Lecture 10: Non-linear support vector machines. Kernels. Gaussian Processes

- SVMs for non-linearly separable data
- The kernel trick
- Mercer's theorem
- Kernelizing other machine learning methods
 - Kernelized linear regression
 - Kernelized logistic regression
- If we have time: Gaussian Processes

Recall: Linear support vector machines

- Classification method for linearly separable data
- Designed to maximize the *margin* of the data: the minimum distance between any instance and the decision boundary
- Last time: phrase this as a quadratic program, and *solve the dual*
- Solution can be represented as a linear combination of a *set of instances (support vectors)*
- Both the set of support vectors and their coefficients are obtained automatically as the solution to the quadratic program.
- If the data is not linearly separable, or if we want to avoid overfitting: *soft margins*

Recall: Soft margin

• Given \mathbf{w}, w_0 , an example (\mathbf{x}_i, y_i) is at least distance $M = 1/||\mathbf{w}||$ on the right side of the margin if:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + w_0) \ge 1$$

• The soft margin approach relaxes these constraints:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + w_0) \ge 1 - \zeta_i \text{ where } \zeta_i \ge 0$$

- How can we interpret ζ_i ?
 - If $\zeta_i = 0$, then the original distance constraint is satisfied.
 - If $\zeta_i \in (0,1)$, then the point is on the correct side of the decision boundary, but not as far as it should be.
 - If $\zeta_i = 1$, then the point is on the decision boundary.
 - If $\zeta_i > 1$ then the point is on the wrong side of the decision boundary.

Recall: Soft margin SVMs

• Optimization problem:

$$\begin{array}{ll} \min & \|\mathbf{w}\|^2 + C \sum_i \zeta_i \\ \text{w.r.t.} & \mathbf{w}, w_0, \zeta_i \\ \text{s.t.} & y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \ge (1 - \zeta_i) \\ & \zeta_i \ge 0 \end{array}$$

where the first term is the margin, and the second term penalizes constraint violations

- C > 0 is a user-chosen cost associated with constraint violation, and help to control overfitting
- As in the separable case, the solution is of the form:

$$h_{\mathbf{w},w_0}(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^m \alpha_i y_i(\mathbf{x}_i \cdot \mathbf{x}) + w_0\right)$$

Non-linearly separable data

- A linear boundary might be too simple to capture the class structure.
- One way of getting a nonlinear decision boundary in the input space is to find a linear decision boundary in an expanded space (e.g., for polynomial regression.)
- Thus, \mathbf{x}_i is replaced by $\phi(\mathbf{x}_i)$, where ϕ is called a *feature mapping*

Margin optimization in feature space

• Replacing \mathbf{x}_i with $\phi(\mathbf{x}_i)$, the optimization problem to find \mathbf{w} and w_0 becomes:

$$\begin{array}{ll} \min & \|\mathbf{w}\|^2 + C \sum_i \zeta_i \\ \text{w.r.t.} & \mathbf{w}, w_0, \zeta_i \\ \text{s.t.} & y_i (\mathbf{w} \cdot \phi(\mathbf{x}_i) + w_0) \ge (1 - \zeta_i) \\ & \zeta_i \ge 0 \end{array}$$

• Dual form:

$$\begin{array}{ll} \max & \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \\ \text{w.r.t.} & \alpha_i \\ \text{s.t.} & 0 \leq \alpha_i \leq C \\ & \sum_{i=1}^{m} \alpha_i y_i = 0 \end{array}$$

Feature space solution

- The optimal weights, in the expanded feature space, are $\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \phi(\mathbf{x}_i)$.
- Classification of an input x is given by:

$$h_{\mathbf{w},w_0}(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^m \alpha_i y_i \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}) + w_0\right)$$

⇒ Note that to solve the SVM optimization problem in dual form and to make a prediction, we only ever need to compute *dot-products of feature vectors*.

Kernel functions

- Whenever a learning algorithm (such as SVMs) can be written in terms of dot-products, it can be generalized to kernels.
- A *kernel* is any function K : ℝⁿ × ℝⁿ → ℝ which corresponds to a dot product for some feature mapping φ:

 $K(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_2)$ for some ϕ .

- Conversely, by choosing feature mapping ϕ , we implicitly choose a kernel function
- Recall that φ(x₁) · φ(x₂) = cos ∠(x₁, x₂) where ∠ denotes the angle between the vectors, so a kernel function can be thought of as a notion of *similarity*.

Example: Quadratic kernel

- Let $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^2$.
- Is this a kernel?

$$K(\mathbf{x}, \mathbf{z}) = \left(\sum_{i=1}^{n} x_i z_i\right) \left(\sum_{j=1}^{n} x_j z_j\right) = \sum_{i,j \in \{1...n\}} x_i z_i x_j z_j$$
$$= \sum_{i,j \in \{1...n\}} (x_i x_j) (z_i z_j)$$

• Hence, it is a kernel, with feature mapping:

$$\phi(\mathbf{x}) = \langle x_1^2, x_1 x_2, \dots, x_1 x_n, x_2 x_1, x_2^2, \dots, x_n^2 \rangle$$

Feature vector includes all squares of elements and all cross terms.

• Note that computing ϕ takes $O(n^2)$ but computing K takes only O(n)!

Polynomial kernels

• More generally, $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$ is a kernel, for any positive integer d:

$$K(\mathbf{x}, \mathbf{z}) = \left(\sum_{i=1}^{n} x_i z_i\right)^a$$

- If we expanded the sum above in the obvious way, we get n^d terms (i.e. feature expansion)
- Terms are monomials (products of x_i) with total power equal to d.
- If we use the primal form of the SVM, each of these will have a weight associated with it!
- *Curse of dimensionality:* it is very expensive both to optimize and to predict with an SVM in primal form
- However, evaluating the dot-product of any two feature vectors can be done using *K* in *O*(*n*)!

The "kernel trick"

- If we work with the dual, we do not actually have to ever compute the feature mapping ϕ . We just have to compute the similarity K.
- That is, we can solve the dual for the α_i :

$$\begin{array}{ll} \max & \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j) \\ \text{w.r.t.} & \alpha_i \\ \text{s.t.} & 0 \leq \alpha_i \leq C \\ & \sum_{i=1}^{m} \alpha_i y_i = 0 \end{array}$$

• The class of a new input ${\bf x}$ is computed as:

$$h_{\mathbf{w},w_0}(\mathbf{x}) = \operatorname{sgn}\left(\left(\sum_{i=1}^m \alpha_i y_i \phi(\mathbf{x}_i)\right) \cdot \phi(\mathbf{x}) + w_0\right) = \operatorname{sgn}\left(\sum_{i=1}^m \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0\right)$$

• Often, $K(\cdot, \cdot)$ can be evaluated in O(n) time—a big savings!

Some other (fairly generic) kernel functions

- $K(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x} \cdot \mathbf{z})^d$ feature expansion has all monomial terms of $\leq d$ total power.
- Radial basis/Gaussian kernel:

$$K(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} - \mathbf{z}\|^2 / 2\sigma^2)$$

The kernel has an infinite-dimensional feature expansion, but dotproduct can still be computed in O(n)!

• Sigmoidal kernel:

$$K(\mathbf{x}, \mathbf{z}) = \tanh(c_1 \mathbf{x} \cdot \mathbf{z} + c_2)$$

Example: Gaussian kernel

Note the non-linear decision boundary

Application: Text classification (Joachims, 1998)

- Evaluated several methods, including SVMs, on a suite of text classification problems
- Words were stemmed (e.g. learn, learning, learned \rightarrow learn)
- Nondiscriminative stopwords and words occurring < 3 times ignored
- Of remaining words, considered a binary presence-absence feature
- 1000 features with greatest information gain retained, others discarded
- Each feature scaled by "inverse document frequency":

 $\log \frac{\text{\# docs}}{\text{\# docs with word } i}$

Results

					SVM (poly)					SVM (rbf)			
					d =					$\gamma =$			
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3	84.2 85.1 85.9 86.2 85.9 combined: 86.0					86.4	86.5 combine	86.3 ed : 86. 4	86.2

Figure 4: Precision/recall-breakeven point on the ten most frequent Reuters categories and microaveraged performance over all Reuters categories. k-NN, Rocchio, and C4.5 achieve highest performance at 1000 features (with k = 30 for k-NN and $\beta = 1.0$ for Rocchio). Naive Bayes performs best using all features.

SVMs are better than any other classifier

Getting SVMs to work in practice

- Two important choices:
 - Kernel (and kernel parameters)
 - Regularization parameter C
- Together, these control overfitting: always do an internal parameter search, using a validation set!
- Overfitting symptoms:
 - Low margin
 - Large fraction of instances are support vectors

Interpretability

- More interpretable than neural nets if you look at the machine and the misclassifications
- E.g. Ovarian cancer data (Haussler) 31 tissue samples of 3 classes, misclassified examples wronlgy labelled
- But no biological plausibility!
- Hard to interpret if the percentage of instances that are recruited as support vectors is high

Complexity

- Quadratic programming is expensive in the number of training examples
- Platt's SMO algorithm is quite fast though, and other fancy optimization approaches are available
- Best packages can handle 20,000+ instances, but not more than 100,000
- On the other hand, number of attributes can be very high (strength compared to neural nets)
- Evaluating a SVM is *slow if there are a lot of support vectors*.
- Dictionary methods attempt to select a subset of the data on which to train.

Applications of SVMs

- The biggest strength of SVMs is dealing with large numbers of features (which relies on the kernel trick and the control of overfitting)
- Many successful applications in:
 - Text classification (e.g. Joachims, 1998)
 - Object detection (e.g. Osuna, Freund and Girosi, 1997)
 - Object recognition (e.g. Pontil and Verri, 1998)
 - Bioinformatics (e.g. Lee et al, 2002)
- SVMs are considered by many the state-of-the art approach to classification
- Experimentally, SVMs and neural nets are roughly tied based on evidence to date, each has its own preferred applications

Kernels beyond SVMs

A lot of current research has to do with defining new kernels functions, suitable to particular tasks / kinds of input objects

- Information diffusion kernels (Lafferty and Lebanon, 2002)
- Diffusion kernels on graphs (Kondor and Jebara 2003)
- String kernels for text classification (Lodhi et al, 2002)
- String kernels for protein classification (e.g., Leslie et al, 2002)
- ... and others!

Example: String kernels

- Very important for DNA matching, text classification, ...
- Example: in DNA matching, we use a sliding window of length k over the two strings that we want to compare
- The window is of a given size, and inside we can do various things:
 - Count exact matches
 - Weigh mismatches based on how bad they are
 - Count certain markers, e.g. AGT
- The kernel is the sum of these similarities over the two sequences
- How do we prove this is a kernel?

Establishing "kernelhood"

- Suppose someone hands you a function *K*. How do you know that it is a kernel?
- More precisely, given a function $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, under what conditions can $K(\mathbf{x}, \mathbf{z})$ be written as a dot product $\phi(\mathbf{x}) \cdot \phi(\mathbf{z})$ for some feature mapping ϕ ?
- We want a general recipe, which does not require explicitly defining ϕ every time

Kernel matrix

- Suppose we have an arbitrary set of input vectors $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_m$
- The *kernel matrix (or Gram matrix)* K corresponding to kernel function K is an $m \times m$ matrix such that $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$ (notation is overloaded on purpose).
- What properties does the kernel matrix *K* have?
- Claims:
 - 1. *K* is symmetric
 - 2. K is positive semidefinite
- Note that these claims are consistent with the intuition that *K* is a "similarity" measure (and will be true regardless of the data)

Proving the first claim

If K is a valid kernel, then the kernel matrix is symmetric

$$K_{ij} = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) = \phi(\mathbf{x}_j) \cdot \phi(\mathbf{x}_i) = K_{ji}$$

Proving the second claim

If K is a valid kernel, then the kernel matrix is positive semidefinite Proof: Consider an arbitrary vector z

$$\mathbf{z}^{T} K \mathbf{z} = \sum_{i} \sum_{j} z_{i} K_{ij} z_{j} = \sum_{i} \sum_{j} z_{i} \left(\phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}_{j}) \right) z_{j}$$
$$= \sum_{i} \sum_{j} z_{i} \left(\sum_{k} \phi_{k}(\mathbf{x}_{i}) \phi_{k}(\mathbf{x}_{j}) \right) z_{j}$$
$$= \sum_{k} \sum_{i} \sum_{j} z_{i} \phi_{k}(\mathbf{x}_{i}) \phi_{k}(\mathbf{x}_{j}) z_{j}$$
$$= \sum_{k} \left(\sum_{i} z_{i} \phi_{k}(\mathbf{x}_{i}) \right)^{2} \ge 0$$

Mercer's theorem

- We have shown that if K is a kernel function, then for any data set, the corresponding kernel matrix K defined such that $K_{ij} = K(\mathbf{x_i}, \mathbf{x_j})$ is symmetric and positive semidefinite
- Mercer's theorem states that the reverse is also true:

Given a function $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, *K* is a kernel if and only if, for any data set, the corresponding kernel matrix is symmetric and positive semidefinite

- The reverse direction of the proof is much harder
- This result gives us a way to check is a given function is a kernel, by checking these two properties of its kernel matrix.
- Kernels can also be obtained by combining other kernels (see homework), or by learning from data
- Kernel learning may suffer from overfitting (kernel matrix close to diagonal)

Kernelizing other machine learning algorithms

- Many other machine learning algorithms have a "dual formulation", in which dot-products of features can be replaced with kernels.
- Two examples now:
 - Logistic regression
 - Linear regression
- Later: kernel PCA

Linear regression with feature vectors

• Find the weight vector \mathbf{w} which minimizes the (regularized) error function:

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

• The solution takes the form:

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{m} (\mathbf{w}^{T} \phi(\mathbf{x}_{i}) - y_{i}) \phi(\mathbf{x}_{i}) = \sum_{i=1}^{m} a_{i} \phi(\mathbf{x}_{i}) = \mathbf{\Phi}^{T} \mathbf{a}$$

where a is a vector of size m (number of instances) with $a_i = -\frac{1}{\lambda}(\mathbf{w}^T \phi(\mathbf{x}_i) - y_i)$

- Main idea: use a instead of w as parameter vector
- Note that this is similar to re-formulating a weight vector in terms of a linear combination of instances, but we are not using the primal-dual mechanism in a literal sense

Re-writing the error function

• Instead of $J(\mathbf{w})$ we have $J(\mathbf{a}$:

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \mathbf{a} - \mathbf{a}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \mathbf{y} + \frac{1}{2}\mathbf{y}^T \mathbf{y} + \frac{\lambda}{2}\mathbf{a}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \mathbf{a}$$

- Note that $\Phi \Phi^T = \mathbf{K}$, the kernel matrix!
- Hence, we can re-write this as:

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T \mathbf{K} \mathbf{K} \mathbf{A} - \mathbf{A}^T \mathbf{K} \mathbf{y} + \frac{1}{2}\mathbf{y}^T \mathbf{y} + \frac{\lambda}{2}\mathbf{a}^T \mathbf{K} \mathbf{a}$$

• By setting the gradient to 0 we get:

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

Making predictions with dual-view regression

• For a new input \mathbf{x} , the prediction is:

$$h(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \mathbf{\Phi} \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

where ${\bf k}({\bf x})$ is an m -dimensional vector, with the ith element equal to $K({\bf x},{\bf x}_i)$

- That is, the *i*th element has the similarity of the input to the *i*th instance
- Again, the *feature mapping is not needed* either to learn or to make predictions!
- This approach is useful if the feature space is very large.

Logistic regression

• The output of a logistic regression predictor is:

$$h_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + e^{\mathbf{w}^T \phi(\mathbf{x}) + w_0}}$$

- Again, we can define the weights in terms of support vectors: $\mathbf{w} = \sum_{i=1}^{m} \alpha_i \phi(\mathbf{x}_i)$
- The prediction can now be computed as:

$$h(\mathbf{x}) = \frac{1}{1 + e^{\sum_{i=1}^{m} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + w_0}}$$

• α_i are the new parameters (one per instance) and can be derived using gradient descent (see homework)

Kernels in Bayesian regression

- The kernel view can be applied to Bayesian regression too
- Recall that in the Bayesian view, we have a prior over the parameters,
 w
- The data induces a posterior distribution
- At any point, we can sample a parameter vector (i.e., a function) from the distribution
- Advantage: we get information about the variability of the prediction, in addition to the mean value

Example: Linear regression with features and prior

• Suppose that the weight vector \mathbf{w} has a normal prior of mean zero:

$$P(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

where α is the precision (inverse variance) of the distribution

- What is the probability distribution of the vector of predictions ${\bf h}=\Phi{\bf w}?$
- Because h is a linear combination of normally distributed variables, it is also normal, so it is enough to compute the mean and covariance:

$$E(\mathbf{h}) = E(\mathbf{\Phi}\mathbf{w}) = \mathbf{\Phi}E(\mathbf{w}) = \mathbf{0}$$

$$E(\mathbf{h}\mathbf{h}^{T}) = E(\mathbf{\Phi}\mathbf{w}\mathbf{w}^{T}\mathbf{\Phi}^{T}) = \mathbf{\Phi}E(\mathbf{w}\mathbf{w}^{T})\mathbf{\Phi}^{T} = \frac{1}{\alpha}\mathbf{\Phi}\Phi^{T} = \mathbf{K}$$

where K is a kernel matrix

• This is an example of a *Gaussian process*

Gaussian processes

- In general, a Gaussian process is a *probability distribution over* functions h such that the set of values $h(\mathbf{x}_i)$ evaluated at any arbitrary set of points \mathbf{x}_i have a jointly Gaussian distribution
- The key property of the Gaussian process is that the mean and covariance are sufficient to specify the distribution
- Gaussian processes are increasingly used in regression as well as other parts of machine learning

Gaussian process for regression

where $f_i = f(x_i)$

Gaussian Process posterior

- The prior over observations and targets is Gaussian
- Hence, the posterior for any output point will also be Gaussian
- The posterior over functions is a Gaussian Process.
- Let β be the precision of the target noise
- To find the conditional distribution of the output h(x) given the data, we partition the kernel matrix of the point and the data as:

$$\left(egin{array}{ccc} \mathbf{K} & \mathbf{k}(\mathbf{x}) \ \mathbf{k}(\mathbf{x})^T & K(\mathbf{x},\mathbf{x}) + rac{1}{eta} \end{array}
ight)$$

• The mean and variance of the predictions are, respectively

$$\mathbf{k}(\mathbf{x})^T \mathbf{K}^{-1} \mathbf{y} \text{ and } K(\mathbf{x}, \mathbf{x}) + \frac{1}{\beta} - \mathbf{k}(\mathbf{x})^T \mathbf{K}^{-1} \mathbf{k}(\mathbf{x})$$