Lecture 10: Non-linear support vector machines.
Kernels. Gaussian Processes

e SVMs for non-linearly separable data

e The kernel trick

e Mercer’s theorem

e Kernelizing other machine learning methods

— Kernelized linear regression
— Kernelized logistic regression

e |f we have time: Gaussian Processes
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Recall: Linear support vector machines

e Classification method for linearly separable data

e Designed to maximize the margin of the data: the minimum distance
between any instance and the decision boundary

e Last time: phrase this as a quadratic program, and solve the dual

e Solution can be represented as a linear combination of a sef of
instances (support vectors)

e Both the set of support vectors and their coefficients are obtained
automatically as the solution to the quadratic program.

e If the data is not linearly separable, or if we want to avoid overfitting:
soft margins
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Recall: Soft margin

e Given w,wg, an example (x;,y;) is at least distance M = 1/||w]|| on
the right side of the margin if:

yi(W-x; +wp) > 1
e The soft margin approach relaxes these constraints:
yi(W - x; +wg) > 1 — (; where ¢; > 0

e How can we interpret (;?
— If (; = 0, then the original distance constraint is satisfied.
— If {; € (0,1), then the point is on the correct side of the decision
boundary, but not as far as it should be.
— If (; = 1, then the point is on the decision boundary.
— If ¢; > 1 then the point is on the wrong side of the decision
boundary.
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Recall: Soft margin SVMs

e Optimization problem:
min - ||w[*+C32, G
w.r.t.  w,wq, (;
S.t. yz(w x; +wo) > (1 —¢)
¢i >0

where the first term is the margin, and the second term penalizes
constraint violations

e (' > (0is a user-chosen cost associated with constraint violation, and
help to control overfitting

e As in the separable case, the solution is of the form:

P 1o (X) = SQN (Z aiyi (X - X) + w0>
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Non-linearly separable data

06 o

e A linear boundary might be too simple to capture the class structure.

e One way of getting a nonlinear decision boundary in the input space
is to find a linear decision boundary in an expanded space (e.g., for
polynomial regression.)

e Thus, x; is replaced by ¢(x;), where ¢ is called a feature mapping
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Margin optimization in feature space

e Replacing x; with ¢(x;), the optimization problem to find w and wy
becomes:
min |w[*+C 3, ¢
w.r.t. w,wo, Cz
st wi(w- o(xi) +wo) = (1 —¢)

G >0
e Dual form:
max 300 e — g2y o Vil d(Xs) - o(x;)
w.r.t. o;
21'11 o;y; = 0
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Feature space solution

e The optimal weights, in the expanded feature space, are w =

S aayi(xi).

e Classification of an input x is given by:
how o (%) = SGN (Z i p(X;) - P(x) + wo)
1=1

= Note that to solve the SVM optimization problem in dual form and

to make a prediction, we only ever need to compute dot-products of
feature vectors.
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Kernel functions

e Whenever a learning algorithm (such as SVMs) can be written in
terms of dot-products, it can be generalized to kernels.

e A kernelis any function K : R™ x R™ — R which corresponds to a dot
product for some feature mapping ¢:

K(x1,X2) = ¢(x1) - ¢(x2) for some ¢.

e Conversely, by choosing feature mapping ¢, we implicitly choose a
kernel function

e Recall that ¢(x1) - ¢(x2) = cos £(x1,x2) Where / denotes the angle
between the vectors, so a kernel function can be thought of as a
notion of similarity.
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Example: Quadratic kernel

o Let K(x,2) = (x-2)°.
e Is this a kernel?

mn mn
K(x,z) = E Ti2s E rizi | = E T2 %25
i—1 j=1

i,j€{1...n}

> () (zz))

i,j€{1...n}

e Hence, it is a kernel, with feature mapping:

gb(X) = <£L‘%, L1X2, ..y, T1Lp, T2T1, :C%, U :C72%>

Feature vector includes all squares of elements and all cross terms.
e Note that computing ¢ takes O(n?) but computing K takes only O(n)!
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Polynomial kernels

e More generally, K(x,z) = (x - z)% is a kernel, for any positive integer

d: .
K(x,z) = (Z xzzz>

o If we expanded the sum above in the obvious way, we get n¢ terms
(i.e. feature expansion)

e Terms are monomials (products of z;) with total power equal to d.

e If we use the primal form of the SVM, each of these will have a weight
associated with it!

e Curse of dimensionality: it is very expensive both to optimize and to
predict with an SVM in primal form

e However, evaluating the dot-product of any two feature vectors can
be done using K in O(n)!
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The “kernel trick”

e If we work with the dual, we do not actually have to ever compute the
feature mapping ¢. We just have to compute the similarity K.

e Thatis, we can solve the dual1 for the o;:
m m
max Y i@ — 50 i Yiyiouo K (X, ;)

w.rt. oy
22'11 a;y; = 0

e The class of a new input x is computed as:

P wo(X) = SgN ( Z a;y:0(%x;)) - d(x) + wo) = Sgn (Z oy K (x4, %) + wo

1=1

e Often, K(-,-) can be evaluated in O(n) time—a big savings!
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Some other (fairly generic) kernel functions
o K(x,z) = (1+x-z)%— feature expansion has all monomial terms of
< d total power.
e Radial basis/Gaussian kernel:
K (x,2) = exp(~|jx — z|?/207)
The kernel has an infinite-dimensional feature expansion, but dot-
producta can still be computed in O(n)!

e Sigmoidal kernel:

K(x,z) = tanh(c1x - z + ¢3)
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Example: Gaussian kernel

Note the non-linear decision boundary
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Application: Text classification (Joachims, 1998)

e Evaluated several methods, including SVMs, on a suite of text
classification problems

e Words were stemmed (e.g. learn, learning, learned — learn)
e Nondiscriminative stopwords and words occurring < 3 times ignored
e Of remaining words, considered a binary presence-absence feature

e 1000 features with greatest information gain retained, others
discarded

e Each feature scaled by “inverse document frequency”:

# docs
# docs with word i

log
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Results

SVM (poly) SVM (rbf)
d= v =

Bayes | Rocchio | C4.5 | k-NN 1 | 2 | 3 | 4 | 5 06 | 0.8 | 1.0 | 1.2
earn 95.9 96.1 96.1 97.3 98.2 [ 98.4 [ 98.5 | 98.4 | 983 [ 98.5 | 98.5 | 98.4 | 98.3
acq 91.5 92.1 85.3 92.0 926 | 946 | 95.2 | 95.2 | 95.3 95.0 | 95.3 | 95.3 | 95.4
money-fx 62.9 67.6 69.4 78.2 66.9 | 72.5 | 75.4 | 7T4.9 | 76.2 74.0 | 75.4 | 76.3 | 75.9
grain 72.5 79.5 89.1 82.2 91.3 [ 931 | 92.4 | 91.3 | 89.9 || 93.1 | 91.9 | 91.9 | 90.6
crude 81.0 81.5 75.5 85.7 R6.0 | 87.3 | 88.6 | 88.9 | 87.8 || 88.9 | 89.0 | 88.9 | 88.2
trade 50.0 77.4 59.2 77.4 69.2 | 7555 | 766 | 773 | 771 769 | 78.0 | 77.8 | 76.8
interest 58.0 7925 19.1 74.0 698 | 63.3 | 679 | 73.1 | 76.2 744 | 75.0 | 76.2 | 76.1
ship 78.7 83.1 20.9 79.2 82.0 | 85.4 | 86.0 | 86.5 | 86.0 || 85.4 | 86.5 | 87.6 | 87.1
wheat 60.6 79.4 85.5 76.6 83.1 | 845 | 85.2 | 85.9 | 83.8 || 85.2 | 85.9 | 85.9 | 85.9
corn 47.3 62.2 R7.7 T7.9 86.0 | 86.5 | 85.3 | 85.7 | 83.9 || 85.1 | 85.7 | &5.7 | 84.5
microavg. 79.0 79.9 v94 | 82.3 84.2 | 85.1 | §5.9 | 86.2 | 85.9 86.4 | 86.; | 86.3 | 86.2

combined: 86.0 combined: 86.4

Figure 4: Precision /recall-breakeven point on the ten most frequent Reuters categories and

microaveraged performance over all Reuters categories. k-NN, Rocchio, and C4.5 achieve
highest performance at 1000 features (with & = 30 for A-NN and § = 1.0 for Rocchio).
Naive Bayes performs best using all features.
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Getting SVMs to work in practice

e Two important choices:

— Kernel (and kernel parameters)
— Regularization parameter C

e Together, these control overfitting: always do an internal parameter
search, using a validation set!

e Overfitting symptoms:

— Low margin
— Large fraction of instances are support vectors
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Interpretability

e More interpretable than neural nets if you look at the machine and
the misclassifications

e E.g. Ovarian cancer data (Haussler) - 31 tissue samples of 3 classes,
misclassified examples wronlgy labelled

e But no biological plausibility!

e Hard to interpret if the percentage of instances that are recruited as
support vectors is high
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Complexity

e Quadratic programming is expensive in the number of training
examples

e Platt’s SMO algorithm is quite fast though, and other fancy
optimization approaches are available

e Best packages can handle 20,000+ instances, but not more than
100, 000

e On the other hand, number of attributes can be very high (strength
compared to neural nets)

e Evaluating a SVM is slow if there are a lot of support vectors.

e Dictionary methods attempt to select a subset of the data on which
to train.
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Applications of SVMs

e The biggest strength of SVMs is dealing with large numbers of
features (which relies on the kernel trick and the control of overfitting)

e Many successful applications in:

— Text classification (e.g. Joachims, 1998)

— Obiject detection (e.g. Osuna, Freund and Girosi, 1997)
— Obiject recognition (e.g. Pontil and Verri, 1998)

— Bioinformatics (e.g. Lee et al, 2002)

e SVMs are considered by many the state-of-the art approach to
classification

e Experimentally, SVMs and neural nets are roughly tied based on
evidence to date, each has its own preferred applications
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Kernels beyond SVMs

A lot of current research has to do with defining new kernels

functions, suitable to particular tasks / kinds of input objects

e Information diffusion kernels (Lafferty and Lebanon, 2002)

e Diffusion kernels on graphs (Kondor and Jebara 2003)

e String kernels for text classification (Lodhi et al, 2002)

e String kernels for protein classification (e.g., Leslie et al, 2002)
e ... and others!
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Example: String kernels

e Very important for DNA matching, text classification, ...

e Example: in DNA matching, we use a sliding window of length k over
the two strings that we want to compare

e The window is of a given size, and inside we can do various things:

— Count exact matches
— Weigh mismatches based on how bad they are
— Count certain markers, e.g. AGT

e The kernel is the sum of these similarities over the two sequences
e How do we prove this is a kernel?
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Establishing “kernelhood”

e Suppose someone hands you a function K. How do you know that it
is a kernel?

e More precisely, given a function K : R" x R” — R, under what
conditions can K(x,z) be written as a dot product ¢(x) - ¢(z) for
some feature mapping ¢?

e We want a general recipe, which does not require explicitly defining
¢ every time
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Kernel matrix

e Suppose we have an arbitrary set of input vectors x1,xs,...X,,

e The kernel matrix (or Gram matrix) K corresponding to kernel
function K is an m x m matrix such that K;; = K(x;,x;) (notation is
overloaded on purpose).

e What properties does the kernel matrix K have?
e Claims:

1. K is symmetric
2. K Is positive semidefinite

e Note that these claims are consistent with the intuition that K is a
“similarity” measure (and will be true regardless of the data)
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Proving the first claim

If K is a valid kernel, then the kernel matrix is symmetric

Kij = o(x:) - 0(x5) = o(x;) - d(x4) = K4
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Proving the second claim

If K is a valid kernel, then the kernel matrix is positive semidefinite

Proof: Consider an arbitrary vector z

DD amKiz =D w(0(x)  d(xy)) 2

— ZZZZ (Z ¢k(Xi)¢k(Xj)> Zj
— ;j;:;:ziqbkz(xi)qbk(xj)'zj

7zl Kz

- 3 (S 20

k
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Mercer’s theorem

e We have shown that if K is a kernel function, then for any data set,
the corresponding kernel matrix K defined such that K;; = K (x;, x;)
IS symmetric and positive semidefinite

e Mercer’s theorem states that the reverse is also true:

Given a function K : R" x R" — R, K is a kernel if and only if, for any
data set, the corresponding kernel matrix is symmetric and positive
semidefinite

e The reverse direction of the proof is much harder

e This result gives us a way to check is a given function is a kernel, by
checking these two properties of its kernel matrix.

e Kernels can also be obtained by combining other kernels (see
homework), or by learning from data

e Kernel learning may suffer from overfitting (kernel matrix close to
diagonal)
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Kernelizing other machine learning algorithms

e Many other machine learning algorithms have a “dual formulation”, in

which dot-products of features can be replaced with kernels.

e Two examples now:

— Logistic regression
— Linear regression

e Later: kernel PCA
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Linear regression with feature vectors

e Find the weight vector w which minimizes the (regularized) error

function:

T(w) = 2(@w —y)"(@w — y) + owTw

e The solution takes the form:

1 m m

w=— > (wWho(xi) —yi)o(xi) = ) aip(x;) = ®'a

where a is a vector of size m (number of instances) with a; =
—%(WTﬁb(Xi) — i)
e Main idea: use a instead of w as parameter vector

e Note that this is similar to re-formulating a weight vector in terms of a
linear combination of instances, but we are not using the primal-dual
mechanism in a literal sense
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Re-writing the error function

e Instead of J(w) we have J(a:

1 1 A
J(a) = 5aT<I><;[>T<I><I>Ta —al®ddly + iny + 5aTcI><I>Ta

e Note that #®’ = K, the kernel matrix!
e Hence, we can re-write this as:

1 1 A
J(a) = §aTKKA — ATKy + iny — §aTKa

e By setting the gradient to 0 we get:

a=(K+\,,) 'y
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Making predictions with dual-view regression
e For a new input x, the prediction is:
h(x) = w'¢(x) = a’ @(x) = k(x)" (K + AL,) "y

where k(x) is an m-dimensional vector, with the ith element equal to
K(x,x;)

e That is, the ith element has the similarity of the input to the ith
Instance

e Again, the feature mapping is not needed either to learn or to make
predictions!

e This approach is useful if the feature space is very large.
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Logistic regression

e The output of a logistic regression predictor is:

1

frw(x) = 1 + ew! ¢(x)+wo

e Again, we can define the weights in terms of support vectors: w =
D iy id(x;)

e The prediction can now be computed as:

1
h(x) = | & oy kK (0w

e «; are the new parameters (one per instance) and can be derived
using gradient descent (see homework)
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Kernels in Bayesian regression

e The kernel view can be applied to Bayesian regression too

e Recall that in the Bayesian view, we have a prior over the parameters,

%%
e The data induces a posterior distribution

e At any point, we can sample a parameter vector (i.e., a function) from

the distribution

e Advantage: we get information about the variability of the prediction,

In addition to the mean value
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Example: Linear regression with features and prior

e Suppose that the weight vector w has a normal prior of mean zero:
P(w) =N(w|0,a™ "I

where « is the precision (inverse variance) of the distribution

e What is the probability distribution of the vector of predictions h =
dPw?

e Because h is a linear combination of normally distributed variables, it
Is also normal, so it is enough to compute the mean and covariance:

E(h) = E(dw) =®E(w) =0
E(hh?) = E(®dww! ®') = ®E(ww!)®! = 1o — K

B «
where K is a kernel matrix
e This is an example of a Gaussian process
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Gaussian processes

e In general, a Gaussian process is a probability distribution over
functions h such that the set of values h(x;) evaluated at any arbitrary
set of points x; have a jointly Gaussian distribution

e The key property of the Gaussian process is that the mean and
covariance are sufficient to specify the distribution

e (Gaussian processes are increasingly used in regression as well as
other parts of machine learning
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Gaussian process for regression

.
0.5 0.5
of of

0.5 0.5

-1t -1t
/\

% 02 04 06 08 1 "0 02 04 06 08 1
f ~ GP Noisy observations:

vil fi ~ N(fi, o2)
f~N(0,K), Ki=k(z;,x))

where f; = f(x:)
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Gaussian Process posterior

e The prior over observations and targets is Gaussian

e Hence, the posterior for any output point will also be Gaussian
e The posterior over functions is a Gaussian Process.

e Let 5 be the precision of the target noise

e To find the conditional distribution of the output h(x) given the data,
we partition the kernel matrix of the point and the data as:

( lIf(X)T 12(2 x) + 5 )

e The mean and variance of the predictions are, respectively

k(x)'K 'y and K (x,x) + % — k(x)TK 'k(x)
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