
Lecture 13: Boosting. Computational Learning Theory (COLT)

• Boosting

• Estimating the true error of a hypothesis

• PAC learning

• Other COLT models
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Recall: Bias and variance

• For regression problems, the expected error can be

decomposed as:

Bias2 + Variance+ Noise

• Bias is typically caused by the hypothesis class being too

simple, and hence not able to represent the true function

(underfitting)

• Variance is typically caused by the hypothesis class being too

large (overfitting)

• There is often a trade-off between bias and variance
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Measuring bias and variance in practice

• Recall that bias and variance are both defined as expectations:

Bias(x) = EP [f(x) − h̄(x)]

V ar(x) = EP [(h(x) − h̄(x))2]

• To get expected values we simulated multiple data sets, by

drawing with samples with replacement from the original data

set

• This gives a set of hypothesis, whose predictions can be

averaged together

• This construction is called bagging and reduces variance
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Ensemble learning in general

• Ensemble learning algorithms work by running a

base learning algorithm multiple times, then combining the

predictions of the different hypotheses obtained using some

form of voting

• One approach is to construct several classifiers independently,

then combine their predictions. Examples include:

– Bagging

– Randomizing the test selection in decision trees

– Using a different subset of input features to train different

neural nets

• A second approach is to coordinate the construction of the

hypotheses in the ensemble.
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Additive models

• In an ensemble, the output on any instance is computed by

averaging the outputs of several hypotheses, possibly with a

different weighting.

• Hence, we should choose the individual hypotheses and their

weight in such a way as to provide a good fit

• This suggests that instead of constructing the hypotheses

independently, we should construct them such that new

hypotheses focus on instances that are problematic for existing

hypotheses.

• Boosting is an algorithm implementing this idea
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Main idea of boosting

Component classifiers should concentrate more on difficult examples

• Examine the training set

• Derive some rough ”rule of thumb”

• Re-weight the examples of the training set, concentrating on

“hard” cases for the previous rule

• Derive a second rule of thumb

• And so on... (repeat this T times)

• Combine the rules of thumb into a single, accurate predictor

Questions:

• How do we re-weight the examples?

• How do we combine the rules into a single classifier?
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Notation

• Assume that examples are drawn independently from some

probability distribution P on the set of possible data D

• Notation: JP (h) is the expected error of h when data is drawn

from P :

JP (h) =
X
〈x,y〉

J(h(x), y)P (〈x, y〉)

where J(h(x), y) could be squared error, or 0/1 loss
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Weak learners

• Assume we have some “weak” binary classifiers (e.g., decision

stumps: xi > t)

• “Weak” means JP (h) < 1/2 − γ where γ > 0 (i.e., the true

error of the classifier is better than random).

Weak
Learner

(x1,y1),(x2,y2),...,(xN,yN)

Hypothesis   h
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Boosting classifier
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AdaBoost (Freund & Schapire, 1995)

1. Input N training examples {(x1, y1), . . . (xN, yN )}, where xi

are the inputs and yi is the desired class label

2. Let D1(xi) = 1

N
(we start with a uniform distribution)

3. Repeat T times:

(a) Construct Dt+1 from Dt (details in a moment)

(b) Train a new hypothesis ht+1 on distributionDt+1

4. Construct the final hypothesis:

hf (x) = sign

 X
t

αtht(x)

!
,
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Constructing the new distribution

We want data on which we make mistakes to be emphasized:

Dt+1(xi) =
1
Zt

Dt(xi) ×

8<
: βt, if ht(xi) = yi

1, otherwise
where

βt =
JDt

(ht)
1 − JDt

(ht)

and Zt is a normalization factor (set such that the probabilities

Dt+1(xi) sum to 1).

Construct the final hypothesis:

hf (x) = sign

 X
t

αtht(x)

!
, where αt = log(1/βt)
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Empirical comparison: Boosted stumps vs. C4.5
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Why does boosting work?

• Weak learners have high bias

• By combining them, we get more expressive classifiers

• Hence, boosting is a bias-reduction technique

• What happens as we run boosting longer? Intuitively, we get

more and more complex hypotheses

• How would you expect bias and variance to evolve over time?
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Why does boosting work?

• Weak learners have high bias

• By combining them, we get more expressive classifiers

• Hence, boosting is a bias-reduction technique

• What happens as we run boosting longer?

Intuitively, we get more and more complex hypotheses

• How would you expect bias and variance to evolve over time?
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A naive (but reasonable) analysis of generalization error

• Expect the training error to continue to drop (until it reaches 0)

• Expect the test error to increase as we get more voters, and hf

becomes too complex.
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Actual typical run of AdaBoost

Boosting C4.5 on the letter dataset:

10 100 1000
0

5
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20

• Test error does not increase even after 1000 runs! (more than 2

million decision nodes!)

• Test error continues to drop even after training error reaches 0!

These are consistent results through many sets of experiments!
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Recall: Classification margin

• Boosting constructs hypotheses of the form

hf (x) = sign(f(x))

• The classification of an example is correct if sign(f(x)) = y

• The margin is defined as:

margin(f(x), y) = y · f(x)

• The margin tells us how close the decision boundary is to the

data points on each side.

• A higher margin on the training set should yield a lower

generalization error

• Intuitively, increasing the margin is similar to lowering the

variance
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Effect of boosting on the margin
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• Between rounds 5 and 10 there is no training error reduction

• But there is a significant shift in margin distribution!

• There is a formal proof that boosting increases the margin
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Bagging vs. Boosting
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Error rate of AdaBoost with C4
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Parallel of bagging and boosting

• Bagging is typically faster, but may get a smaller error reduction

(not by much)

• Bagging works well with “reasonable” classifiers

• Boosting works with very simple classifiers

E.g., Boostexter - text classification using decision stumps

based on single words

• Boosting may have a problem if a lot of the data is mislabeled,

because it will focus on those examples a lot, leading to

overfitting.
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Summary

• Ensemble methods combine several hypotheses into one

prediction

• They work better than the best individual hypothesis from the

same class because they reduce bias or variance (or both)

• Bagging is mainly a variance-reduction technique, useful for

complex hypotheses

• Main idea is to sample the data repeatedly, train several

classifiers and average their predictions.

• Boosting focuses on harder examples, and gives a weighted

vote to the hypotheses.

• Boosting works by reducing bias and increasing classification

margin.
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Binary classification: The golden goal

Given:

• The set of all possible instances X

• A target function (or concept) f : X → {0, 1}

• A set of hypotheses H

• A set of training examples D (containing positive and negative

examples of the target function)

〈x1, f(x1)〉, . . . 〈xm, f(xm)〉

Determine:

A hypothesis h ∈ H such that h(x) = f(x) for all x ∈ X .
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Approximate Concept Learning

• Requiring a learner to acquire the right concept is too strict

• Instead, we will allow the learner to produce a

good approximation to the actual concept

• For any instance space, there is a non-uniform likelihood of

seeing different instances

• We assume that there is a fixed probability distribution P on the

space of instances X

• The learner is trained and tested on examples whose inputs are

drawn independently and randomly, according to P .
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Recall: Two Notions of Error

Training error of hypothesis h with respect to target concept f :

• How often h(x) '= f(x) over the training instances

True error of hypothesis h with respect to target concept f :

• How often h(x) '= f(x) over future, unseen instances (but

drawn according to P )

Questions:

• Can we bound the true error of a hypothesis given only its

training error?

• How many examples are needed for a good approximation?
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True Error of a Hypothesis
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and h disagree
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True Error Definition

The set of instances on which the target concept and the hypothesis

disagree is denoted: S = {x|h(x) '= f(x)}

The true error of h with respect to f is:X
x∈S

P (x)

This is the probability of making an error on an instance randomly

drawn from X according to P

Let ε ∈ (0, 1) be an error tolerance parameter. We say that h is a

good approximation of f (to within ε) if and only if the true error of

h is less than ε.

October 22, 2007 26 COMP-652 Lecture 13



Example: Rote Learner

• Let X = {0, 1}n. Let P be the uniform distribution over X .

• Let the concept f be generated by randomly assigning a label

to every instance in X .

• Let D ⊂ X be a set of training instances.

The hypothesis h is generated by memorizingD and giving a

random answer otherwise.

• What is the training error of h?

• What is the true error of h?
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Empirical risk minimization

• Suppose we are given a hypothesis class H

• We have a magical learning machine that can sift through H

and output the hypothesis with the smallest training error, hemp

• This is process is called empirical risk minimization

• Is this a good idea?

• What can we say about the error of the other hypotheses in h?
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First tool: The union bound

Let E1 . . . Ek be k different events (not necessarily independent).

Then:

P (E1 ∪ · · · ∪ Ek) ≤ P (E1) + · · · + P (Ek)
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Second tool: Hoeffding (Chernoff) bound

Let Z1 . . . Zm be m independent identically distributed (iid) binary

variables, drawn from a Bernoulli (binomial) distribution:

P (Zi = 1) = φ and P (Zi = 0) = 1 − φ

Let φ̂ be the mean of these variables:

φ̂ =
1
m

mX
i=1

Zi

Let ε be a fixed error tolerance parameter. Then:

P (|φ − φ̂| > ε) ≤ 2e−2ε2m

In other words, if you have lots of examples, the empirical mean is a

good estimator of the true probability.
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Finite hypothesis space

• Suppose we are considering a finite hypothesis class

H = {h1, . . . hk} (e.g. conjunctions, decision trees,...)

• Take an arbitrary hypothesis hi ∈ H

• Suppose we sample data according to our distribution an let

Zj = 1 iff hi(xj) '= yj

• So e(hi) (the true error of hi) is the expected value of Zj

• Let ê(hi) = 1

m

Pm
j=1

Zj (this is the empirical training error of

hi on the data set we have)

• Using the Hoeffding bound, we have:

P (|e(hi) − ê(hi)| > ε) ≤ 2e−2ε2m

• So, if we have lots of data, the training error of a hypothesis hi

will be close to its true error with high probability.

October 22, 2007 31 COMP-652 Lecture 13

What about all hypotheses?

• We showed that the empirical error is “close” to the true error for

one hypothesis.

• Let Ei denote the event |e(hi) − ê(hi)| > ε
• Can we guarantee this is true for all hypothesis?

P (∃hi ∈ H, |e(hi) − ê(hi)| > ε) = P (E1 ∪ . . . Ek)

≤
kX

i=1

P (Ei) (union bound)

≤
kX

i=1

2e−2ε2m
(shown before)

= 2ke−2ε2m
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A uniform convergence bound

• We showed that:

P (∃hi ∈ H, |e(hi) − ê(hi)| > ε) ≤ 2ke−2ε2m

• So we have:

1 − P (∃hi ∈ H, |e(hi) − ê(hi)| > ε) ≥ 1 − 2ke−2ε2m

or, in other words:

P (∀hi ∈ H, |e(hi) − ê(hi)| < ε) ≥ 1 − 2ke−2ε2m

• This is called a uniform convergence result because the

bound holds for all hypotheses

• What is this good for?
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Sample complexity

• Suppose we want to guarantee that with probability at least

1 − δ, the sample (training) error is within ε of the true error.

• From our bound, we can set δ ≥ 2ke−2ε2m

• Solving for m, we get that the number of samples should be:

m ≥
1

2ε2
log

2k
δ

=
1

2ε2
log

2|H|
δ

• So the number of samples needed is logarithmic in the size of

the hypothesis space
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Example: Conjunctions of Boolean Literals

Let H be the space of all pure conjunctive formulae over n Boolean

attributes.

Then |H| = 3n (why?)

From the previous result, we get:

m ≥
1

2ε2
log

2|H|
δ

= n
1

2ε2
log

6
δ

This is linear in n!
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Another application: Bounding the true error

P (∀hi ∈ H, |e(hi) − ê(hi)| < ε) ≥ 1 − 2ke−2ε2m = 1 − δ

Suppose we hold m and δ fixed, and we solve for ε. Then we get:

|e(hi) − ê(hi)| ≤

r
1

2m
log

2k
δ

inside the probability term.

Can we now prove anything about the generalization power of the

empirical risk minimization algorithm?
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Empirical risk minimization

Let h∗ be the best hypothesis in our class (in terms of true error).

Based on our uniform convergence assumption, we can bound the

true error of hemp as follows:

e(hemp) ≤ ê(hemp) + ε

≤ ê(h∗) + ε (because hemp has better training error

than any other hypothesis)

≤ e(h∗) + 2ε (by using the result on h∗)

≤ e(h∗) + 2

r
1

2m
log

2|H|

δ
(from previous slide)

This bounds how much worse hemp is, wrt the best hypothesis we

can hope for!
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Bias and variance revisited

We showed that, given m examples, with probability at least 1 − δ,

e(hemp) ≤

„
min
h∈H

e(h)

«
+ 2

r
1

2m
log

2|H|

δ

Suppose now that we are considering two hypothesis classes

H ⊆ H ′

• The first term would be smaller for H ′ (we have a larger

hypothesis class, hence less “bias”)

• The second term would be larger (the “variance” is increasing)
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