Lecture 7: DecisionTrees

e What are decision trees?

e Brief interlude on information theory
e Decision tree construction

e Overfitting avoidance

e Regression trees
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Recall: Parametric and non-parametric learning

e Parametric methods summarize the existing data set into a set of
parameters

E.g. Logistic and linear regression, feed-forward neural nets

e Nonparametric methods “memorize” the data, then use a distance
metric to measure the similarity of new query points to existing
examples

E.g. Nearest neighbor
e Today: non-metric methods

The result of learning is not a set of parameters, but there is no
distance metric to assess similarity of different instances

e Typical examples:

— Decision trees
— Rule-based systems
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Example: Decision tree for Wisconsin data

radius > 17.5

}/ W
texture > 21.5 2ER 64N
33R 5N 12R 31N

e Internal nodes are tests on the values of different attributes
e Tests can be binary or multi-valued
e Each training example (x;, y;) falls in precisely one leaf.

COMP-652, Lecture 7 - September 28, 2009



Using decision trees for classification

How do we classify a new a new instance, e.g.: radius=18, texture=12,

radius > 17.5

}/ W,
texture > 21.5 25R 64N
33R 5N 12R 31N

e At every node, test the corresponding attribute
e Follow the appropriate branch of the tree

e At a leaf, one can predict the class of the majority of the examples for
the corresponding leaf, or the probabilities of the two classes.
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Decision trees as logical representations

A decision tree can be converted an equivalent set of if-then rules.
radius > 17.5

v N

texture > 21.5 25R 64N

"

33R 5N 12R 31N

IF THEN most likely class is
radius>17.5 AND texture>21.5 | R
radius>17.5 AND texture<21.5 | N
radius<17.5 N
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Decision trees as logical representations

A decision tree can be converted an equivalent set of if-then rules.
radius > 17.5

v N

texture > 21.5

25R 64N
23R BN 12R 31N
= THEN P(R) is
radius>17.5 AND texture>21.5 | -5
radius>17.5 AND texture<21.5 | 5155
radius<17.5 252—564
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Decision trees, more formally

e Each internal node contains a fest, on the value of one (typically) or
more feature values
e A test produces discrete outcomes, e.g.,
— radius > 17.5
— radius € [12, 18]
— grade is {A,B,C, D, F'}
— gradeis > B
— coloris RED
— 2xradius—3x*texture > 16

e For discrete features, typically branch on some, or all, possible values
For real features, typically branch based on a threshold value

= A finite set of possible tests is usually decided before learning the
tree; learning comprises choosing the shape of the tree and the tests
at every node.
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More on tests for real-valued features

e Suppose feature j is real-valued,
e How do we choose a finite set of possible thresholds, for tests of the
form z; > 77
— Regression: choose midpoints of the observed data values,
Iljj, xgjj, R ,Cljm,j
O+ OHO—1—01+0+ 90—
— Classification: choose midpoints of data values with different y
values

—O—oHHO—01+0+0—>
N N R R N R
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Representational power and efficiency of decision
frees

e Suppose the input x consists of n binary features
e How can a decision tree represent:

— y =21 AND 22 AND ... AND z«,,
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Representational power and efficiency of decision
trees

e With typical univariate tests, AND and OR are easy, taking O(n) tests
e Parity/XOR type problems are hard, taking O(2") tests

e With real-valued features, decision trees are good at problems in
which the class label is constant in large, connected, axis-orthogonal
regions of the input space.
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An artificial example
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Example: Decision tree decision surface
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How do we learn decision trees?

e We could enumerate all possible trees (assuming number of possible
tests is finite),

— Each tree could be evaluated using the training set or, better yet, a
validation set

— But there are many possible trees! Combinatorial problem...

— We'd probably overfit the data anyway

e Usually, decision trees are constructed in two phases:

1. An recursive, top-down procedure “grows” a tree
(possibly until the training data is completely fit)
2. The tree is “pruned” back to avoid overfitting

e Both typically use greedy heuristics
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Top-down induction of decision trees

e For a classification problem:

1. If all the training instances have the same class, create a leaf with
that class label and exit.

2. Pick the best test to split the data on

3. Split the training set according to the value of the outcome of the
test

4. Recurse on each subset of the training data

e For aregression problem - same as above, except:

— The decision on when to stop splitting has to be made earlier
— At a leaf, either predict the mean value, or do a linear fit
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Which test is best?

e The test should provide information about the class label.

e Suppose we have 30 positive examples, 10 negative ones, and

we are considering two tests that would give the following splits of
instances:

t f t f

O O O O

[20+,10-] [10+,0-] [15+,7-] [15+,3-]
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Which test is best?

t f t f

O O O O

[20+,10-] [10+,0-] [15+,7-] [15+,3-]

¢ Intuitively, we would like an attribute that separates the training
instances as well as possible

e If each leaf was pure, the attribute would provide maximal information
about the label at the leaf

e We need a mathematical measure for the purity of a set of instances
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What is information?

e Imagine:

1. You are about to observe the outcome of a dice roll

2. You are about to observe the outcome of a coin flip

3. You are about to observe the outcome of a biased coin flip
4. Someone is about to tell you your own name

¢ Intuitively, in each situation you have a different amount of uncertainty
as to what outcome / message you will observe.
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Information=Reduction in uncertainty

Let E be an event that occurs with probability P(FE). If we are told
that £ has occurred with certainty, then we received

I(E) = logs 5

bits of information.

e You can also think of information as the amount of “surprise” in the
outcome (e.g., consider P(F) =1, P(F) = 0)

e E.g., result of a fair coin flip provides log, 2 = 1 bit of information

e E.g., result of a fair dice roll provides log, 6 ~ 2.58 bits of information.

e E.g., result of being told your own name (or any other deterministic
event) produces 0 bits of information
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Information is additive

Suppose you have k independent fair coin tosses. How much
information do they give?

L 1 .
I(k fair coin tosses ) = log, ——— = k Dbits

1/2k

A cute example:

e Consider a random word drawn from a vocabulary of 100,000 words:
I(word) = log, 100,000 =~ 16.61 bits

e Now consider a 1000 word document drawn from the same source:
I(document) ~ 16610 bits

e Now consider a 480 x 640 gray-scale image with 16 grey levels:
I(picture) = 307,200 - log, 16 = 1, 228, 800 bits!

— A picture is worth (more than) a thousand words!
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Entropy

e Suppose we have an information source S which emits symbols from
an alphabet {s1,...s;} with probabilities {p1,...pr}. Each emission
is independent of the others.

e What is the average amount of information when observing the
output of S?

= szl sz log— — sz log p;

This is called the entropy of S.

e Note that this depends only on the probability distribution and not on
the actual alphabet (so we can really write H(P)).
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Interpretations of entropy
1
H(P)=) p 1og]7

e Average amount of information per symbol

e Average amount of surprise when observing the symbol

e Uncertainty the observer has before seeing the symbol

e Average number of bits needed to communicate the symbol
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Entropy and coding theory

e Suppose | will get data from a 4-value alphabet z, and | want to send
it over a channel. | know that the probability of item z; is p;,.

e Suppose all values are equally likely. Then | can encode them in two
bits each, so on every transmission | need 2 bits

e Suppose now py = 0.5, p1 = 0.25, po = p3 = 0.125. What is the best
encoding?
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Entropy and coding theory

e Suppose | will get data from a 4-value alphabet z, and | want to send
it over a channel. | know that the probability of item z; is p;,.

e Suppose all values are equally likely. Then | can encode them in two
bits each, so on every transmission | need 2 bits

e Suppose now py = 0.5, p1 = 0.25, po = p3 = 0.125. What is the best
encoding?

Zy) — O, Z1 — 10, Zo — 110, 73 — 111.
What is the expected length of the message over time?

Shannon: there are codes that will communicate the symbols with
efficiency arbitrarily close to H(P) bits/symbol. There are no codes
that will do it with efficiency greater than H(P) bits/symbol.
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Properties of entropy

k
1
H(P) = sz-log;
i=1 ¢

e Non-negative: H(P) > 0, with equality if and only if any p;, = 1.
e H(P) < logk with equality if and only if p; = 1, Vi
e The further P is from uniform, the lower the entropy

1

0.8r

entropy
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Entropy applied to binary classfication

e Consider data set D and let

— pg = the proportion of positive examples in D
— po = the proportion of negative examples in D

e Entropy measures the impurity of D, based on empirical probabilities
of the two classes:

1 1
H(D) = pglog, — + peg logy —
P Po

So we can use it to measure purity!
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Example

Suppose | am trying to predict output y and | have input x, e.g.:

x =HasKids | y =OwnsDumboVideo
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No No
No No
Yes No
Yes No

e From the table, we can estimate P(y =Y ES) =0.5 = P(y = NO).
e Thus, we estimate H(y) = 0.5log 5= + 0.5log o= = 1.
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Example: Conditional entropy

x =HasKids | y =OwnsDumboVideo
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No No
No No
Yes No
Yes No

Specific conditional entropy is the uncertainty in y given a particular x
value. E.g.,

P(y —YES|zt =YES)=2, P(y= NOJz = YES) =

H(ylz = YES) = 2log 4 + 1log + ~ 0.9183.
@) T308
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Conditional entropy

e The conditional entropy, H(y|z), is the average specific conditional
entropy of y given the values for x:

H(ylz) = ZP (y|lx = v)

e E.g. (from previous slide),
— H(ylx =YES) =2 log( 5t 3 1 logm 0.6365
3
— H(y|lxt = NO) =0log + 1log 1 = 0.
— H(ylx) = Hylx = YES)P(x = YES) + H(ylr = NO)P(x =

NO) = 0.6365 % 2 4 0 ; ~ 0.4774

e Interpretation: the expected number of bits needed to transmit y if
both the emitter and the receiver know the possible values of = (but
before they are told x’s specific value).
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Information gain

e Suppose one has to transmit y. How many bits on the average would
it save if both the transmitter and the receiver knew z?

IG(y|z) = H(y) — H(y|z)

This is called information gain

e Alternative interpretation: what reduction in entropy would be
obtained by knowing x

e Intuitively, this has the meaning we seek for decision tree
construction
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Information gain to determine best test

e We choose, recursively at each interior node, the test that has highest
information gain.

Equivalently, test that results in lowest conditional entropy.
e If tests are binary:

IG(D,Test) = H(D)— H(D|Test)
| DTest! 1D_Test!
= H(D)- &?ft H<DTest)_ ‘ETSJ[ H<DﬁTest)

A A

[20+,10-] [10+,0-] [15+,7-] [15+,3-]
Check that in this case, Test1 wins.

COMP-652, Lecture 7 - September 28, 2009 30



Caveats on tests with multiple values

e If the outcome of a test is multi-valued, the number of possible values
influences the information gain

e The more possible values, the higher the gain! (the more likely it is
to form small, but pure partitions)

e C4.5 (the most popular decision tree construction algorithm in ML
community) uses only binary tests:

— Attribute=Value for discrete attributes
— Attribute < or > Value for continuous attributes

e Other approaches consider smarter metrics (e.g. gain ratio), which
account for the number of possible outcomes
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Alternative purity measures

e For classification, an alternative to the information gain is the Gini

index:

Y P(y)1—-P(y)=1-)Y (Py))?

Yy Yy
Same qualitative behavior as the entropy, but not the same
interpretation

e For regression trees, purity is measured by the average mean-
squared error at each leaf

E.g. CART (Breiman et al., 1984)
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Overfitting in decision trees

e Remember, decision tree construction proceeds until all leaves are
pure — all examples having the same y value.

e As the tree grows, the generalization performance starts to degrade,
because the algorithm is finding irrelevant attributes / tests.

0.9
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05 1 1 1 1 1 1 1 1 1
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Size of tree (number of nodes)

Example from (Mitchell, 1997)
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Avoiding overfitting

e Two approaches:

1. Stop growing the tree when further splitting the data does not yield
a statistically significant improvement
2. Grow a full tree, then prune the tree, by eliminating nodes

e The second approach has been more successful in practice, because
in the first case it might be hard to decide if the information gain is
sufficient or not (e.g. for multivariate functions)

e We will select the best tree, for now, by measuring performance on a
separate validation data set.
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Example: Reduced-error pruning

1. Split the “training data” into a training set and a validation set
2. Grow a large tree (e.g. until each leaf is pure)
3. For each node:

(a) Evaluate the validation set accuracy of pruning the subtree rooted
at the node

(b) Greedily remove the node that most improves validation set
accuracy, with its corresponding subtree

(c) Replace the removed node by a leaf with the majority class of the
corresponding examples.

4. Stop when pruning starts hurting the accuracy on the validation set.
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Example: Effect of reduced-error pruning
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Example: Rule post-pruning in C4.5

1. Convert the decision tree to rules

2. Prune each rule independently of the others, by removing
preconditions such that the accuracy is improved

3. Sort final rules in order of estimated accuracy
Advantages:

e Can prune attributes higher up in the tree differently on different paths

e There is no need to reorganize the tree if pruning an attribute that is
higher up

e Most of the time people want rules anyway, for readability
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Missing values during classification

e Assign “most likely” value based on all the data that reaches the
current node.

e Assign all possible values with some probability.

— Count the occurrences of the different attribute values in the
instances that have reached the same node.

— Predict all the possible class labels with the appropriate
probabilities
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Missing values during tree construction

e Introduce an “unknown” value

e Modify information gain to take into account the probability of an
attribute being known:

IG(D, Test) P(Test)

where P(Test) is the fraction of the instances that reached the node,
in which the value of the attribute tested by Test was known.

COMP-652, Lecture 7 - September 28, 2009 39



Variations: Constructing tests on the fly

e Suppose we are interested in more sophisticated tests at nodes, such
a linear combinations of features:

3.1 x radius — 1.9 x texture > 1.3

e We can use a fast, simple classifier (such as logistic) to determine a
decision boundary, and us it as a test

e Special-purpose methods also search over logical formulae for tests
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Costs of attributes

e Include cost in the metric, e.g.

IG?(D, Test)
Cost(Test)

e Mostly a problem in specific domains (e.g. medicine).

Multiple metrics have been studied and proposed, without a
consensus.
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Decision and regression tree summary

Very fast learning algorithms (e.g. C4.5, CART)

Attributes may be discrete or continuous, no preprocessing needed
Provide a general representation of classification rules

Easy to understand! Though. ..

— Exact tree output may be sensitive to small changes in data
— With many features, tests may not be meaningful
e In standard form, good for (nonlinear) piecewise axis-orthogonal
decision boundaries — not good with smooth, curvilinear boundaries
e In regression, the function obtained is discontinuous, which may not
be desirable
e Good accuracy in practice — many applications!
— Equipment/medical diagnosis
— Learning to fly
— Scene analysis and image segmentation
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