Lecture 13: Boosting. Computational Learning Theory (COLT)

e Boosting

e Estimating the true error of a hypothesis
e PAC learning

e Other COLT models
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Recall: Bias and variance

e For regression problems, the expected error can be

decomposed as:
Bias® + Variance + Noise

e Bias is typically caused by the hypothesis class being too
simple, and hence not able to represent the true function
(underfitting)

e Variance is typically caused by the hypothesis class being too
large (overfitting)

e There is often a trade-off between bias and variance
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Measuring bias and variance in practice

e Recall that bias and variance are both defined as expectations:
Bias(x) = Ep[f(x) — h(x)|

Var(x) = Ep[(h(x) — h(x))?]

e To get expected values we simulated multiple data sets, by
drawing with samples with replacement from the original data
set

e This gives a set of hypothesis, whose predictions can be
averaged together

e This construction is called bagging and reduces variance

October 22, 2007 3 COMP-652 Lecture 13

Ensemble learning in general

e Ensemble learning algorithms work by running a

base learning algorithm multiple times, then combining the

predictions of the different hypotheses obtained using some
form of voting

e One approach is to construct several classifiers independently,

then combine their predictions. Examples include:
— Bagging
— Randomizing the test selection in decision trees
— Using a different subset of input features to train different
neural nets
e A second approach is to coordinate the construction of the

hypotheses in the ensemble.
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Additive models

e In an ensemble, the output on any instance is computed by
averaging the outputs of several hypotheses, possibly with a
different weighting.

e Hence, we should choose the individual hypotheses and their
weight in such a way as to provide a good fit

e This suggests that instead of constructing the hypotheses
independently, we should construct them such that new
hypotheses focus on instances that are problematic for existing
hypotheses.

e Boosting is an algorithm implementing this idea

October 22, 2007 5 COMP-652 Lecture 13

Main idea of boosting

Component classifiers should concentrate more on difficult examples

e Examine the training set

e Derive some rough "rule of thumb”

e Re-weight the examples of the training set, concentrating on
“hard” cases for the previous rule

e Derive a second rule of thumb

e And so on... (repeat this 7' times)

e Combine the rules of thumb into a single, accurate predictor

Questions:
e How do we re-weight the examples?

e How do we combine the rules into a single classifier?
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Notation

e Assume that examples are drawn independently from some
probability distribution P on the set of possible data D

e Notation: Jp(h) is the expected error of h when data is drawn
from P:

Tp(h) = J(h(x),y)P({x,y))
(x,y)

where J(h(x),y) could be squared error, or 0/1 loss
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Weak learners

e Assume we have some “weak” binary classifiers (e.g., decision
stumps: x; > t)

e “Weak” means Jp(h) < 1/2 — ~ where v > 0 (i.e., the true
error of the classifier is better than random).

(X1,y1),(X2,¥2),0.0,(XN,yN) Weak
Learner| —— Hypothesis h
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Boosting classifier

—_—

Weak Learner

Original ‘
Data Final
hypothesis
F(H1,H2,. H
(HIH2...Ho)
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AdaBoost (Freund & Schapire, 1995)

1. Input N training examples {(x1,¥41), .. (XN, yn)}, Where x;
are the inputs and y; is the desired class label

2. Let D1 (x3) = ~ (we start with a uniform distribution)

3. Repeat 7' times:
(a) Construct D41 from D, (details in a moment)
(b) Train a new hypothesis h:1 on distribution D41

4. Construct the final hypothesis:

hy(x) = sign (Z atht(x)> :
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Constructing the new distribution

We want data on which we make mistakes to be emphasized:

y if h Xi) = Y;
Diji(xi) = iDt(xi) X & W) =y where
Zt 1,  otherwise

B = Jp, (ht)
1 —Jp,(ht)

and Z; is a normalization factor (set such that the probabilities
Dii1(x;) sumto 1).
Construct the final hypothesis:

hf(x) = sign (Z atht(x)) , where a; = log(1/:)
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Empirical comparison: Boosted stumps vs. C4.5
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Why does boosting work?

Weak learners have high bias

By combining them, we get more expressive classifiers

Hence, boosting is a bias-reduction technique

What happens as we run boosting longer?
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Why does boosting work?

Weak learners have high bias

By combining them, we get more expressive classifiers

Hence, boosting is a bias-reduction technique

What happens as we run boosting longer?

Intuitively, we get more and more complex hypotheses

How would you expect bias and variance to evolve over time?
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A naive (but reasonable) analysis of generalization error

e Expect the training error to continue to drop (until it reaches 0)
e Expect the test error to increase as we get more voters, and h ¢

becomes too complex.

;
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Actual typical run of AdaBoost

Boosting C4.5 on the letter dataset:

20:

N

10 100 1000

e Test error does not increase even after 1000 runs! (more than 2

million decision nodes!)

e Test error continues to drop even after training error reaches 0!

These are consistent results through many sets of experiments!
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Recall: Classification margin

e Boosting constructs hypotheses of the form
hy(x) = sign(f(x))
e The classification of an example is correct if sign(f(x)) = y

e The margin is defined as:

margin(f(x),y) =y - f(x)

e The margin tells us how close the decision boundary is to the
data points on each side.

e A higher margin on the training set should yield a lower
generalization error

e Intuitively, increasing the margin is similar to lowering the

variance
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Effect of boosting on the margin

1.0-

0.5-

10 100 1000

e Between rounds 5 and 10 there is no training error reduction
e But there is a significant shift in margin distribution!

e There is a formal proof that boosting increases the margin
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Parallel of bagging and boosting

e Bagging is typically faster, but may get a smaller error reduction

(not by much)

e Bagging works well with “reasonable” classifiers

e Boosting works with very simple classifiers

E.g., Boostexter - text classification using decision stumps

based on single words

e Boosting may have a problem if a lot of the data is mislabeled,

because it will focus on those examples a lot, leading to

overfitting.
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Summary

e Ensemble methods combine several hypotheses into one
prediction

e They work better than the best individual hypothesis from the
same class because they reduce bias or variance (or both)

e Bagging is mainly a variance-reduction technique, useful for
complex hypotheses

e Main idea is to sample the data repeatedly, train several
classifiers and average their predictions.

e Boosting focuses on harder examples, and gives a weighted
vote to the hypotheses.

e Boosting works by reducing bias and increasing classification

margin.
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Binary classification: The golden goal

Given:
e The set of all possible instances X
e A target function (or concept) f : X — {0,1}
e A set of hypotheses H
e A set of training examples D (containing positive and negative

examples of the target function)

(X1, f(x2))s -+ (Xm, f(xm))

Determine:
A hypothesis h € H such that h(x) = f(x) forall x € X.
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Approximate Concept Learning

e Requiring a learner to acquire the right concept is too strict
e Instead, we will allow the learner to produce a
good approximation to the actual concept

e For any instance space, there is a non-uniform likelihood of
seeing different instances
e We assume that there is a fixed probability distribution P on the

space of instances X
e The learner is trained and tested on examples whose inputs are

drawn independently and randomly, according to P.
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Recall: Two Notions of Error

Training error of hypothesis h with respect to target concept f:

e How often h(x) # f(x) over the training instances
True error of hypothesis h with respect to target concept f:
e How often h(x) # f(x) over future, unseen instances (but
drawn according to P)
Questions:

e Can we bound the true error of a hypothesis given only its

training error?

e How many examples are needed for a good approximation?
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True Error of a Hypothesis

Instance space X

Where f
and & disagree
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True Error Definition

The set of instances on which the target concept and the hypothesis
disagree is denoted: S = {x|h(x) # f(x)}
The true error of h with respect to f is:

>_PX)

x€ES

This is the probability of making an error on an instance randomly
drawn from X according to P

Let € € (0, 1) be an error tolerance parameter. We say that & is a

good approximation of f (to within €) if and only if the true error of

h is less than e.
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Example: Rote Learner

e Let X = {0,1}". Let P be the uniform distribution over X .

e Let the concept f be generated by randomly assigning a label
to every instance in X.

e Let D C X be a set of training instances.
The hypothesis h is generated by memorizing D and giving a
random answer otherwise.

e What is the training error of h?

e What is the true error of h?
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Empirical risk minimization

Suppose we are given a hypothesis class H

We have a magical learning machine that can sift through H

and output the hypothesis with the smallest training error, hemp

This is process is called empirical risk minimization

Is this a good idea?

What can we say about the error of the other hypotheses in h?
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First tool: The union bound

Let E; ... E) be k different events (not necessarily independent).
Then:
P(EiU---UEg) < P(E1)+ - -+ P(FEk)
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Second tool: Hoeffding (Chernoff) bound

Let Z1 ... Z,, be m independent identically distributed (iid) binary

variables, drawn from a Bernoulli (binomial) distribution:
P(Zi=1)=¢and P(Z; =0)=1—¢

Let cﬁ be the mean of these variables:

m

.1
¢:EZZZ‘

=1

Let € be a fixed error tolerance parameter. Then:
N —2e2m
P(l¢p —¢| > ¢€) < 2e

In other words, if you have lots of examples, the empirical mean is a
good estimator of the true probability.
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Finite hypothesis space

e Suppose we are considering a finite hypothesis class
H = {h1,...h} (e.g. conjunctions, decision trees,...)

e Take an arbitrary hypothesis h; € H

e Suppose we sample data according to our distribution an let
Zj = 1iff hi(x;) # y;

® So e(h;) (the true error of h;) is the expected value of Z;

o Leté(h;) = & >, Zj (this is the empirical training error of
h; on the data set we have)

e Using the Hoeffding bound, we have:

P(le(h;) — é(hy)] > ¢) < 9e—2€2m

e So, if we have lots of data, the training error of a hypothesis h;
will be close to its true error with high probability.
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What about all hypotheses?

e We showed that the empirical error is “close” to the true error for
one hypothesis.

e Let F; denote the event |e(h;) — é(h;)| > €
e Can we guarantee this is true for all hypothesis?

P(Hhi EH,le(h@')—é(hiN >€) = P(E1 UEk)
k
< Z P(E;) (union bound)
i=1
k 2
Z 2¢72¢"™ (shown before)
i=1

— 2ke—262m

IN
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A uniform convergence bound

e We showed that:
P(3h; € H, |e(hi) — é(hs)| > €) < 2ke 2™
e So we have:
1 — P(3hi € H, |e(h:) — (hi)| > €) > 1 — 2ke >
or, in other words:
P(Vh; € H,|e(hi) —é(hs)] <€) >1— 2k€_2€2m

e This is called a uniform convergence result because the

bound holds for all hypotheses
e What is this good for?
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Sample complexity

Suppose we want to guarantee that with probability at least
1 — ¢, the sample (training) error is within € of the true error.

—2¢2m

From our bound, we can set § > 2ke

Solving for m, we get that the number of samples should be:

1 2 1 . 2|H]
> Jog — = — log ——
m= 2€2 08 ) €2 08 )

So the number of samples needed is logarithmic in the size of

the hypothesis space
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Example: Conjunctions of Boolean Literals

Let H be the space of all pure conjunctive formulae over n Boolean
attributes.
Then |H| = 3™ (why?)

From the previous result, we get:

1 . 2|H| 1. 6
m > — log —— =n— log —
— 2¢2 & ) 2¢2 & )
This is linear in n!
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Another application: Bounding the true error

P(Vhi € H,|e(hi) — é(hi)| <€) >1—2ke 2™ =1-6

Suppose we hold m and ¢ fixed, and we solve for €. Then we get:

inside the probability term.
Can we now prove anything about the generalization power of the

empirical risk minimization algorithm?
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Empirical risk minimization

Let h™ be the best hypothesis in our class (in terms of true error).
Based on our uniform convergence assumption, we can bound the

true error of hem)p as follows:

e(hemp) < E(hemp) + €
< é(h") + € (because hem, has better training error
than any other hypothesis)
< e(h") 4 2¢ (by using the result on h™)

) 1 2|H . .

< eh")+ 2\/— log 2|H| (from previous slide)
2m )

This bounds how much worse hcnp is, wrt the best hypothesis we

can hope for!
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Bias and variance revisited

We showed that, given m examples, with probability at least 1 — 6,

: 1 2|H|
em < a e
e(hemp) < (hmelg e(h)) -+ 2\/2m log 5

Suppose now that we are considering two hypothesis classes
HCH
e The first term would be smaller for H’ (we have a larger
hypothesis class, hence less “bias”)

e The second term would be larger (the “variance” is increasing)
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