
Lecture 12: Unsupervised learning. Clustering

• Introduction to unsupervised learning

• Clustering problem

• K-means clustering

• Hierarchical clustering
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Unsupervised learning

• In supervised learning, data is in the form of pairs 〈x, y〉, where y =
f(x), and the goal is to approximate f well.

• In unsupervised learning, the data just contains x!

• Goal is to “summarize” or find “patterns” or “structure” in the data

• A variety of problems and uses:
– Clustering: “Flat” clustering or partitioning, hierarchical clustering
– Density estimation
– Dimensionality reduction, for: visualization, compression, pre-

processing

• The definition of “ground truth” is often missing: no clear error
function, or at least many reasonable alternatives

• Often useful in exploratory data analysis, and as a pre-processing
step for supervised learning
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What is clustering?

• Clustering is grouping similar objects together.
– To establish prototypes, or detect outliers.
– To simplify data for further analysis/learning.
– To visualize data (in conjunction with dimensionality reduction)

• Clusterings are usually not “right” or “wrong” – different clusterings/clustering
criteria can reveal different things about the data.

• Some clustering criteria/algorithms have natural probabilistic
interpretations

• Clustering algorithms:
– Employ some notion of distance between objects
– Have an explicit or implicit criterion defining what a good cluster is
– Heuristically optimize that criterion to determine the clustering
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K-means clustering

• One of the most commonly-used clustering algorithms, because it is
easy to implement and quick to run.

• Assumes the objects (instances) to be clustered are n-dimensional
vectors, xi.

• Uses Euclidean distance

• The goal is to partition the data into K disjoint subsets
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K-means clustering with real-valued data

• Inputs:
– A set of n-dimensional real vectors {x1,x2, . . . ,xm}.
– K, the desired number of clusters.

• Output: A mapping of the vectors into K clusters (disjoint subsets),
C : {1, . . . ,m} 7→ {1, . . . ,K}.

1. Initialize C randomly.
2. Repeat

(a) Compute the centroid of each cluster (the mean of all the instances
in the cluster)

(b) Reassign each instance to the cluster with closest centroid
until C stops changing.
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Example: initial data
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Example: assign into 3 clusters randomly
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Example: compute centroids
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Example: reassign clusters
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Example: recompute centroids
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Example: reassign clusters
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Example: recompute centroids – done!
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What if we do not know the right number of clusters?

COMP-652, Lecture 12 - October 21, 2009 13



Example: assign into 4 clusters randomly
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Example: compute centroids
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Example: reassign clusters
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Example: recompute centroids
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Example: reassign clusters
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Example: recompute centroids – done!
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Questions

• What is K-means trying to optimize?
• Will it terminate?
• Will it always find the same answer?
• How should we choose the initial cluster centers?
• Can we automatically choose the number of centers?
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Does K-means clustering terminate?

• For given data {x1, . . . ,xm} and a clustering C, consider the sum of
the squared Euclidian distance between each vector and the center
of its cluster:

J =
m∑

i=1

‖xi − µC(i)‖2 ,

where µC(i) denotes the centroid of the cluster containing xi.

• There are finitely many possible clusterings: at most Km.

• Each time we reassign a vector to a cluster with a nearer centroid, J
decreases.

• Each time we recompute the centroids of each cluster, J decreases
(or stays the same.)

• Thus, the algorithm must terminate.
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Does K-means always find the same answer?

• K-means is a version of coordinate descent, where the parameters
are the cluster center coordinates, and the assignments of points to
clusters.

• It minimizes the sum of squared Euclidean distances from vectors to
their cluster centroid.

• This error function has many local minima!

• The solution found is locally optimal, but not globally optimal

• Because the solution depends on the initial assignment of instances
to clusters, random restarts will give different solutions
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Example

J = 0.22870 J = 0.3088
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Example application: Color quantization

• Suppose you have an image stored with 24 bits per pixel

• You want to compress it so that you use only 8 bits per pixel (256
colors)

• You want the compressed image to look as similar as possible to the
original image

⇒ Perform K−means clustering on the original set of color vectors with
K = 256 colors.
– Cluster centers (rounded to integer intensities) form the entries in

the 256-color colormap
– Each pixel repesented by 8-bit index into colormap
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Example (Bishop)
K = 2 K = 3 K = 10 Original image
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More generally: Vector quantization with Euclidean
loss

• Suppose we want to send all the instances over a communication
channel

• In order to compress the message, we cluster the data and encode
each instance as the center of the cluster to which it belongs

• The reconstruction error for real-valued data can be measured as
Euclidian distance between the true value and its encoding

• An optimal (J-minimizing) K-means clustering minimizes the
reconstruction error among all possible codings of the same type
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Finding good initial configurations

• The initial configuration can influence the final clustering

• Assigning each item to random cluster in {1, . . . ,K} is unbiased. . . but
typically results in cluster centroids near the centroid of all the data
in the first round.

• A different heuristic tries to spread the initial centroids around as
much as possible:
– Place first center on top of a randomly chosen data point
– Place second center on a data point as far away as possible from

the first one
– Place the i-th center as far away as possible from the closest of

centers 1 through i− 1

• K-means clustering typically runs quickly. With a randomlized
intialization step, you can run the algorithm multiple times and take
the clustering with smallest J .
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Choosing the number of clusters

• A difficult problem, ideas are floating around

• Delete clusters that cover too few points

• Split clusters that cover too many points

• Add extra clusters for “outliers”

• Minimum description length: minimize loss + complexity of the
clustering

• Use a hierarchical method first (see in a bit)
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Why the sum of squared Euclidean distances?

Subjective reason: It produces nice, round clusters.
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Why the sum of squared Euclidean distances?

Objective reason: Maximum Likelihood Principle

• Suppose the data really does divide into K clusters.

• Suppose the data in each cluster is generated by independent
samples from a multivariate Gaussian distribution, where:
– The mean of the Gaussian is the centroid of the cluster
– The covariance matrix is of the form σ2I

• Then the probability of the data is highest when the sum of squared
Euclidean distances is smallest.
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Derivation: similar to MSE motivation in supervised
learning

l(x1, . . . ,xm|C(i), µj) =
m∏

i=1

l(xi|C(i), µj)

=
m∏

i=1

1
(2π)n/2σn

exp
(
− 1

2σ2
‖xi − µC(i)‖2

)

log l(x1, . . . ,xm|C(i), µj) ∝ −
m∑

i=1

‖xi − µC(i)‖2 = J
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Why not the sum of squared Euclidean distances?

1. It produces nice round clusters!

2. Differently scaled axes can dramatically affect results.

3. There may be symbolic attributes, which have to be treated differently
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K-means-like clustering in general

• Given a set of objects (need not be real vectors),
– Choose a notion of pairwise distance / similarity between the

objects.
– Choose a scoring function for the clustering
– Optimize the scoring function, to find a good clustering.

• For most choices, the optimization problem will be intractable. Local
optimization is often necessary.
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Distance metrics

• Euclidean distance

• Hamming distance (number of mismatches between two strings)

• Travel distance along a manifold (e.g. for geographic points)

• Tempo / rhythm similarity (for songs)

• Shared keywords (for web pages), or shared in-links

• . . .
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Scoring functions

• Minimize: Summed distances between all pairs of objects in the
same cluster. (Also known as ”within-cluster scatter.”)

• Minimize: Maximum distance between any two objects in the same
cluster. (Can be hard to optimize.)

• Maximize: Minimum distance between any two objects in different
clusters.
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Common uses of K-means

• Often used in exploratory data analysis

• Often used as a pre-processing step before supervised learning

• In one-dimension, it is a good way to discretize real-valued variables
into non-uniform buckets

• Used in speech understanding/recognition to convert wave forms into
one of k categories (vector quantization)
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Hierarchical clustering

• Organizes data instances into trees.

• For visualization, exploratory data analysis.

• Agglomerative methods build the tree bottom-up, successively
grouping together the clusters deemed most similar.

• Divisive methods build the tree top-down, recursively partitioning the
data.
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What is a hierarchical clustering?

• Given instances D = {x1, . . . ,xm}.

• A hierarchical clustering is a set of subsets (clusters) of D, C =
{C1, . . . , CK}, where
– Every element in D is in at least one set of C (the root)
– The Cj can be assigned to the nodes of a tree such that the cluster

at any node is precisely the union of the clusters at the node’s
children (if any).
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Example of a hierarchical clustering

• Suppose D = {1, 2, 3, 4, 5, 6, 7}. A hierarchical clustering is C =
{{1}, {2, 3}, {4, 5}, {1, 2, 3, 4, 5}, {6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

1,2,3,4,5,6,7

1 2,3 4,5

1,2,3,4,5 6,7

• In this example:
– Leaves of the tree need not correspond to single instances.
– The branching factor of the tree is not limited.

• However, most hierarchical clustering algorithms produce binary
trees, and take single instances as the smallest clusters.
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Agglomerative clustering

• Input: Pairwise distances d(x,x′) between a set of data objects {xi}.

• Output: A hierarchical clustering

• Algorithm:
1. Assign each instance as its own cluster on a working list W .

2. Repeat
(a) Find the two clusters in W that are most “similar”.
(b) Remove them from W .
(c) Add their union to W .

until W contains a single cluster with all the data objects.

3. Return all clusters appearing in W at any stage of the algorithm.
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How many clusters?

• How many clusters are generated by the agglomerative clustering
algorithm?

• Answer: 2m− 1, where m is the number of data objects.

• Why? A binary tree with m leaves has m − 1 internal nodes, thus
2m− 1 nodes total.

• More explicitly:
– The working list W starts with m singleton clusters
– Each iteration removes two clusters from W and adds one new

one
– The algorithm stops when W has one cluster, which is after m− 1

iterations

COMP-652, Lecture 12 - October 21, 2009 41



How do we measure dissimilarity between clusters?

• Distance between nearest objects (“Single-linkage” agglomerative
clustering, or “nearest neighbor”):

min
x∈C,x′∈C′

d(x,x′)

• Distance between farthest objects (“Complete-linkage” agglomerative
clustering, or “furthest neighbor”):

max
x∈C,x′∈C′

d(x,x′)

• Average distance between objects (“Group-average” agglomerative
clustering):

1
|C||C ′|

∑
x∈C,x′∈C′

d(x,x′)
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Example 1: Data

Single Average Complete
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Example 1: Iteration 30

Single Average Complete
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Example 1: Iteration 60

Single Average Complete
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Example 1: Iteration 70

Single Average Complete
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Example 1: Iteration 78

Single Average Complete
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Example 1: Iteration 79

Single Average Complete
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Example 2: Data

Single Average Complete
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Example 2: Iteration 50

Single Average Complete
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Example 2: Iteration 80

Single Average Complete
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Example 2: Iteration 90

Single Average Complete
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Example 2: Iteration 95

Single Average Complete
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Example 2: Iteration 99

Single Average Complete
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Intuitions about cluster similarity

• Single-linkage
– Favors spatially-extended / filamentous clusters
– Often leaves singleton clusters until near the end

• Complete-linkage favors compact clusters

• Average-linkage is somewhere in between
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Monotonicity

• Let A, B, C be clusters.

• Let d be one of the dissimilarity measures: single-linkage (see
below), average linkage or complete linkage

• If d(A,B) ≤ d(A,C) and d(A,B) ≤ d(B,C), then d(A,B) ≤ d(A ∪
B,C).
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Monotonicity of single-linkage criterion: Proof

• Suppose that that d(A,B) ≤ d(A,C) and d(A,B) ≤ d(B,C)

• Then:

d(A ∪B,C) = min
x∈A∪B,x′∈C

d(x, x′)

= min
(

min
xa∈A,x′∈C

d(xa, x
′), min

xb∈B,x′∈C
d(xa, x

′)
)

= min (d(A,C), d(B,C))

≥ min (d(A,B), d(A,B))

= d(A,B)

• Proofs for group-average and complete-linkage are similar.
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Dendrograms

• The monotonicity property implies that every time agglomerative
clustering merges two clusters, the dissimilarity of those clusters is ≥
the dissimilarity of all previous merges.

• Dendrograms (trees depicting hierarchical clusterings) are often
drawn so that the height of a node corresponds to the dissimilarity
of the merged clusters.

• We can form a flat clustering by cutting the tree at any height.

• Jumps in the height of the dendrogram can suggest natural cutoffs.
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Dendrograms for Example 1

Single Average Complete
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Dendrograms for Example 2

Single Average Complete
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Divisive clustering

• Works by recursively partitioning the instances.

• How might you do that?
– K-means?
– Max weighted cut on graph where edges are weighted by pairwise

distances?
– Maximum margin?

• Many heuristics for partitioning the instances have been proposed
. . . but many are computationally hard and/or violate monotonicity,
making it hard to draw dendrograms.
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Summary

• K-means
– Fast way of partitioning data into K clusters
– It minimizes the sum of squared Euclidean distances to the

clusters centroids
– Different clusterings can result from different initializations
– Can be interpreted as fitting a mixture distribution

• Hierarchical clustering
– Organizes data objects into a tree based on similarity.
– Agglomerative (bottom-up) tree construction is most popular.
– There are several choices of distance metric (linkage criterion)
– Monotonicity allows us to draw dendrograms in which the height of

a node corresponds to the dissimilarity of the clusters merged.
– Trees can be cut off at some level, to generate a flat partitioning of

the data.
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