
Lecture 10: Non-linear support vector machines.
Kernels. Gaussian Processes

• SVMs for non-linearly separable data
• The kernel trick
• Mercer’s theorem
• Kernelizing other machine learning methods

– Kernelized linear regression
– Kernelized logistic regression

• If we have time: Gaussian Processes

COMP-652, Lecture 10 - October 14, 2009 1

Recall: Linear support vector machines

• Classification method for linearly separable data
• Designed to maximize the margin of the data: the minimum distance

between any instance and the decision boundary
• Last time: phrase this as a quadratic program, and solve the dual
• Solution can be represented as a linear combination of a set of

instances (support vectors)
• Both the set of support vectors and their coefficients are obtained

automatically as the solution to the quadratic program.
• If the data is not linearly separable, or if we want to avoid overfitting:

soft margins

COMP-652, Lecture 10 - October 14, 2009 2

Recall: Soft margin
• Given w, w0, an example (xi, yi) is at least distance M = 1/‖w‖ on

the right side of the margin if:

yi(w · xi + w0) ≥ 1

• The soft margin approach relaxes these constraints:

yi(w · xi + w0) ≥ 1− ζi where ζi ≥ 0

• How can we interpret ζi?
– If ζi = 0, then the original distance constraint is satisfied.
– If ζi ∈ (0, 1), then the point is on the correct side of the decision

boundary, but not as far as it should be.
– If ζi = 1, then the point is on the decision boundary.
– If ζi > 1 then the point is on the wrong side of the decision

boundary.

COMP-652, Lecture 10 - October 14, 2009 3

Recall: Soft margin SVMs

• Optimization problem:
min ‖w‖2 + C

∑
i ζi

w.r.t. w, w0, ζi
s.t. yi(w · xi + w0) ≥ (1− ζi)

ζi ≥ 0
where the first term is the margin, and the second term penalizes
constraint violations

• C > 0 is a user-chosen cost associated with constraint violation, and
help to control overfitting

• As in the separable case, the solution is of the form:

hw,w0(x) = sgn

(
m∑
i=1

αiyi(xi · x) + w0

)

COMP-652, Lecture 10 - October 14, 2009 4

Non-linearly separable data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

• A linear boundary might be too simple to capture the class structure.
• One way of getting a nonlinear decision boundary in the input space

is to find a linear decision boundary in an expanded space (e.g., for
polynomial regression.)
• Thus, xi is replaced by φ(xi), where φ is called a feature mapping

COMP-652, Lecture 10 - October 14, 2009 5

Margin optimization in feature space

• Replacing xi with φ(xi), the optimization problem to find w and w0

becomes:
min ‖w‖2 + C

∑
i ζi

w.r.t. w, w0, ζi
s.t. yi(w · φ(xi) + w0) ≥ (1− ζi)

ζi ≥ 0
• Dual form:

max
∑m
i=1αi − 1

2

∑m
i,j=1 yiyjαiαjφ(xi) · φ(xj)

w.r.t. αi
s.t. 0 ≤ αi ≤ C∑m

i=1αiyi = 0

COMP-652, Lecture 10 - October 14, 2009 6

Feature space solution

• The optimal weights, in the expanded feature space, are w =∑m
i=1αiyiφ(xi).

• Classification of an input x is given by:

hw,w0(x) = sgn

(
m∑
i=1

αiyiφ(xi) · φ(x) + w0

)

⇒ Note that to solve the SVM optimization problem in dual form and
to make a prediction, we only ever need to compute dot-products of
feature vectors.

COMP-652, Lecture 10 - October 14, 2009 7

Kernel functions

• Whenever a learning algorithm (such as SVMs) can be written in
terms of dot-products, it can be generalized to kernels.

• A kernel is any function K : Rn×Rn 7→ R which corresponds to a dot
product for some feature mapping φ:

K(x1,x2) = φ(x1) · φ(x2) for some φ.

• Conversely, by choosing feature mapping φ, we implicitly choose a
kernel function

• Recall that φ(x1) · φ(x2) = cos ∠(x1,x2) where ∠ denotes the angle
between the vectors, so a kernel function can be thought of as a
notion of similarity.

COMP-652, Lecture 10 - October 14, 2009 8

Example: Quadratic kernel

• Let K(x, z) = (x · z)2.
• Is this a kernel?

K(x, z) =

(
n∑
i=1

xizi

) n∑
j=1

xjzj

 =
∑

i,j∈{1...n}

xizixjzj

=
∑

i,j∈{1...n}

(xixj) (zizj)

• Hence, it is a kernel, with feature mapping:

φ(x) = 〈x2
1, x1x2, . . . , x1xn, x2x1, x

2
2, . . . , x

2
n〉

Feature vector includes all squares of elements and all cross terms.
• Note that computing φ takes O(n2) but computing K takes only O(n)!

COMP-652, Lecture 10 - October 14, 2009 9

Polynomial kernels

• More generally, K(x, z) = (x · z)d is a kernel, for any positive integer
d:

K(x, z) =

(
n∑
i=1

xizi

)d
• If we expanded the sum above in the obvious way, we get nd terms

(i.e. feature expansion)
• Terms are monomials (products of xi) with total power equal to d.
• If we use the primal form of the SVM, each of these will have a weight

associated with it!
• Curse of dimensionality: it is very expensive both to optimize and to

predict with an SVM in primal form
• However, evaluating the dot-product of any two feature vectors can

be done using K in O(n)!

COMP-652, Lecture 10 - October 14, 2009 10

The “kernel trick”

• If we work with the dual, we do not actually have to ever compute the
feature mapping φ. We just have to compute the similarity K.
• That is, we can solve the dual for the αi:

max
∑m
i=1αi − 1

2

∑m
i,j=1 yiyjαiαjK(xi,xj)

w.r.t. αi
s.t. 0 ≤ αi ≤ C∑m

i=1αiyi = 0
• The class of a new input x is computed as:

hw,w0(x) = sgn

(
(
m∑
i=1

αiyiφ(xi)) · φ(x) + w0

)
= sgn

(
m∑
i=1

αiyiK(xi,x) + w0

)

• Often, K(·, ·) can be evaluated in O(n) time—a big savings!

COMP-652, Lecture 10 - October 14, 2009 11

Some other (fairly generic) kernel functions

• K(x, z) = (1 + x · z)d – feature expansion has all monomial terms of
≤ d total power.
• Radial basis/Gaussian kernel:

K(x, z) = exp(−‖x− z‖2/2σ2)

The kernel has an infinite-dimensional feature expansion, but dot-
producta can still be computed in O(n)!
• Sigmoidal kernel:

K(x, z) = tanh(c1x · z + c2)

COMP-652, Lecture 10 - October 14, 2009 12

Example: Gaussian kernel

Note the non-linear decision boundary

COMP-652, Lecture 10 - October 14, 2009 13

Application: Text classification (Joachims, 1998)

• Evaluated several methods, including SVMs, on a suite of text
classification problems

• Words were stemmed (e.g. learn, learning, learned→ learn)

• Nondiscriminative stopwords and words occurring < 3 times ignored

• Of remaining words, considered a binary presence-absence feature

• 1000 features with greatest information gain retained, others
discarded

• Each feature scaled by “inverse document frequency”:

log
docs

docs with word i

COMP-652, Lecture 10 - October 14, 2009 14

Results

SVMs are better than any other classifier

COMP-652, Lecture 10 - October 14, 2009 15

Getting SVMs to work in practice

• Two important choices:
– Kernel (and kernel parameters)
– Regularization parameter C

• Together, these control overfitting: always do an internal parameter
search, using a validation set!
• Overfitting symptoms:

– Low margin
– Large fraction of instances are support vectors

COMP-652, Lecture 10 - October 14, 2009 16

Interpretability

• More interpretable than neural nets if you look at the machine and
the misclassifications
• E.g. Ovarian cancer data (Haussler) - 31 tissue samples of 3 classes,

misclassified examples wronlgy labelled
• But no biological plausibility!
• Hard to interpret if the percentage of instances that are recruited as

support vectors is high

COMP-652, Lecture 10 - October 14, 2009 17

Complexity

• Quadratic programming is expensive in the number of training
examples
• Platt’s SMO algorithm is quite fast though, and other fancy

optimization approaches are available
• Best packages can handle 20, 000+ instances, but not more than

100, 000
• On the other hand, number of attributes can be very high (strength

compared to neural nets)
• Evaluating a SVM is slow if there are a lot of support vectors.
• Dictionary methods attempt to select a subset of the data on which

to train.

COMP-652, Lecture 10 - October 14, 2009 18

Applications of SVMs

• The biggest strength of SVMs is dealing with large numbers of
features (which relies on the kernel trick and the control of overfitting)
• Many successful applications in:

– Text classification (e.g. Joachims, 1998)
– Object detection (e.g. Osuna, Freund and Girosi, 1997)
– Object recognition (e.g. Pontil and Verri, 1998)
– Bioinformatics (e.g. Lee et al, 2002)

• SVMs are considered by many the state-of-the art approach to
classification
• Experimentally, SVMs and neural nets are roughly tied based on

evidence to date, each has its own preferred applications

COMP-652, Lecture 10 - October 14, 2009 19

Kernels beyond SVMs
A lot of current research has to do with defining new kernels

functions, suitable to particular tasks / kinds of input objects

• Information diffusion kernels (Lafferty and Lebanon, 2002)
• Diffusion kernels on graphs (Kondor and Jebara 2003)
• String kernels for text classification (Lodhi et al, 2002)
• String kernels for protein classification (e.g., Leslie et al, 2002)
• ... and others!

COMP-652, Lecture 10 - October 14, 2009 20

Example: String kernels

• Very important for DNA matching, text classification, ...
• Example: in DNA matching, we use a sliding window of length k over

the two strings that we want to compare
• The window is of a given size, and inside we can do various things:

– Count exact matches
– Weigh mismatches based on how bad they are
– Count certain markers, e.g. AGT

• The kernel is the sum of these similarities over the two sequences
• How do we prove this is a kernel?

COMP-652, Lecture 10 - October 14, 2009 21

Establishing “kernelhood”

• Suppose someone hands you a function K. How do you know that it
is a kernel?
• More precisely, given a function K : Rn × Rn → R, under what

conditions can K(x, z) be written as a dot product φ(x) · φ(z) for
some feature mapping φ?
• We want a general recipe, which does not require explicitly defining
φ every time

COMP-652, Lecture 10 - October 14, 2009 22

Kernel matrix

• Suppose we have an arbitrary set of input vectors x1,x2, . . .xm
• The kernel matrix (or Gram matrix) K corresponding to kernel

function K is an m×m matrix such that Kij = K(xi,xj) (notation is
overloaded on purpose).
• What properties does the kernel matrix K have?
• Claims:

1. K is symmetric
2. K is positive semidefinite
• Note that these claims are consistent with the intuition that K is a

“similarity” measure (and will be true regardless of the data)

COMP-652, Lecture 10 - October 14, 2009 23

Proving the first claim
If K is a valid kernel, then the kernel matrix is symmetric

Kij = φ(xi) · φ(xj) = φ(xj) · φ(xi) = Kji

COMP-652, Lecture 10 - October 14, 2009 24

Proving the second claim
If K is a valid kernel, then the kernel matrix is positive semidefinite

Proof: Consider an arbitrary vector z

zTKz =
∑
i

∑
j

ziKijzj =
∑
i

∑
j

zi (φ(xi) · φ(xj)) zj

=
∑
i

∑
j

zi

(∑
k

φk(xi)φk(xj)

)
zj

=
∑
k

∑
i

∑
j

ziφk(xi)φk(xj)zj

=
∑
k

(∑
i

ziφk(xi)

)2

≥ 0

COMP-652, Lecture 10 - October 14, 2009 25

Mercer’s theorem

• We have shown that if K is a kernel function, then for any data set,
the corresponding kernel matrix K defined such that Kij = K(xi,xj)
is symmetric and positive semidefinite
• Mercer’s theorem states that the reverse is also true:

Given a function K : Rn×Rn → R, K is a kernel if and only if, for any
data set, the corresponding kernel matrix is symmetric and positive
semidefinite
• The reverse direction of the proof is much harder
• This result gives us a way to check is a given function is a kernel, by

checking these two properties of its kernel matrix.
• Kernels can also be obtained by combining other kernels (see

homework), or by learning from data
• Kernel learning may suffer from overfitting (kernel matrix close to

diagonal)

COMP-652, Lecture 10 - October 14, 2009 26

Kernelizing other machine learning algorithms

• Many other machine learning algorithms have a “dual formulation”, in
which dot-products of features can be replaced with kernels.
• Two examples now:

– Logistic regression
– Linear regression

• Later: kernel PCA

COMP-652, Lecture 10 - October 14, 2009 27

Linear regression with feature vectors

• Find the weight vector w which minimizes the (regularized) error
function:

J(w) =
1
2

(Φw − y)T (Φw − y) +
λ

2
wTw

• The solution takes the form:

w = −1
λ

m∑
i=1

(wTφ(xi)− yi)φ(xi) =
m∑
i=1

aiφ(xi) = ΦTa

where a is a vector of size m (number of instances) with ai =
−1
λ(wTφ(xi)− yi)

• Main idea: use a instead of w as parameter vector
• Note that this is similar to re-formulating a weight vector in terms of a

linear combination of instances, but we are not using the primal-dual
mechanism in a literal sense

COMP-652, Lecture 10 - October 14, 2009 28

Re-writing the error function

• Instead of J(w) we have J(a:

J(a) =
1
2
aTΦΦTΦΦTa− aTΦΦTy +

1
2
yTy +

λ

2
aTΦΦTa

• Note that ΦΦT = K, the kernel matrix!
• Hence, we can re-write this as:

J(a) =
1
2
aTKKA−ATKy +

1
2
yTy +

λ

2
aTKa

• By setting the gradient to 0 we get:

a = (K + λIm)−1y

COMP-652, Lecture 10 - October 14, 2009 29

Making predictions with dual-view regression

• For a new input x, the prediction is:

h(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIm)−1y

where k(x) is an m-dimensional vector, with the ith element equal to
K(x,xi)
• That is, the ith element has the similarity of the input to the ith

instance
• Again, the feature mapping is not needed either to learn or to make

predictions!
• This approach is useful if the feature space is very large.

COMP-652, Lecture 10 - October 14, 2009 30

Logistic regression

• The output of a logistic regression predictor is:

hw(x) =
1

1 + ewTφ(x)+w0

• Again, we can define the weights in terms of support vectors: w =∑m
i=1αiφ(xi)

• The prediction can now be computed as:

h(x) =
1

1 + e
Pm

ı=1 αiK(xi,x)+w0

• αi are the new parameters (one per instance) and can be derived
using gradient descent (see homework)

COMP-652, Lecture 10 - October 14, 2009 31

Kernels in Bayesian regression

• The kernel view can be applied to Bayesian regression too
• Recall that in the Bayesian view, we have a prior over the parameters,

w
• The data induces a posterior distribution
• At any point, we can sample a parameter vector (i.e., a function) from

the distribution
• Advantage: we get information about the variability of the prediction,

in addition to the mean value

COMP-652, Lecture 10 - October 14, 2009 32

Example: Linear regression with features and prior

• Suppose that the weight vector w has a normal prior of mean zero:

P (w) = N (w|0, α−1I

where α is the precision (inverse variance) of the distribution
• What is the probability distribution of the vector of predictions h =

Φw?
• Because h is a linear combination of normally distributed variables, it

is also normal, so it is enough to compute the mean and covariance:

E(h) = E(Φw) = ΦE(w) = 0

E(hhT) = E(ΦwwTΦT) = ΦE(wwT)ΦT =
1
α

ΦΦT = K

where K is a kernel matrix
• This is an example of a Gaussian process

COMP-652, Lecture 10 - October 14, 2009 33

Gaussian processes

• In general, a Gaussian process is a probability distribution over
functions h such that the set of values h(xi) evaluated at any arbitrary
set of points xi have a jointly Gaussian distribution
• The key property of the Gaussian process is that the mean and

covariance are sufficient to specify the distribution
• Gaussian processes are increasingly used in regression as well as

other parts of machine learning

COMP-652, Lecture 10 - October 14, 2009 34

Gaussian process for regressionGP regression model

0 0.2 0.4 0.6 0.8 1
!1.5

!1

!0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
!1.5

!1

!0.5

0

0.5

1

f ∼ GP

f ∼ N (0, K), Kij = k(xi, xj)

where fi = f(xi)

Noisy observations:

yi|fi ∼ N (fi, σ2
n)

COMP-652, Lecture 10 - October 14, 2009 35

Gaussian Process posterior

• The prior over observations and targets is Gaussian
• Hence, the posterior for any output point will also be Gaussian
• The posterior over functions is a Gaussian Process.
• Let β be the precision of the target noise
• To find the conditional distribution of the output h(x) given the data,

we partition the kernel matrix of the point and the data as:(
K k(x)
k(x)T K(x,x) + 1

β

)

• The mean and variance of the predictions are, respectively

k(x)TK−1y and K(x,x) +
1
β
− k(x)TK−1k(x)

COMP-652, Lecture 10 - October 14, 2009 36

