ ..] [J
November 19, 2007 17 COMP-652 Lecture 20
Remarks

e All dimensionality reduction techniques are based on an implicit
assumption that the data lies along some

low-dimensional manifold

e This is the case for the first three examples, which lie along a
1-dimensional manifold despite being plotted in 2D

e In the last example, the data has been generated randomly in
2D, so no dimensionality reduction is possible without losing
information

e The first three cases are in increasing order of difficulty, from the

point of view of existing techniques.

November 19, 2007 18 COMP-652 Lecture 20

Simple Principal Component Analysis (PCA)

e Given: m data objects, each a length-n real vector.

e Suppose we want a 1-dimensional representation of that data,
instead of n-dimensional.

e Specifically, we will:
— Choose aline in 1™ that “best represents” the data.

— Assign each data object to a point along that line.

November 19, 2007 19 COMP-652 Lecture 20

Which line is best?

November 19, 2007 20 COMP-652 Lecture 20

How do we assign points to lines?

November 19, 2007 21 COMP-652 Lecture 20

Reconstruction error

® Let our line be represented as b + av for b, v € ", a € R.
For later convenience, assume ||v|| = 1.

e Each instance x; is assigned a point on the line X; = b + a; V.

e We want to choose b, v, and the a; to minimize the total
reconstruction error over all data points, measured using

Euclidean distance:

m
R=>|xi — %l
=1

November 19, 2007 22 COMP-652 Lecture 20

A constrained optimization problem!

min 327 [[xi — (b + civ)||?
wrt. b, v,a;,i=1,...m

s.t. |\v||2 =1
We write down the Lagrangian (see SVM lectures):

L(b,v, A\ at,...am) = > |[lxi— (b+av)|* + A(|lv[]* - 1)
=1
= > Ibeall* +mlbl* + v]*) af
=1 =1

— 2bixi — 2Viaixi + 2bviai
i=1 i=1 i=1

— AlVIE+ A

November 19, 2007 23 COMP-652 Lecture 20

Solving the optimization problem

e The most straightforward approach would be to write the KKT
conditions and solve the resulting equations

e Unfortunately, we get equations which have multiple variables in
them, and the resulting system is not linear (you can check this)

e Instead, we will fix v.

e For a given v, finding the best b and «; is now an

unconstrained optimization problem:

min R = minz |xi — (b + aiV)HQ

=1

November 19, 2007 24 COMP-652 Lecture 20

Solving the optimization problem (lII)

e We write the gradient of R wrt to a; and set it to 0:

OR
8ai

=2||v|’i —2vx; +2bv=0=a; = v - (x; — b)

where we take into account that ||v||* = 1.

e We write the gradient of R wrt b and set it to 0:

VbRme—Qixi+2<iai>vO (1)
i=1

1=1

e From above:

November 19, 2007 25 COMP-652 Lecture 20

Solving the optimization problem (lll)

By plugging (2) into (1) we get:

e This is satisfied when:
m 1 m
in—mb:O:>b: EZX,L
=1 =1

This means that the line goes through the mean of the data

By substituting o;, we get:

%i=b+ (v (x; —b))v

This means that instances are projected orthogonally on the line
to get the associated point.

November 19, 2007 26 COMP-652 Lecture 20

Example data

November 19, 2007

o °
o. ° .
o o
° o
o 9 °
°
° ° o
o0

27

COMP-652 Lecture 20

Example with v & (1,0.3)

November 19, 2007

28

COMP-652 Lecture 20

Example with v < (1, —0.3)

November 19, 2007 29 COMP-652 Lecture 20

Finding the direction of the line

e Substituting a;; = v’ (x; — b) = (x; — b)Tv into our
optimization problem we obtain a new optimization problem:
miny 37, % — b — (v (xi — b))v|?
S.t. ||v||2 =1
e The optimization criterion can be re-written as:

m m

> (Ixi=bl+a? |[v]*~2a:(x,=b)"v) = 3 (Ixi=b|*~a?)
i=1 i=1
e Hence, the we can solve the equivalent problem:
maxy i, a?

st |v[2=1

November 19, 2007 30 COMP-652 Lecture 20

Finding the direction of the line

e Optimization problem re-written:
maxy Yo, V' (x; —b)(x; —b)'v

st. |v]?=1
e The Lagrangian is:

L(v,\)= > v (x; —=b)(xi —b) v + A — Alv|”
=1

o Let S =>"" (x; — b)(x; — b)” be an n-by-n matrix, which

we will call the scatter matrix

e The solution to the problem, obtained by setting VL = 0, is:
Sv = \v.

November 19, 2007 31 COMP-652 Lecture 20

Optimal choice of v

e Recall: an eigenvector u of a matrix A satisfies Au = \u,
where A € R is the eigenvalue.

e Fact: the scatter matrix, .S, has n non-negative eigenvalues and
n orthogonal eigenvectors.

e The equation obtained for v tells us that it should be an
eigenvector of S.

e The v that maximizes v’ Sv is the eigenvector of S with the

largest eigenvalue

November 19, 2007 32 COMP-652 Lecture 20

What is the scatter matrix

e S is ann X nm matrix with

m

S(k,1) =) (xi(k) — b(k))(x:(1) — b(l))

=1

e Hence, S(k,1) is proportional to the estimated covariance

between the kth and [th dimension in the data.

November 19, 2007 33 COMP-652 Lecture 20

Recall: Covariance

e Covariance quantifies a linear relationship (if any) between two

random variables X and Y.
Cov(X,)Y)=FE{(X-EX)(Y-EY))}

e Given m samples of X and Y, covariance can be estimated as

%Z(:& — px)(yi — py),

where px = (1/m)> " @i and py = (1/m) > 7" yi.
e Note: Cov(X, X) = Var(X).

November 19, 2007 34 COMP-652 Lecture 20

Covariance example

Cov=7.6022
10 o
ot
5 o
O.’
of &
0 5 10
Cov=-0.12338
10 ® . °
o
5 ° . °.o
° % ..°. °
0) °
0 5 10

10

10

Cov=-3.8196

0 5

10
Cov=0.00016383

November 19, 2007

35

COMP-652 Lecture 20

Example with optimal line: b = (0.54,0.52), v o< (1,0.45)

November 19, 2007

36

COMP-652 Lecture 20

Remarks

e The line b 4+ av is the first principal component.

e The variance of the data along the line b 4+ av is as large as
along any other line.
e b, v, and the a; can be computed easily in polynomial time.

November 19, 2007 37 COMP-652 Lecture 20

Reduction to d dimensions

e More generally, we can create a d-dimensional representation
of our data by projecting the instances onto a hyperplane
b+ alvy + ...+ a%vy,.

e |f we assume the v; are of unit length and orthogonal, then the
optimal choices are:
— b is the mean of the data (as before)
— The v; are orthogonal eigenvectors of S corresponding to its

d largest eigenvalues.

— Each instance is projected orthogonally on the hyperplane.

November 19, 2007 38 COMP-652 Lecture 20

Remarks

e b, the eigenvalues, the v, and the projections of the instances
can all be computing in polynomial time.

e The magnitude of the j'"-largest eigenvalue, A;j, tells you how
much variability in the data is captured by the jth principal
component

e So you have feedback on how to choose d!

e When the eigenvalues are sorted in decreasing order, the
proportion of the variance captured by the first d components is:

A1+ + A
A+t A+ Aarr + o+ A

e So if a “big” drop occurs in the eigenvalues at some point, that

suggests a good dimension cutoff

November 19, 2007 39 COMP-652 Lecture 20

Example: A\; = 0.0938, Ay = 0.0007

November 19, 2007 40 COMP-652 Lecture 20

Example: \; = 0.1260, Ay = 0.0054

November 19, 2007 41 COMP-652 Lecture 20

Example: \; = 0.0884, Ao = 0.0725

November 19, 2007 42 COMP-652 Lecture 20

Example: \; = 0.0881, Ay = 0.0769

November 19, 2007 43 COMP-652 Lecture 20

More remarks

e Qutliers have a big effect on the covariance matrix, so they can
affect the eignevectors quite a bit

e A simple examination of the pairwise distances between
instances can help discard points that are very far away (for the
purpose of PCA)

e [f the variances in the original dimensions vary considerably,
they can “muddle” the true correlations. There are two solutions:
— work with the correlation of the original data, instead of

covariance matrix

— normalize the input dimensions individually before PCA

e In certain cases, the eigenvectors are meaningful; e.g. in vision,

they can be displayed as images (“eigenfaces”)

November 19, 2007 44 COMP-652 Lecture 20

Uses of PCA

e Pre-processing for a supervised learning algorithm, e.g. for
image data, robotic sensor data

e Used with great success in image and speech processing

e Visualization

e Exploratory data analysis

e Removing the linear component of a signal (before fancier

non-linear models are applied)

November 19, 2007 45 COMP-652 Lecture 20

