Lecture 9: Large Margin Classifiers. Linear Support
Vector Machines

e Perceptrons

— Definition

— Perceptron learning rule

— Convergence
e Margin & max margin classifiers
e (Linear) support vector machines

— Formulation as optimization problem
— Generalized Lagrangian and dual

— Allowing for noise (soft margins)

— Solving the dual: SMO
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Perceptrons

e Consider a binary classification problem with data {x;,y;}", y; €
{—1,+1}.

e A perceptronis a classifier of the form:

+1 fw-x4+wyg>0
hw,wo(X) = SgN(W - X + wg) = { —1 otherwise ’

Here, w is a vector of weights, “-” denotes the dot product, and wy is
a constant offset.

e The decision boundary is w - x + wg = 0.

e Perceptrons output a class, not a probability

e An example (x,y) is classified correctly iff:
y(w - x + wp) > 0
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A gradient descent-like learning rule

e Consider the following procedure:

1. Initialize w and wy randomly

2. While any training examples remain incorrecty classified
(a) Loop through all misclassified examples
(b) For misclassified example 7, perform the updates:

W «— W + YY;iX;,  Wo < Wo + VY;

where v is a step-size parameter.

e The update equation, or sometimes the whole procedure, is called
the perceptron learning rule.

e Intuition: Yes, for examples misclassified as negative, increase w -
x; + wop, for examples misclassified as positive, it decrease it
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Gradient descent interpretation

e The perceptron learning rule can be interpreted as a gradient descent
procedure, but with the following perceptron criterion function

J(w,wy) = 2{ —y:(W - X3 +wo)  if yi(W - x5 +wp) <0

e For correctly classified examples, the error is zero.

e For incorrectly classified examples, the error is by how much w - x; +
wo IS on the wrong side of the decision boundary.

e J is piecewise linear, so it has a gradient almost everywhere; the
gradient gives the perceptron learning rule.

e Jis zero iff all examples are classified correctly — just like the 0-1 loss
function.
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Linear separability

e The data setis linearly separable if and only if there exists w, wy such
that:

— For all 4, y;(w - x; + wg) > 0.
— Or equivalently, the 0-1 loss is zero.
XZA/ XZA
’ / > >
/ XJ XJ

(a) (b)
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Perceptron convergence theorem

e The perceptron convergence theorem states that if the perceptron

learning rule is applied to a linearly separable data set, a solution will
be found after some finite number of updates.

e The number of updates depends on the data set, and also on the
step size parameter.

e If the data is not linearly separable, there will be oscillation (which
can be detected automatically).
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Perceptron learning example—separable data
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Perceptron learning example—separable data

w=[4.111 3.8704] w0 = -4
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Weight as a combination of input vectors
e Recall percepton learning rule:
W — W + YYiXi, W < Wo + VY

e If initial weights are zero, then at any step, the weights are a linear
combination of feature vectors:

m m
W = E X, Wy = E ;Y5

where «; Is the sum of step sizes used for all updates based on
example z.

e This is called the dual representation of the classifier.

e Even by the end of training, some example may have never
participated in an update.
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Example used (bold) and not used (faint) in updates

w=[4.111 3.8704] w0 = -4
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Comment: Solutions are nonunique

w =[2.1395 1.9372] w0 = -2
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Perceptron summary

e Perceptrons can be learned to fit linearly separable data, using a
gradient descent rule.

e There are other fitting approaches — e.g., formulation as a linear
constraint satisfaction problem / linear program.

e Solutions are non-unique.

e Logistic neurons are often thought of as a “smooth” version of a
perceptron

e For non-linearly separable data:

— Perhaps data can be linearly separated in a different feature
space?
— Perhaps we can relax the criterion of separating all the data?

COMP-652, Lecture 9 - October 7, 2009 12



Support Vector Machines

e Support vector machines (SVMs) for binary classification can be
viewed as a way of training perceptrons

e [here are three main new ideas:

— An alternative optimization criterion (the “margin”), which
eliminates the non-uniqueness of solutions and has theoretical
advantages

— A way of handling nonseparable data by allowing mistakes

— An efficient way of operating in expanded feature spaces — the
“kernel trick”

e SVMs can also be used for multiclass classification and regression.
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Returning to the non-uniqueness issue

e Consider a linearly separable binary classification data set
{Xiayi zr'il'
e There is an infinite number of hyperplanes that separate the classes:

e Which plane is best?
e Relatedly, for a given plane, for which points should we be most
confident in the classification?
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The margin, and linear SVMs

e For a given separating hyperplane, the margin is two times the
(Euclidean) distance from the hyperplane to the nearest training
example.

e It is the width of the “strip” around the decision boundary containing
no training examples.

e A linear SVM is a perceptron for which we choose w,w, so that
margin is maximized
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Distance to the decision boundary

e Suppose we have a decision boundary that separates the data.

e Let ~,; be the distance from instance x; to the decision boundary.
e How can we write ~; in term of x;, y;, w, wg?
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Distance to the decision boundary (ll)
e The vector w is normal to the decision boundary. Thus, ﬁ IS the
unit normal.

e The vector fromthe Bto Ais %vav—ll'
e B, the point on the decision boundary nearest x;, is x; — Yimroq

[Twl]”

e As B is on the decision boundary,

W
WX —Yig— | two=0
( IIWH>

e Solving for ~; yields, for a positive example:

Vi = o
[wl]

Wl
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The margin

e The margin of the hyperplane is 2M, where M = min; v,

e The most direct statement of the problem of finding a maximum
margin separating hyperplane is thus

max min y;
w,wg 1t
, ( A4 wo )
= maxminy; | — - X; + 7
wowo i [wl] 1wl

e This turns out to be inconvenient for optimization, however. . .
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Treating the ~; as constraints

e From the definition of margin, we have:
M <~ =y (l'xi-kﬂ) Vi

e This suggests:
maximize M
with respectto  w,wq

subjectto  y; (l X, + H"jv—()H) > M for all i

[[wi
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Treating the ~; as constraints

e From the definition of margin, we have:
M <~i=vy (l'xi-kﬂ) Vi

e This suggests:
maximize M

with respectto  w,wq
subjectto  y; (l X, + ”‘jv—on) > M for all i

[w]
e Problems:

— w appears nonlinearly in the constraints.
— This problem is underconstrained. If (w,wy, M) is an optimal
solution, then so is (6w, Swy, M) for any 3 > 0.
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Adding a constraint

e Let’s try adding the constraint that ||w|| M = 1.

e This allows us to rewrite the objective function and constraints as:

min ||w]|
w.r.t. w,wy
st yi(w-x;+wy) >1
e This is really nice because the constraints are linear.
e The objective function ||w|| is still a bit awkward.
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Final formulation

e Let's maximize ||w||? instead of ||w]|.
(Taking the square is a monotone transformation, as ||w|| is postive,

so this doesn’t change the optimal solution.)
e This gets us to:
min  [|w]|?
w.r.t. w,wy
st yi(w-x;+wy) >1
e This we can solve! How?
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Final formulation

e Let's maximize ||w||? instead of ||w]|.
(Taking the square is a monotone transformation, as ||w|| is postive,

so this doesn’t change the optimal solution.)
e This gets us to:
min  [|w]|?
w.r.t. w,wy
st yi(w-x;+wy) >1
e This we can solve! How?
— It is a quadratic programming (QP) problem—a standard type
of optimization problem for which many efficient packages are

available.
— Better yet, it's a convex (positive semidefinite) QP
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We have a solution, but no support vectors yet...
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Lagrange multipliers for inequality constraints
(revisited)

e Suppose we have the following optimization problem, called primal-

min f(w)

suchthat g;(w) < 0,:=1...k

e We define the generalized Lagrangian:

k
L(w,a) = f(w) + ) _ aigi(w), (1)
=1
where «;, ¢« = 1...k are the Lagrange multipliers.
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A different optimization problem

e Consider P(w) = max,.q,>0 L(W, a)
e Observe that the follow is true. Why?

P(w) = f(w) if all constraints are satisfied
| +oc  otherwise

e Hence, instead of computing miny, f(w) subject to the original
constraints, we can compute:

p" = min P(w) = min max L(w,«)
W a:a; >0
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Dual optimization problem

o Let d* = max,.q,>0ming L(w, a) (Max and min are reversed)
e We can show that d* < p*.

— Letp* = (wp aP)
— Let d* = L(w?, o
— Then d* = L(w d ,a?) < L(wP, a?) < L(wP, aP) = p*.)
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Dual optimization problem

o If f, g; are convex and the g; can all be satisfied simultaneously for
some w, then we have equality: d* = p* = L(w™*, a*)

e Moreover w*, o* solve the primal and dual if and only if they satisfy
the following conditions (called Karush-Kunh-Tucker):

8w¢L(W*’ a*) = 0,i=1...n (2)
a;gi(w*) = 0,i=1...k (3)
gi(w*) < 0,i=1...k (4)

a; > 0,1=1...k (D)
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Back to maximum margin perceptron

e We wanted to solve (rewritten slightly):
min  2|lwl?
w.r.t. w,wy
st 1—y(w-x;+wy) <0

e The Lagrangian is:

L(va()a __HWH2+ZO% yz W - Xz+w0))

e The primal problem is: miny ,,, maxq:q,>0 L(W, wo, )
e We will solve the dual problem: max,.q, >0 miny ., L(W, wp, &)

e In this case, the optimal solutions coincide, because we have a
quadratic objective and linear constraints (both of which are convex).
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Solving the dual

e From KKT (2), the derivatives of L(w, wq, a) wrt w, wy should be 0
e The condition on the derivative wrt w gives ) . oy, =0
e The condition on the derivative wrt w gives:

W = E ;Y X
i

= Just like for the perceptron with zero initial weights, the optimal
solution for w is a linear combination of the x;, and likewise for wy.

P g (X) = SQN (Z iy (X - X) + w0>

= Output depends on weighted dot product of input vector with training
examples

e The outputis
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Solving the dual (ll)

e By plugging these back into the expression for L, we get:

1
max Z o — 5 Z Vil 00 (Xi - X;)
1

@]

with constraints: o; > 0and ) . oy, =0
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The support vectors

e Suppose we find optimal as (e.g., using a standard QP package)
e The a; will be > 0 only for the points for which 1 — y;(w - x; + wg) = 0

e These are the points lying on the edge of the margin, and they are
called support vectors, because they define the decision boundary

e The output of the classifier for query point x is computed as:

sgn (Z i %) + w)
1=1

Hence, the output is determined by computing the dot product of the
point with the support vectors!
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Example

Support vectors are in bold
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Soft margin classifiers

e Recall that in the linearly separable case, we compute the solution to

the following optimization problem:
min  1|jw|?
w.r.t. w,wy
st yi(w-x;+wy) >1

e If we want to allow misclassifications, we can relax the constraints to:

yi(W-x; +wg) > 1—¢&;

o If & € (0,1), the data point is within the margin

e If & > 1, then the data point is misclassified

o We define the soft erroras ) . ¢&;

e We will have to change the criterion to reflect the soft errors
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New problem formulation with soft errors

Instead of:
min  2|lw]?
w.r.t. w,wy
we want to solve:
min  3llw[*+C 3, &
w.r.t. w,wo, &
st y(w-x;+wy) >1-¢,5 >0
e Note that soft errors include points that are misclassified, as well as
points within the margin

e There is a linear penalty for both categories
e The choice of the constant C controls overfitting
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A built-in overfitting knob

min  g[lw|*+C32, &
w.r.t. w,wo, 51
st yi(w-x;+wy) >1-¢

e If C'is 0, there is no penalty for soft errors, so the focus is on

maximizing the margin, even if this means more mistakes

o If C is very large, the emphasis on the soft errors will cause
decreasing the margin, if this helps to classify more examples

correctly.
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Lagrangian for the new problem

e Like before, we can write a Lagrangian for the problem and then use
the dual formulation to find the optimal parameters:

1
L(w,wg,a,&,p) = §||w||2 T CZ&

+ > ai(l=&—yilwi-xi+wo)) + Y piks

e All the previously described machinery can be used to solve this
problem

e Note that in addition to «; we have coefficients p;, which ensure that
the errors are positive, but do not participate in the decision boundary

e Next time: an even better way of dealing with non-linearly separable
data
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Solving the quadratic optimization problem

e Many approaches exist

e Because we have constraints, gradient descent does not apply
directly (the optimum might be outside of the feasible region)

e Platt's algorithm is the fastest current approach, based on
coordinate ascent
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Coordinate ascent

e Suppose you want to find the maximum of some function
Flag,...ap)

e Coordinate ascent optimizes the function by repeatedly picking an «;
and optimizing it, while all other parameters are fixed
e There are different ways of looping through the parameters:

— Round-robin

— Repeatedly pick a parameter at random

— Choose next the variable expected to make the largest
improvement
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Example
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Our optimization problem
1
max Z oy — 5 Z vy 005 K (x4, X;)
? J
with constraints: 0 < o; < C and) . o;y; = 0
e Suppose we want to optimize for oy while as, . . . «,, are fixed
e We cannot do it because a7 will be completely determined by the last

constraint: a1 = —UY1 222 QY
e Instead, we have to optimize pairs of a;, a; parameters together
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SMO

e Suppose that we want to optimize «; and as together, while all other
parameters are fixed.

e We know that y1a1 + yace = — >, yiv; = &, where ¢ is a constant
e So a; = y1(£ — ys02) (because y; is either +1 or —1 so y% = 1)

e This defines a line, and any pair a1, as which is a solution has to be
on the line
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SMO (II)

e We also know that 0 < oy < C and 0 < ay < (), so the solution has
to be on the line segment inside the rectangle below

A

C

(1) @
oY+ 0Ly T =C
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SMO(III)

e By plugging a; back in the optimization criterion, we obtain a
guadratic function of a», whose optimum we can find exactly

e If the optimum is inside the rectangle, we take it.

e If not, we pick the closest intersection point of the line and the
rectangle

e This procedure is very fast because all these are simple
computations.
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