Lecture 2: More on linear methods for regression

e Overfitting and bias-variance trade-off

e Linear basis functions models

e Sequential (on-line, incremental) learning

e Why least-squares? A probabilistic analysis
e If we have time: Regularization

COMP-652, Lecture 2 - September 9, 2009

Recall: Linear and polynomial regression

e Our first assumption was that it is good to minimize sum- (or mean-)
squared error

e Algorithms that minimize this function are called /east-squares
e Our second assumption was the linear form of the hypothesis class

e The terms were powers of the input variables (and possibly cross-
terms of these powers)

COMP-652, Lecture 2 - September 9, 2009 2

Recall: Overfitting

1} o M=0 | 1} o M=1 -
o R o <
t t
o)
o o o
0 N\ | of ° -
° o ° 9
))
_l _1.
0 T 1 0 x 1
1} M=9
t
)

0 1 0 1

x T

The higher the degree of the polynomial, the more degrees of freedom,
and the more capacity to “overfit” (think: memorize) the training data

COMP-652, Lecture 2 - September 9, 2009 3

Recall: Typical overfitting plot

1 .
—6— Training
—O— Test

e The training error decreases with the degree of the polynomial, i.e.
the complexity of the hypothesis

e The testing error, measured on independent data, decreases at first,
then starts increasing

e Cross-validation helps us
— Find a good hypothesis class
— Report unbiased results

COMP-652, Lecture 2 - September 9, 2009 4

The anatomy of the error
e Suppose we have examples (x,y) where y = f(x) + ¢ and ¢ is

Gaussian noise with zero mean and standard deviation o
e Reminder: normal (Gaussian) distribution

A

A

N (x|, 0?)

v

COMP-652, Lecture 2 - September 9, 2009 5

The anatomy of the error: Linear regression

In linear regression, given a set of examples (xi, yi)i—1...m, We fit a
linear hypothesis h(x) = w!x, such as to minimize sum-squared

error over the training data:

m

> (i — h(xy))?

1=1

e Because of the hypothesis class that we chose (linear hypotheses)
for some functions f we will have a systematic prediction error

e Depending on the data set we have, the parameters w that we find
will be different

COMP-652, Lecture 2 - September 9, 2009

An example (Tom Dietterich)

Example: 20 points
y =X + 2 sin(1.5x) + N(0,0.2)

e The sine is the true function
e The circles are the data points
e The straight line is the linear regression fit

COMP-652, Lecture 2 - September 9, 2009

Example continued

50 fits (20 examples each)

With different sets of 20 points, we get different lines

COMP-652, Lecture 2 - September 9, 2009

Bias-variance analysis

e Given a new data point x, what is the expected prediction error?

e Assume that the data points are drawn independently and identically
distributed (i.i.d.) from a unique underlying probability distribution

P({x,y))
e The goal of the analysis is to compute, for an arbitrary new point x,

Ep [(y — h(x))?]
where y is the value of x that could be present in a data set, and the

expectation is over all all training sets drawn according to P
e We will decompose this expectation into three components

COMP-652, Lecture 2 - September 9, 2009 9

Recall: Statistics 101

e Let X be a random variable with possible values z;,7 = 1...n and

with probability distribution P(X)

e The expected value or mean of X is:

e If X is continuous, roughly speaking, the sum is replaced by an
integral, and the distribution by a density function

e The variance of X is:

Var|X] =

COMP-652, Lecture 2 - September 9, 2009

10

The variance lemma

Var[X] = E[(X — E[X])’]
= Z(%—E[X])QP(%)

n

- Z(xg — 22, B[X] + (E[X])?)P(z;)

= Z$2P x;) — 2K X Z«?CP%
=1

— FE[X?] - 2E[X|E[X] + (E[X])2 -1
= E[X7] - (E[X])

We will use the form:

COMP-652, Lecture 2 - September 9, 2009

X])QZP(%)

11

Bias-variance decomposition

Ep|(y—h(x))?] = Ep|[(h(x))?—2yh(x)+y’]
= Ep[(hx))’] + Ep [y°] — 2Ep[y|Ep [h(x)]

Let h(x) = Ep|h(x)] denote the mean prediction of the hypothesis at x,
when h is trained with data drawn from P

For the first term, using the variance lemma, we have:
Ep[(h(x))’] = Ep[(h(x) — h(x))*] + (h(x))’

Note that Eply] = Ep[f(x) + €] = f(x)

For the second term, using the variance lemma, we have:

Ely*l = E[(y — f(x))*] + (f(x))’

COMP-652, Lecture 2 - September 9, 2009 12

Bias-variance decomposition (2)

Putting everything together, we have:

Ep [(y — h(x))?]

|

+

Bl(y — £(x0)))

The first term is thevariance of the hypothesis h when trained with
finite data sets sampled randomly from P

The second term is the squared bias (or systematic error) which is
associated with the class of hypotheses we are considering

The last term is the noise, which is due to the problem at hand, and

cannot be avoided

COMP-652, Lecture 2 - September 9, 2009

13

Example revisited: Bias

frue function

COMP-652, Lecture 2 - September 9, 2009

14

Example revisited: Variance

Variance

COMP-652, Lecture 2 - September 9, 2009

15

Example revisited: Noise

COMP-652, Lecture 2 - September 9, 2009

16

A point with low bias

Distribution of predictions at
x=2.0

COMP-652, Lecture 2 - September 9, 2009

17

A point with high bias

Distribution of predictions at
x=5.0

COMP-652, Lecture 2 - September 9, 2009

18

Error decomposition

0.15

0.12¢

0.09r

0.06}

0.031

0

(biasy
variance

(bias)2 + variance
test error 1

-3

-2

-1 0 1
In A

2

e The bias-variance sum approximates well the test error over a set of

1000 points

e X-axis is a measure of the hypothesis complexity (decreasing left-to-

right)

e Simple hypotheses have high bias (bias will be high at many points)
e Complex hypotheses have high variance: the hypotheses is very

dependent on the data set on which it was trained.

COMP-652, Lecture 2 - September 9, 2009

19

Bias-variance trade-off

e Consider fitting a small degree vs. a high degree polynomial
e Which one do you expect to have higher bias? Higher variance?

COMP-652, Lecture 2 - September 9, 2009

20

Bias-variance trade-off

e Typically, bias comes from not having good hypotheses in the
considered class

e Variance results from the hypothesis class containing “too many”
hypotheses

e Hence, we are faced with a frade-off. choose a more expressive
class of hypotheses, which will generate higher variance, or a less
expressive class, which will generate higher bias

e The trade-off depends also on how much data you have

COMP-652, Lecture 2 - September 9, 2009 21

More on overfitting

e Overfitting depends on the amount of data, relative to the complexity
of the hypothesis

e With more data, we can explore more complex hypotheses spaces,
and still find a good solution

COMP-652, Lecture 2 - September 9, 2009 22

Linear models in general

e By linear models, we mean that the hypothesis function h(x) is a
linear function of the parameters w

e This does NOT mean the h(x) is a linear function of the input vector
x (e.g., polynomial regression)

e In general

K-1
hw(x) =) wir(x) = w' $(x)
k=0

where ¢, are called basis functions
e As usual, we will assume that ¢¢(x) = 1, Vx, to create a bias term
e The hypothesis can alternatively be written as:

hw(x) = W

where @ is a matrix with one row per instance; row j contains ¢(x;).
e Basis functions are fixed

COMP-652, Lecture 2 - September 9, 2009 23

Example basis functions: Polynomials
1

“Global” functions: a small change in x may cause large change in the
output of many basis functions

COMP-652, Lecture 2 - September 9, 2009 24

Example basis functions:
1

“Global” functions: a small change in x may cause large change in the
output of many basis functions

COMP-652, Lecture 2 - September 9, 2009 25

Example basis functions: Gaussians

1y, controls the position along the x-axis
s controls the width (activation radius)
L, s fixed for now (later we discuss adjusting them)

Usually thought as “local” functions: a small change in z only causes
a change in the output of the basis with means close to z

COMP-652, Lecture 2 - September 9, 2009 26

Example basis functions: Sigmoidal

1
0.75f
0.5}
0.25f
O

1
ZE—,uk 1
= h
or(T) 0(p where o(a 1—|—eXp(p”

1y, controls the position along the x-axis
s controls the slope
L, s fixed for now (later we discuss adjusting them)

“Local” functions: a small change in x only causes a change in the
output of a few basis (others will be close to 0 or 1)

COMP-652, Lecture 2 - September 9, 2009 27

Minimizing the mean-squared error
e Recall from last time: we want min,, Jp(w), where:

Tp(w) = 53 () = 1)* = 5(®w —y)T(Bw —)

e Compute the gradient and set it to O:
1
Vwdp(w) = §VW(WT<I>T<I>W—WT<I>Ty—yT<I>W—|—yTy) = pTPdw—-Ply =0
e Solve for w:
w=(®T®) ey

e What if ® is too big to compute this explicitly?

COMP-652, Lecture 2 - September 9, 2009 28

Gradient descent

e The gradient of J at a point (wg, w1, ...,w) can be thought of as a
vector indicating which way is “uphill”.

2000

"l’"'\/t\
SRR
XKD
%0 0%
‘w,'o,o“:&ll

2%
4 (15553
(7S

$%<
S
2SOV
CZSOSNNN {2
NN

ANNS
‘Q\“: '0:0\\\\\\.

SN RN
N/

“\;;ol/l
\

ZS 2L/
NS 70% XKL
NS

S
N8

] K7

e If this is an error function, we want to move “downhill” on it, i.e., in the
direction opposite to the gradient

COMP-652, Lecture 2 - September 9, 2009 29

Example gradient descent traces

-, “}\“I/'I/I;
SNSIASISE 0

-

¢ In general, there may be may local optima
e Final solution depends on the initial parameters

COMP-652, Lecture 2 - September 9, 2009

30

Gradient descent algorithm

e The basic algorithm assumes that V.J is easily computed

e We want to produce a sequence of vectors wi, w2 w3, ... with the
goal that:

- J(wl) > J(w?) > J(w?) > ...
— lim;_.o w' = w and w is locally optimal.
e The algorithm: Given w®, do fori =0,1,2, ...

w'tt = w! — o, VJ (W),

where «; > 0 is the step size or learning rate for iteration <.

COMP-652, Lecture 2 - September 9, 2009 31

Step size and convergence

e Convergence to a local minimum depends in part on the «;.

e If they are too large (such as constant) oscillation or “bubbling” may
occur.
(This suggests the «; should tend to zero as i — o0.)

o If they are too small, the w! may not move far enough to reach a local
minimum, or may do so very slowly.

COMP-652, Lecture 2 - September 9, 2009 32

Robbins-Monroe conditions

e The «; are a Robbins-Monroe sequence if:

oo o
Zai:—l—oo and Za? < 00
i=0

1=0

e E.g., a; = 15 (averaging)
e Eg,a;=5fori=1...T,0s=gfori=T+1,...(T+1)+ 2T etc

e These conditions, along with appropriate conditions on J are
sufficient to ensure convergence of the w! to a point w> such that
VJ(w>®) =0.

e Many variants are possible: e.g., we may use at each step a random
vector with mean V.J(w'); this is stochastic gradient descent.

COMP-652, Lecture 2 - September 9, 2009 33

“Batch” versus “On-line” optimization
e The error function, Jp, is a sum of errors attributed to each instance:
(JD:J1—|—J2—|—...—|-Jm.)
e In batch gradient descent, the true gradient is computed at each step:

Vip=VJ1 +Vda+ ... V.
e In on-line gradient descent, at each iteration one instance, : €
{1,...,m}, is chosen at random and only VJ; is used in the update.
e Linear case (least-mean-square or LMS or Widrow-Hoff rule): pick
instance ¢ and update:

wtt = wh (s — wlho(x)o(x,),

e Why prefer one or the other?

COMP-652, Lecture 2 - September 9, 2009 34

“Batch” versus “On-line” optimization

e Batch is simple, repeatable.
e On-line:

— Requires less computation per step.
— Randomization may help escape poor local minima.
— Allows working with a stream of data, rather than a static set

(hence “on-line”).

COMP-652, Lecture 2 - September 9, 2009 35

Termination

There are many heuristics for deciding when to stop gradient descent.

1. Run until ||VJ|| is smaller than some threshold.

2. Run it for as long as you can stand.
3. Run it for a short time from 100 different starting points, see which
one is doing best, goto 2.

4. ...

COMP-652, Lecture 2 - September 9, 2009 36

Gradient descent in linear models and beyond

e In linear models, gradient descent can be used with larger data sets
than the exact solution method

e Very useful if the data is non-stationary (i.e., the data distribution
changes over time)

e In this case, use constant learning rates (not obeying Robbins-Munro
conditions)

e Crucial method for non-linear function approximation (where closed-
form solutions are impossible)

Annoyances:

e Speed of convergence depends on the learning rate schedule
e In non-linear case, randomizing the initial parameter vector is crucial

COMP-652, Lecture 2 - September 9, 2009 37

Another algorithm for optimization

e Recall Newton’s method for finding the zero of a function g : R — R
e At point w*, approximate the function by a straight line (its tangent)

e Solve the linear equation for where the tangent equals 0, and move
the parameter to this point:

COMP-652, Lecture 2 - September 9, 2009 38

Application to machine learning

e Suppose for simplicity that the error function J has only one
parameter

e We want to optimize J, so we can apply Newton’s method to find the
zeros of J' = L]

e We obtain the iteration:

J'(w')
J”(’wi)

141

w = w' —

e Note that there is no step size parameter!

e This is a second-order method, because it requires computing the
second derivative

e But, if our error function is quadratic, this will find the global optimum
iIn one step!

COMP-652, Lecture 2 - September 9, 2009 39

Second-order methods: Multivariate setting

e If we have an error function J that depends on many variables, we
can compute the Hessian matrix, which contains the second-order

derivatives of J:
0%J

ﬁwié’wj

Hz'j =

e The inverse of the Hessian gives the “optimal” learning rates
e The weights are updated as:

we—w-—H'V,J

e This is also called Newton-Raphson method

COMP-652, Lecture 2 - September 9, 2009 40

Which method is better?

e Newton’s method usually requires significantly fewer iterations than
gradient descent

e Computing the Hessian requires a batch of data, so there is no
natural on-line algorithm

e Inverting the Hessian explicitly is expensive, but there is very cute
trick for computing the product we need in linear time (Schraudolph,
1996)

COMP-652, Lecture 2 - September 9, 2009 41

Coming back to mean-squared error function...

e Good intuitive feel (small errors are ignored, large errors are
penalized)

e Nice math (closed-form solution, unique global optimum)
e Geometric interpretation (in our notation, t is y and y is hy(x))

e Any other interpretation?

COMP-652, Lecture 2 - September 9, 2009 42

A probabilistic assumption

e Assume y; is a noisy target value, generated from a hypothesis hy (x)
e More specifically, assume that there exists w such that:

Yi = hW(Xi) + €;

where e; Is random variable (noise) drawn independently for each
x; according to some Gaussian (normal) distribution with mean zero
and variance o.

e How should we choose the parameter vector w?

COMP-652, Lecture 2 - September 9, 2009 43

Bayes theorem in learning

Let » be a hypothesis and D be the set of training data. Using Bayes

theorem, we have:
P(D|h)P(h)

P(D)

P(h|D) =

where:

e P(h) = prior probability of hypothesis h

e P(D) = prior probability of training data D (normalization,
independent of h)

e P(h|D) = probability of h given D
e P(D|h) = probability of D given h (likelihood of the data)

COMP-652, Lecture 2 - September 9, 2009 44

Choosing hypotheses

P(D|h)P(h)
P(D)
What is the most probable hypothesis given the training data?

P(h|D) =

Maximum a posteriori (MAP) hypothesis hj;ap:

= P(h|D
harap argr}{leaéc (h|D)

B P(DIh)P(h)
- ST P(D)

= argmax P(D|h)P(h)

(using Bayes theorem)

This is the Bayesian answer (more detail next time)

COMP-652, Lecture 2 - September 9, 2009

45

Maximum likelihood estimation

= P(D|h)P
hivap = argmax P(D|h)P(h)

e If we assume P(h;) = P(h,) (all hypotheses are equally likely a priori)
then we can further simplify, and choose the maximum likelihood

(ML) hypothesis:

hyrr = arg max P(D|h) = arg max L(h)

e Standard assumption: the training examples are independently
identically distributed (i.i.d.)
e This alows us to simplify P(D|h):

m m

P(D|h) =[] P(xi,yi)|h) = | | P(yilxs; b)

COMP-652, Lecture 2 - September 9, 2009 46

The log trick

e We want to maximize:

L(h) = [T Ply:fxss)

1=1

This is a product, and products are hard to maximize!
e Instead, we will maximize log L(h)! (the log-likelihood function)

log L(h) =) log P(yi|x;; h)
=1

COMP-652, Lecture 2 - September 9, 2009

47

Maximum likelihood for regression
e Adopt the assumption that:
yi = hw(Xi) + €,

where e; are normally distributed with mean 0 and variance o
e The best hypothesis maximizes the likelihood of y; — hw(x;) = €;
e Hence,

m 1 1 (yi—hw(x) 2
L(W):[[lme 2(7)

because the noise variables e; are from a Gaussian distribution

COMP-652, Lecture 2 - September 9, 2009

48

Applying the log trick

- 1 _1limhw)?
log L(w) = Zlog We 2 o2

=1

- 1 - 1 (yz T hW(Xl))2
—] — N =

Z_Zl 0og (/—27_‘_0_2) ; 2 0-2

This is our old friend, the sum-squared-error function!

COMP-652, Lecture 2 - September 9, 2009 49

Maximum likelihood hypothesis for least-squares
estimators

e Under the assumption that the training examples are i.i.d. and that
we have Gaussian target noise, the maximum likelihood parameters
w are those minimizing the sum squared error:

W = argmin 3" (3 — f(x,))
1=1

e This makes explicit the hypothesis behind minimizing the sum-
squared error

e If the noise is not normally distributed, maximizing the likelihood
will not be the same as minimizing the sum-squared error (see
homework)

e In practice, different loss functions may be needed

COMP-652, Lecture 2 - September 9, 2009 50

Regularization

e Remember the intuition: complicated hypotheses lead to overfitting
e Idea: change the error function to penalize hypothesis complexity:

T(w) = Tp(W) + Apen(w)

This is called regularization in machine learning and shrinkage in
statistics

e)\ is called regularization coefficient and controls how much we value
fitting the data well, vs. a simple hypothesis

e One can view this as making complex hypotheses a priori less likely
(though there are some subtleties)

COMP-652, Lecture 2 - September 9, 2009 51

Regularization for linear models

e A squared penalty on the weights would make the math work nicely

in our case:

1
§(<I>W — y)T(<I>W —y)+ %WTW

e This regularization term is also known as weight decay in neural
networks

e Optimal solution:
w=(®'® 4+ \) Py

COMP-652, Lecture 2 - September 9, 2009 52

