Lecture 2: More on linear methods for regression

- Overfitting and bias-variance trade-off
- Linear basis functions models
- Sequential (on-line, incremental) learning
- Why least-squares? A probabilistic analysis
- If we have time: Regularization

Recall: Linear and polynomial regression

- Our first assumption was that it is good to minimize sum- (or mean-) squared error
- Algorithms that minimize this function are called *least-squares*
- Our second assumption was the linear form of the hypothesis class
- The terms were powers of the input variables (and possibly crossterms of these powers)

Recall: Overfitting

The higher the degree of the polynomial, the more degrees of freedom, and the more capacity to "overfit" (think: memorize) the training data

Recall: Typical overfitting plot

- The training error decreases with the degree of the polynomial, i.e. the complexity of the hypothesis
- The testing error, measured on independent data, decreases at first, then starts increasing
- Cross-validation helps us
 - Find a good hypothesis class
 - Report unbiased results

The anatomy of the error

- Suppose we have examples $\langle \mathbf{x}, y \rangle$ where $y = f(\mathbf{x}) + \epsilon$ and ϵ is Gaussian noise with zero mean and standard deviation σ
- Reminder: normal (Gaussian) distribution

The anatomy of the error: Linear regression

• In linear regression, given a set of examples $\langle \mathbf{x_i}, y_i \rangle_{i=1...m}$, we fit a linear hypothesis $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, such as to minimize sum-squared error over the training data:

$$\sum_{i=1}^{m} (y_i - h(\mathbf{x}_i))^2$$

- Because of the hypothesis class that we chose (linear hypotheses) for some functions f we will have a systematic prediction error
- Depending on the data set we have, the parameters w that we find will be different

An example (Tom Dietterich)

- The sine is the true function
- The circles are the data points
- The straight line is the linear regression fit

Example continued

With different sets of 20 points, we get different lines

Bias-variance analysis

- Given a new data point x, what is the expected prediction error?
- Assume that the data points are drawn *independently and identically distributed (i.i.d.)* from a unique underlying probability distribution $P(\langle \mathbf{x}, y \rangle)$
- The goal of the analysis is to compute, for an arbitrary new point x,

$$E_P\left[(y-h(\mathbf{x}))^2\right]$$

where y is the value of x that could be present in a data set, and the expectation is over all all training sets drawn according to P

We will decompose this expectation into three components

Recall: Statistics 101

- Let X be a random variable with possible values $x_i, i = 1 \dots n$ and with probability distribution P(X)
- The *expected value* or *mean* of *X* is:

$$E[X] = \sum_{i=1}^{n} x_i P(x_i)$$

- ullet If X is continuous, roughly speaking, the sum is replaced by an integral, and the distribution by a density function
- The *variance* of X is:

$$Var[X] = E[(X - E(X))^{2}]$$

= $E[X^{2}] - (E[X])^{2}$

The variance lemma

$$Var[X] = E[(X - E[X])^{2}]$$

$$= \sum_{i=1}^{n} (x_{i} - E[X])^{2} P(x_{i})$$

$$= \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}E[X] + (E[X])^{2}) P(x_{i})$$

$$= \sum_{i=1}^{n} x_{i}^{2} P(x_{i}) - 2E[X] \sum_{i=1}^{n} x_{i} P(x_{i}) + (E[X])^{2} \sum_{i=1}^{n} P(x_{i})$$

$$= E[X^{2}] - 2E[X]E[X] + (E[X])^{2} \cdot 1$$

$$= E[X^{2}] - (E[X])^{2}$$

We will use the form:

$$E[X^{2}] = (E[X])^{2} + Var[X]$$

Bias-variance decomposition

$$E_P \left[(y - h(\mathbf{x}))^2 \right] = E_P \left[(h(\mathbf{x}))^2 - 2yh(\mathbf{x}) + y^2 \right]$$
$$= E_P \left[(h(\mathbf{x}))^2 \right] + E_P \left[y^2 \right] - 2E_P[y]E_P \left[h(\mathbf{x}) \right]$$

Let $\bar{h}(\mathbf{x}) = E_P[h(\mathbf{x})]$ denote the *mean prediction* of the hypothesis at \mathbf{x} , when h is trained with data drawn from P

For the first term, using the variance lemma, we have:

$$E_P[(h(\mathbf{x}))^2] = E_P[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^2] + (\bar{h}(\mathbf{x}))^2$$

Note that $E_P[y] = E_P[f(\mathbf{x}) + \epsilon] = f(\mathbf{x})$

For the second term, using the variance lemma, we have:

$$E[y^2] = E[(y - f(\mathbf{x}))^2] + (f(\mathbf{x}))^2$$

Bias-variance decomposition (2)

Putting everything together, we have:

$$E_{P}\left[(y - h(\mathbf{x}))^{2}\right] = E_{P}\left[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^{2}\right] + (\bar{h}(\mathbf{x}))^{2} - 2f(\mathbf{x})\bar{h}(\mathbf{x})$$

$$+ E_{P}\left[(y - f(\mathbf{x}))^{2}\right] + (f(\mathbf{x}))^{2}$$

$$= E_{P}\left[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^{2}\right] + (f(\mathbf{x}) - \bar{h}(\mathbf{x}))^{2}$$

$$+ E\left[(y - f(\mathbf{x}))^{2}\right]$$

- The first term is the variance of the hypothesis h when trained with finite data sets sampled randomly from P
- The second term is the squared bias (or systematic error) which is associated with the class of hypotheses we are considering
- The last term is the noise, which is due to the problem at hand, and cannot be avoided

Example revisited: Bias

Example revisited: Variance

Example revisited: Noise

A point with low bias

A point with high bias

Error decomposition

- The bias-variance sum approximates well the test error over a set of 1000 points
- x-axis is a measure of the hypothesis complexity (decreasing left-toright)
- Simple hypotheses have high bias (bias will be high at many points)
- Complex hypotheses have high variance: the hypotheses is very dependent on the data set on which it was trained.

Bias-variance trade-off

- Consider fitting a small degree vs. a high degree polynomial
- Which one do you expect to have higher bias? Higher variance?

Bias-variance trade-off

- Typically, bias comes from not having good hypotheses in the considered class
- Variance results from the hypothesis class containing "too many" hypotheses
- Hence, we are faced with a trade-off: choose a more expressive class of hypotheses, which will generate higher variance, or a less expressive class, which will generate higher bias
- The trade-off depends also on how much data you have

More on overfitting

- Overfitting depends on the amount of data, relative to the complexity of the hypothesis
- With more data, we can explore more complex hypotheses spaces, and still find a good solution

Linear models in general

- By linear models, we mean that the hypothesis function $h_{\mathbf{w}}(\mathbf{x})$ is a linear function of the parameters \mathbf{w}
- This does NOT mean the $h_{\mathbf{w}}(\mathbf{x})$ is a linear function of the input vector \mathbf{x} (e.g., polynomial regression)
- In general

$$h_{\mathbf{w}}(\mathbf{x}) = \sum_{k=0}^{K-1} w_k \phi_k(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

where ϕ_k are called basis functions

- As usual, we will assume that $\phi_0(\mathbf{x}) = 1, \forall \mathbf{x}$, to create a bias term
- The hypothesis can alternatively be written as:

$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{\Phi}\mathbf{w}$$

where Φ is a matrix with one row per instance; row j contains $\phi(\mathbf{x}_j)$.

Basis functions are fixed

Example basis functions: Polynomials

"Global" functions: a small change in x may cause large change in the output of many basis functions

Example basis functions:

"Global" functions: a small change in x may cause large change in the output of many basis functions

Example basis functions: Gaussians

- μ_k controls the position along the x-axis
- *s* controls the width (activation radius)
- μ_k , s fixed for now (later we discuss adjusting them)
- ullet Usually thought as "local" functions: a small change in x only causes a change in the output of the basis with means close to x

Example basis functions: Sigmoidal

- μ_k controls the position along the x-axis
- s controls the slope
- μ_k , s fixed for now (later we discuss adjusting them)
- "Local" functions: a small change in x only causes a change in the output of a few basis (others will be close to 0 or 1)

Minimizing the mean-squared error

• Recall from last time: we want $\min_{\mathbf{w}} J_D(\mathbf{w})$, where:

$$J_D(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^m (h_{\mathbf{w}}(\mathbf{x}_i) - y_i)^2 = \frac{1}{2} (\mathbf{\Phi} \mathbf{w} - \mathbf{y})^T (\mathbf{\Phi} \mathbf{w} - \mathbf{y})$$

• Compute the gradient and set it to 0:

$$\nabla_{\mathbf{w}} J_D(\mathbf{w}) = \frac{1}{2} \nabla_{\mathbf{w}} (\mathbf{w}^T \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} - \mathbf{w}^T \mathbf{\Phi}^T \mathbf{y} - \mathbf{y}^T \mathbf{\Phi} \mathbf{w} + \mathbf{y}^T \mathbf{y}) = \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} - \mathbf{\Phi}^T \mathbf{y} = 0$$

Solve for w:

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

Gradient descent

• The gradient of J at a point $\langle w_0, w_1, \dots, w_k \rangle$ can be thought of as a vector indicating which way is "uphill".

• If this is an error function, we want to move "downhill" on it, i.e., in the direction opposite to the gradient

Example gradient descent traces

- In general, there may be may local optima
- Final solution depends on the initial parameters

Gradient descent algorithm

- ullet The basic algorithm assumes that ∇J is easily computed
- We want to produce a sequence of vectors $\mathbf{w^1}, \mathbf{w^2}, \mathbf{w^3}, \dots$ with the goal that:
 - $J(\mathbf{w}^1) > J(\mathbf{w}^2) > J(\mathbf{w}^3) > \dots$
 - $-\lim_{i\to\infty}\mathbf{w^i}=\mathbf{w}$ and \mathbf{w} is locally optimal.
- The algorithm: Given $\mathbf{w^0}$, do for i = 0, 1, 2, ...

$$\mathbf{w}^{i+1} = \mathbf{w}^i - \alpha_i \nabla J(\mathbf{w}^i) ,$$

where $\alpha_i > 0$ is the *step size* or *learning rate* for iteration *i*.

Step size and convergence

- Convergence to a local minimum depends in part on the α_i .
- If they are too large (such as constant) oscillation or "bubbling" may occur.
 - (This suggests the α_i should tend to zero as $i \to \infty$.)
- If they are too small, the $\mathbf{w^i}$ may not move far enough to reach a local minimum, or may do so very slowly.

Robbins-Monroe conditions

• The α_i are a Robbins-Monroe sequence if:

$$\sum_{i=0}^{\infty} \alpha_i = +\infty \text{ and } \sum_{i=0}^{\infty} \alpha_i^2 < \infty$$

- E.g., $\alpha_i = \frac{1}{i+1}$ (averaging)
- E.g., $\alpha_i = \frac{1}{2}$ for $i = 1 \dots T$, $\alpha_i = \frac{1}{2^2}$ for $i = T + 1, \dots (T + 1) + 2T$ etc
- These conditions, along with appropriate conditions on J are sufficient to ensure convergence of the $\mathbf{w^i}$ to a point $\mathbf{w^{\infty}}$ such that $\nabla J(\mathbf{w^{\infty}}) = 0$.
- Many variants are possible: e.g., we may use at each step *a random* vector with mean $\nabla J(\mathbf{w^i})$; this is stochastic gradient descent.

"Batch" versus "On-line" optimization

- The error function, J_D , is a sum of errors attributed to each instance: $(J_D = J_1 + J_2 + ... + J_m.)$
- In batch gradient descent, the true gradient is computed at each step:

$$\nabla J_D = \nabla J_1 + \nabla J_2 + \dots \nabla J_m.$$

- In *on-line gradient descent*, at each iteration one instance, $i \in \{1, ..., m\}$, is chosen at random and only ∇J_i is used in the update.
- Linear case (least-mean-square or LMS or Widrow-Hoff rule): pick instance *i* and update:

$$\mathbf{w}^{i+1} = \mathbf{w}^{i} + \alpha_i (y_i - \mathbf{w}^T \phi(\mathbf{x}_i) \phi(\mathbf{x}_i),$$

Why prefer one or the other?

"Batch" versus "On-line" optimization

- Batch is simple, repeatable.
- On-line:
 - Requires less computation per step.
 - Randomization may help escape poor local minima.
 - Allows working with a stream of data, rather than a static set (hence "on-line").

Termination

There are many heuristics for deciding when to stop gradient descent.

- 1. Run until $\|\nabla J\|$ is smaller than some threshold.
- 2. Run it for as long as you can stand.
- 3. Run it for a short time from 100 different starting points, see which one is doing best, goto 2.
- 4. ...

Gradient descent in linear models and beyond

- In linear models, gradient descent can be used with larger data sets than the exact solution method
- Very useful if the data is non-stationary (i.e., the data distribution changes over time)
- In this case, use constant learning rates (not obeying Robbins-Munro conditions)
- Crucial method for non-linear function approximation (where closedform solutions are impossible)

Annoyances:

- Speed of convergence depends on the learning rate schedule
- In non-linear case, randomizing the initial parameter vector is crucial

Another algorithm for optimization

- Recall Newton's method for finding the zero of a function $g: \mathbb{R} \to \mathbb{R}$
- At point w^i , approximate the function by a straight line (its tangent)
- Solve the linear equation for where the tangent equals 0, and move the parameter to this point:

$$w^{i+1} = w^i - \frac{g(w^i)}{g'(w^i)}$$

Application to machine learning

- ullet Suppose for simplicity that the error function J has only one parameter
- We want to optimize J, so we can apply Newton's method to find the zeros of $J' = \frac{d}{dw}J$
- We obtain the iteration:

$$w^{i+1} = w^i - \frac{J'(w^i)}{J''(w^i)}$$

- Note that there is no step size parameter!
- This is a second-order method, because it requires computing the second derivative
- But, if our error function is quadratic, this will find the global optimum in one step!

Second-order methods: Multivariate setting

• If we have an error function *J* that depends on many variables, we can compute the *Hessian matrix*, which contains the second-order derivatives of *J*:

$$H_{ij} = \frac{\partial^2 J}{\partial w_i \partial w_j}$$

- The inverse of the Hessian gives the "optimal" learning rates
- The weights are updated as:

$$\mathbf{w} \leftarrow \mathbf{w} - H^{-1} \nabla_{\mathbf{w}} J$$

This is also called Newton-Raphson method

Which method is better?

- Newton's method usually requires significantly fewer iterations than gradient descent
- Computing the Hessian requires a batch of data, so there is no natural on-line algorithm
- Inverting the Hessian explicitly is expensive, but there is very cute trick for computing the product we need in linear time (Schraudolph, 1996)

Coming back to mean-squared error function...

- Good intuitive feel (small errors are ignored, large errors are penalized)
- Nice math (closed-form solution, unique global optimum)
- Geometric interpretation (in our notation, t is y and y is $h_{\mathbf{w}}(\mathbf{x})$)

Any other interpretation?

A probabilistic assumption

- Assume y_i is a noisy target value, generated from a hypothesis $h_{\mathbf{w}}(\mathbf{x})$
- More specifically, assume that there exists w such that:

$$y_i = h_{\mathbf{w}}(\mathbf{x_i}) + e_i$$

where e_i is random variable (noise) drawn independently for each $\mathbf{x_i}$ according to some Gaussian (normal) distribution with mean zero and variance σ .

How should we choose the parameter vector w?

Bayes theorem in learning

Let h be a hypothesis and D be the set of training data. Using Bayes theorem, we have:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)},$$

where:

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D (normalization, independent of h)
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h (likelihood of the data)

Choosing hypotheses

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

What is the most probable hypothesis given the training data?

Maximum a posteriori (MAP) hypothesis h_{MAP} :

$$h_{MAP} = \arg\max_{h \in H} P(h|D)$$

$$= \arg\max_{h \in H} \frac{P(D|h)P(h)}{P(D)} \text{(using Bayes theorem)}$$

$$= \arg\max_{h \in H} P(D|h)P(h)$$

This is the Bayesian answer (more detail next time)

Maximum likelihood estimation

$$h_{MAP} = \arg\max_{h \in H} P(D|h)P(h)$$

• If we assume $P(h_i) = P(h_j)$ (all hypotheses are equally likely a priori) then we can further simplify, and choose the *maximum likelihood* (*ML*) *hypothesis*:

$$h_{ML} = \arg\max_{h \in H} P(D|h) = \arg\max_{h \in H} L(h)$$

- Standard assumption: the training examples are independently identically distributed (i.i.d.)
- This allows us to simplify P(D|h):

$$P(D|h) = \prod_{i=1}^{m} P(\langle \mathbf{x_i}, y_i \rangle | h) = \prod_{i=1}^{m} P(y_i | \mathbf{x_i}; h)$$

The \log trick

We want to maximize:

$$L(h) = \prod_{i=1}^{m} P(y_i|\mathbf{x_i};h)$$

This is a product, and products are hard to maximize!

• Instead, we will maximize $\log L(h)!$ (the log-likelihood function)

$$\log L(h) = \sum_{i=1}^{m} \log P(y_i|\mathbf{x_i}; h)$$

Maximum likelihood for regression

Adopt the assumption that:

$$y_i = h_{\mathbf{w}}(\mathbf{x_i}) + e_i,$$

where e_i are normally distributed with mean 0 and variance σ

- The best hypothesis maximizes the likelihood of $y_i h_{\mathbf{w}}(\mathbf{x}_i) = e_i$
- Hence,

$$L(\mathbf{w}) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{y_i - h_{\mathbf{w}}(\mathbf{x_i})}{\sigma}\right)^2}$$

because the noise variables e_i are from a Gaussian distribution

Applying the \log trick

$$\log L(\mathbf{w}) = \sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(y_i - h_{\mathbf{w}}(\mathbf{x_i}))^2}{\sigma^2}} \right)$$
$$= \sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{m} \frac{1}{2} \frac{(y_i - h_{\mathbf{w}}(\mathbf{x_i}))^2}{\sigma^2}$$

Maximizing the right hand side is the same as minimizing:

$$\sum_{i=1}^{m} \frac{1}{2} \frac{(y_i - h_w(\mathbf{x_i}))^2}{\sigma^2}$$

This is our old friend, the sum-squared-error function!

Maximum likelihood hypothesis for least-squares estimators

Under the assumption that the training examples are i.i.d. and that
we have Gaussian target noise, the maximum likelihood parameters
w are those minimizing the sum squared error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^m (y_i - h_{\mathbf{w}}(\mathbf{x_i}))^2$$

- This makes explicit the hypothesis behind minimizing the sumsquared error
- If the noise is not normally distributed, maximizing the likelihood will not be the same as minimizing the sum-squared error (see homework)
- In practice, different loss functions may be needed

Regularization

- Remember the intuition: complicated hypotheses lead to overfitting
- Idea: change the error function to penalize hypothesis complexity:

$$J(\mathbf{w}) = J_D(\mathbf{w}) + \lambda J_{pen}(\mathbf{w})$$

This is called *regularization* in machine learning and *shrinkage* in statistics

- λ is called *regularization coefficient* and controls how much we value fitting the data well, vs. a simple hypothesis
- One can view this as making complex hypotheses a priori less likely (though there are some subtleties)

Regularization for linear models

 A squared penalty on the weights would make the math work nicely in our case:

$$\frac{1}{2}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$$

- This regularization term is also known as weight decay in neural networks
- Optimal solution:

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi} \mathbf{y}$$