

Measuring bias and variance in practice

• Recall that bias and variance are both defined as expectations:

$$Bias(\mathbf{x}) = E_P[f(\mathbf{x}) - \bar{h}(\mathbf{x})]$$

 $Var(\mathbf{x}) = E_P[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^2]$

- To get expected values we <u>simulated</u> multiple data sets, by drawing with samples with replacement from the original data set
- This gives a set of hypothesis, whose predictions can be *averaged* together
- This construction is called *bagging* and reduces variance

```
October 22, 2007
```

3

COMP-652 Lecture 13

Ensemble learning in general

- Ensemble learning algorithms work by running a <u>base learning algorithm</u> multiple times, then <u>combining</u> the predictions of the different hypotheses obtained using some form of voting
- One approach is to construct several classifiers *independently*, then combine their predictions. Examples include:
 - Bagging
 - Randomizing the test selection in decision trees
 - Using a different subset of input features to train different neural nets
- A second approach is to *coordinate* the construction of the hypotheses in the ensemble.

Additive models

- In an ensemble, the output on any instance is computed by averaging the outputs of several hypotheses, possibly with a different weighting.
- Hence, we should choose the individual hypotheses and their weight in such a way as to provide a good fit
- This suggests that instead of constructing the hypotheses independently, we should construct them such that new hypotheses focus on instances that are problematic for existing hypotheses.
- **Boosting** is an algorithm implementing this idea

October	22,	2007

5

COMP-652 Lecture 13

Main idea of boosting

Component classifiers should concentrate more on difficult examples

- Examine the training set
- Derive some rough "rule of thumb"
- <u>*Re-weight*</u> the examples of the training set, concentrating on "hard" cases for the previous rule
- Derive a second rule of thumb
- And so on... (repeat this *T* times)
- <u>Combine</u> the rules of thumb into a single, accurate predictor Questions:
 - How do we re-weight the examples?
 - How do we combine the rules into a single classifier?

6

Notation

- Assume that examples are drawn independently from some probability distribution P on the set of possible data \mathcal{D}
- Notation: $J_P(h)$ is the expected error of h when data is drawn from P:

$$J_P(h) = \sum_{\langle \mathbf{x}, y \rangle} J(h(\mathbf{x}), y) P(\langle \mathbf{x}, y \rangle)$$

where $J(h(\mathbf{x}), y)$ could be squared error, or 0/1 loss

October 22, 2007

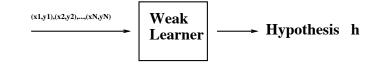
7

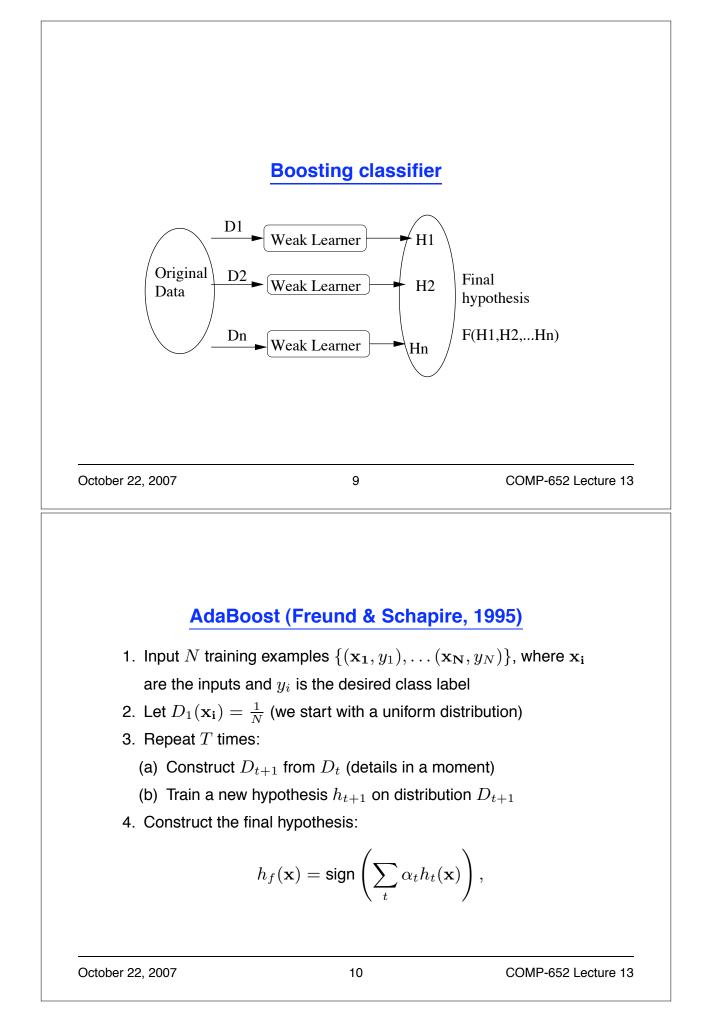
COMP-652 Lecture 13

Weak learners

Assume we have some "weak" binary classifiers (e.g., decision stumps: x_i > t)

• "Weak" means $J_P(h) < 1/2 - \gamma$ where $\gamma > 0$ (i.e., the true error of the classifier is better than random).





Constructing the new distribution

We want data on which we make mistakes to be emphasized:

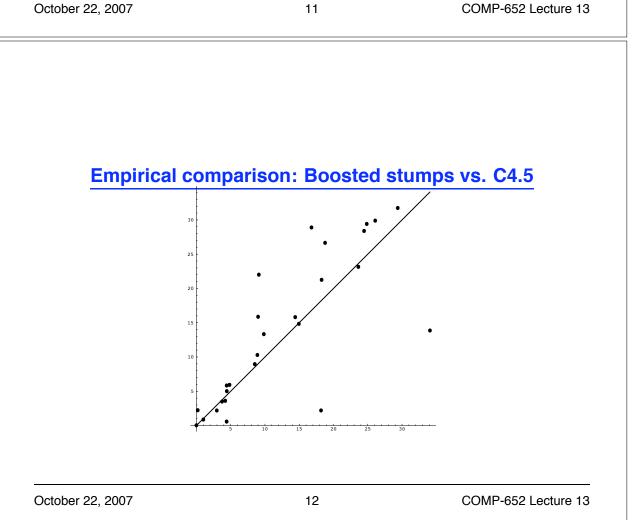
$$D_{t+1}(\mathbf{x}_{i}) = \frac{1}{Z_{t}} D_{t}(\mathbf{x}_{i}) \times \begin{cases} \beta_{t}, & \text{if } h_{t}(\mathbf{x}_{i}) = y_{i} \\ 1, & \text{otherwise} \end{cases} \text{ where} \\ \beta_{t} = \frac{J_{D_{t}}(h_{t})}{1 - J_{D_{t}}(h_{t})} \end{cases}$$

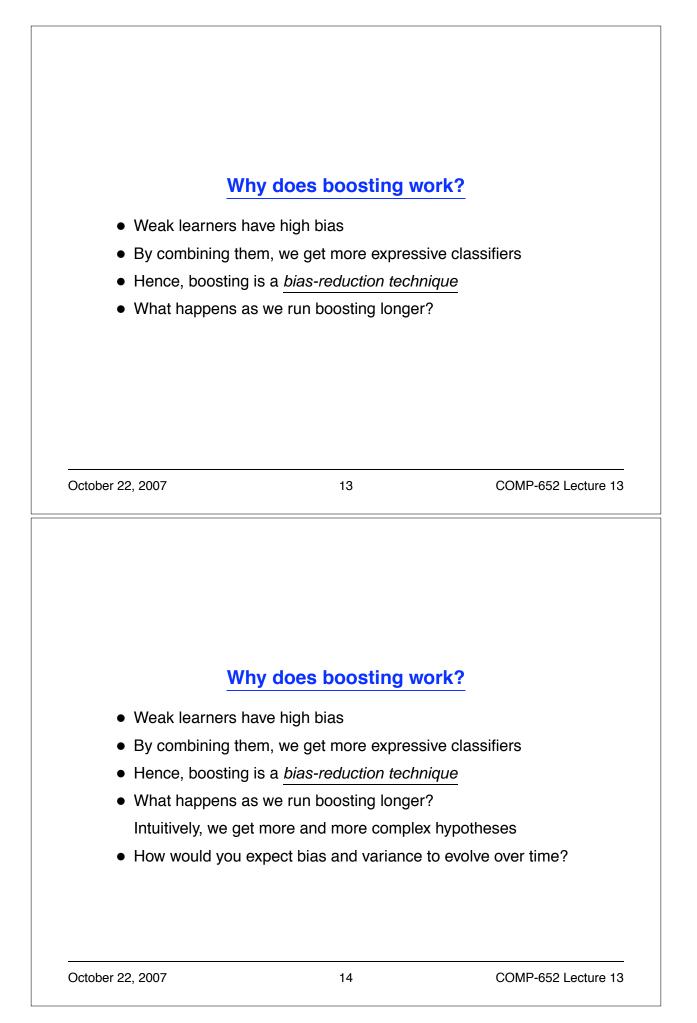
and Z_t is a normalization factor (set such that the probabilities $D_{t+1}(x_i)$ sum to 1).

Construct the final hypothesis:

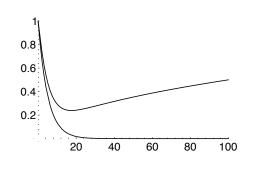
$$h_f(\mathbf{x}) = \operatorname{sign}\left(\sum_t \alpha_t h_t(\mathbf{x})\right), \text{ where } \alpha_t = \log(1/\beta_t)$$

October 22, 2007





- Expect the training error to continue to drop (until it reaches 0)
- Expect the test error to <u>increase</u> as we get more voters, and h_f becomes too complex.



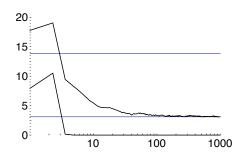
October 22, 2007

15

COMP-652 Lecture 13

Actual typical run of AdaBoost

Boosting C4.5 on the letter dataset:



- Test error <u>does not increase</u> even after 1000 runs! (more than 2 million decision nodes!)
- Test error <u>continues to drop</u> even after training error reaches 0! These are consistent results through many sets of experiments!

```
October 22, 2007
```

Recall: Classification margin

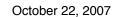
• Boosting constructs hypotheses of the form

 $h_f(\mathbf{x}) = \operatorname{sign}(f(\mathbf{x}))$

- The classification of an example is correct if $sign(f(\mathbf{x})) = y$
- The margin is defined as:

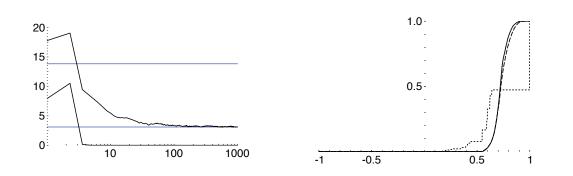
$$margin(f(\mathbf{x}), y) = y \cdot f(\mathbf{x})$$

- The margin tells us how close the decision boundary is to the data points on each side.
- A higher margin on the training set should yield a lower generalization error
- Intuitively, increasing the margin is similar to lowering the variance



17

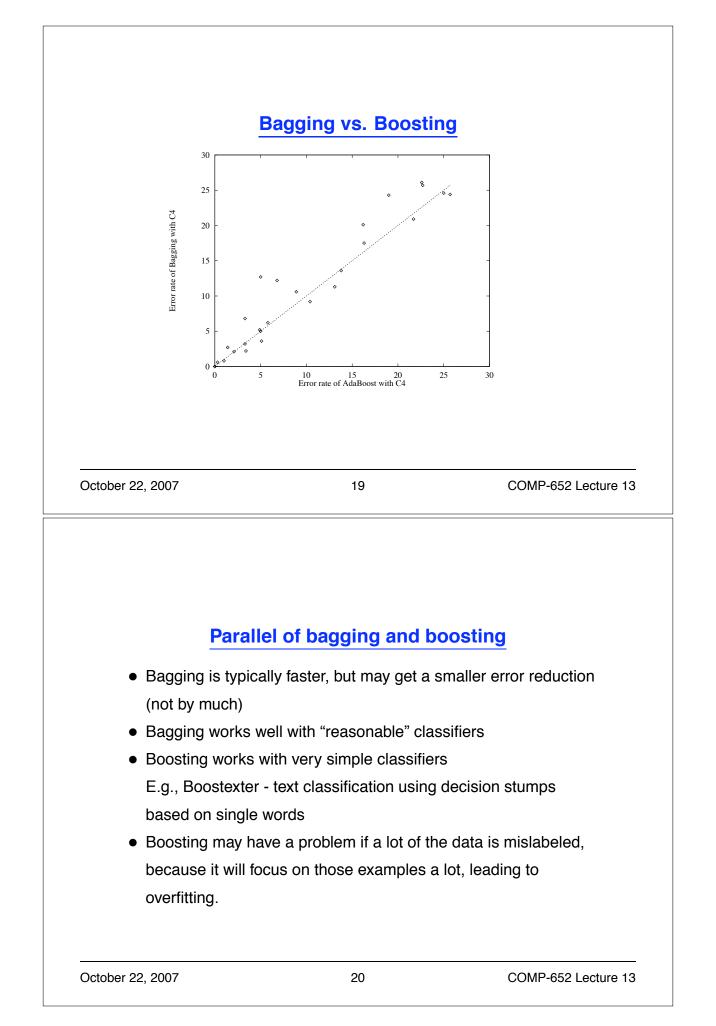
Effect of boosting on the margin

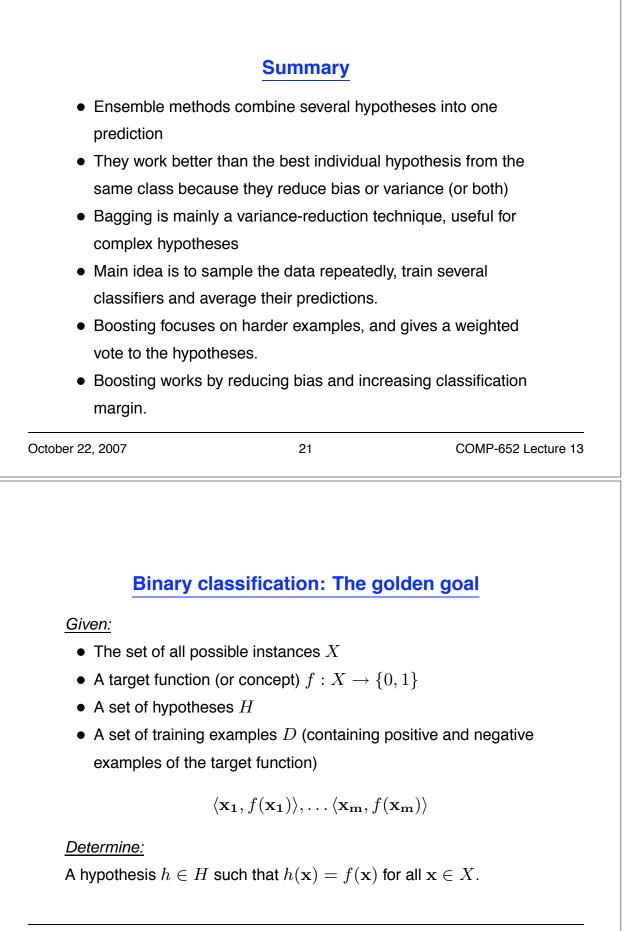


- Between rounds 5 and 10 there is no training error reduction
- But there is a significant shift in margin distribution!
- There is a formal proof that boosting increases the margin

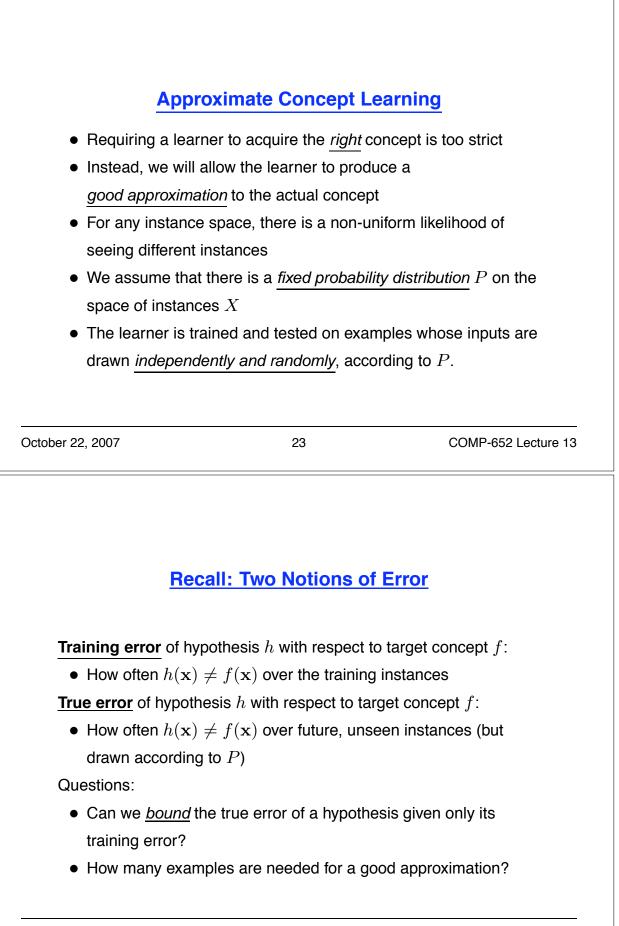
October 22, 2007

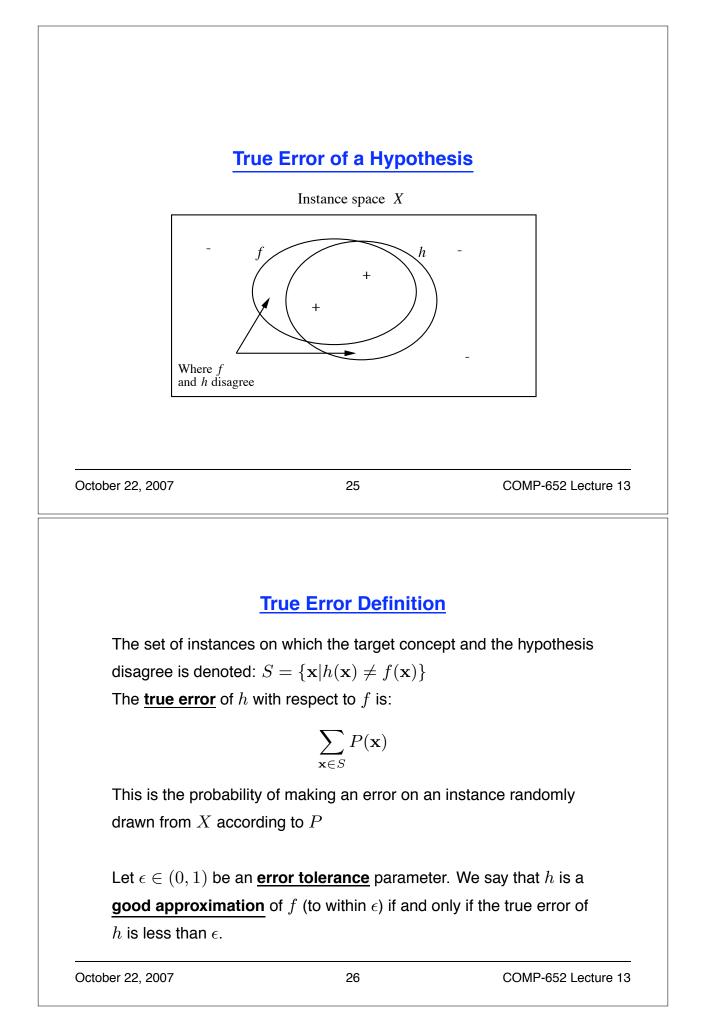
COMP-652 Lecture 13





October 22, 2007





Example: Rote Learner

- Let $X = \{0, 1\}^n$. Let P be the uniform distribution over X.
- Let the concept *f* be generated by randomly assigning a label to every instance in *X*.
- Let $D \subset X$ be a set of training instances. The hypothesis h is generated by memorizing D and giving a random answer otherwise.
- What is the training error of *h*?
- What is the true error of *h*?

October 22, 2007

27

COMP-652 Lecture 13

Empirical risk minimization

- Suppose we are given a hypothesis class *H*
- We have a magical learning machine that can sift through H and output the hypothesis with the *smallest training error*, h_{emp}
- This is process is called empirical risk minimization
- Is this a good idea?
- What can we say about the error of the other hypotheses in *h*?

First tool: The union bound

Let $E_1 \dots E_k$ be k different events (not necessarily independent). Then:

$$P(E_1 \cup \dots \cup E_k) \le P(E_1) + \dots + P(E_k)$$

October 22, 2007

29

COMP-652 Lecture 13

Second tool: Hoeffding (Chernoff) bound

Let $Z_1 \dots Z_m$ be *m* independent identically distributed (iid) binary variables, drawn from a Bernoulli (binomial) distribution:

$$P(Z_i = 1) = \phi$$
 and $P(Z_i = 0) = 1 - \phi$

Let $\hat{\phi}$ be the mean of these variables:

$$\hat{\phi} = \frac{1}{m} \sum_{i=1}^{m} Z_i$$

Let ϵ be a fixed error tolerance parameter. Then:

$$P(|\phi - \hat{\phi}| > \epsilon) \le 2e^{-2\epsilon^2 m}$$

In other words, if you have lots of examples, the empirical mean is a good estimator of the true probability.

```
October 22, 2007
```

Finite hypothesis space

• Suppose we are considering a finite hypothesis class

 $H = \{h_1, \dots, h_k\}$ (e.g. conjunctions, decision trees,...)

- Take an arbitrary hypothesis $h_i \in H$
- Suppose we sample data according to our distribution an let $Z_j = 1$ iff $h_i(\mathbf{x_j}) \neq y_j$
- So $e(h_i)$ (the true error of h_i) is the expected value of Z_j
- Let $\hat{e}(h_i) = \frac{1}{m} \sum_{j=1}^m Z_j$ (this is the empirical training error of h_i on the data set we have)
- Using the Hoeffding bound, we have:

$$P(|e(h_i) - \hat{e}(h_i)| > \epsilon) \le 2e^{-2\epsilon^2 m}$$

 So, if we have lots of data, the training error of a hypothesis h_i will be close to its true error with high probability.

October 22, 2007

31

COMP-652 Lecture 13

What about all hypotheses?

- We showed that the empirical error is "close" to the true error for one hypothesis.
- Let E_i denote the event $|e(h_i) \hat{e}(h_i)| > \epsilon$
- Can we guarantee this is true for <u>all</u> hypothesis?

$$P(\exists h_i \in H, |e(h_i) - \hat{e}(h_i)| > \epsilon) = P(E_1 \cup \dots E_k)$$

$$\leq \sum_{i=1}^k P(E_i) \text{ (union bound)}$$

$$\leq \sum_{i=1}^k 2e^{-2\epsilon^2 m} \text{ (shown before)}$$

$$= 2ke^{-2\epsilon^2 m}$$

A uniform convergence bound

• We showed that:

$$P(\exists h_i \in H, |e(h_i) - \hat{e}(h_i)| > \epsilon) \le 2ke^{-2\epsilon^2 m}$$

• So we have:

$$1 - P(\exists h_i \in H, |e(h_i) - \hat{e}(h_i)| > \epsilon) \ge 1 - 2ke^{-2\epsilon^2 m}$$

or, in other words:

$$P(\forall h_i \in H, |e(h_i) - \hat{e}(h_i)| < \epsilon) \ge 1 - 2ke^{-2\epsilon^2 m}$$

- This is called a **uniform convergence** result because the bound holds for all hypotheses
- What is this good for?

October 22, 2007

33

COMP-652 Lecture 13

Sample complexity

- Suppose we want to guarantee that with probability at least
 - $1-\delta,$ the sample (training) error is within ϵ of the true error.
- From our bound, we can set $\delta \geq 2k e^{-2\epsilon^2 m}$
- Solving for m, we get that the number of samples should be:

$$m \ge \frac{1}{2\epsilon^2}\log\frac{2k}{\delta} = \frac{1}{2\epsilon^2}\log\frac{2|H|}{\delta}$$

• So the number of samples needed is *logarithmic* in the size of the hypothesis space

Example: Conjunctions of Boolean Literals

Let H be the space of all pure conjunctive formulae over n Boolean attributes.

Then $|H| = 3^n$ (why?)

From the previous result, we get:

$$m \ge \frac{1}{2\epsilon^2}\log\frac{2|H|}{\delta} = n\frac{1}{2\epsilon^2}\log\frac{6}{\delta}$$

This is linear in n!

October 22, 2007

35

COMP-652 Lecture 13

Another application: Bounding the true error

$$P(\forall h_i \in H, |e(h_i) - \hat{e}(h_i)| < \epsilon) \ge 1 - 2ke^{-2\epsilon^2 m} = 1 - \delta$$

Suppose we hold m and δ fixed, and we solve for $\epsilon.$ Then we get:

$$|e(h_i) - \hat{e}(h_i)| \le \sqrt{\frac{1}{2m} \log \frac{2k}{\delta}}$$

inside the probability term.

Can we now prove anything about the generalization power of the empirical risk minimization algorithm?

Empirical risk minimization

Let h^* be the best hypothesis in our class (in terms of true error). Based on our uniform convergence assumption, we can bound the true error of h_{emp} as follows:

 $e(h_{emp}) \leq \hat{e}(h_{emp}) + \epsilon$ $\leq \hat{e}(h^*) + \epsilon$ (because h_{emp} has better training error than any other hypothesis)

$$\leq e(h^*) + 2\epsilon$$
 (by using the result on h^*)

$$\leq e(h^*) + 2\sqrt{rac{1}{2m}\lograc{2|H|}{\delta}}$$
 (from previous slide)

This bounds how much worse h_{emp} is, wrt the best hypothesis we can hope for!

October 22, 2007

37

COMP-652 Lecture 13

Bias and variance revisited

We showed that, given m examples, with probability at least $1 - \delta$,

$$e(h_{emp}) \le \left(\min_{h \in H} e(h)\right) + 2\sqrt{\frac{1}{2m}\log\frac{2|H|}{\delta}}$$

Suppose now that we are considering two hypothesis classes $H \subseteq H'$

- The first term would be smaller for *H*['] (we have a larger hypothesis class, hence less "bias")
- The second term would be larger (the "variance" is increasing)