Lecture 20: Reinforcement Learning - Part |l

e Methods for computing value functions
— Dynamic programming
— Monte Carlo

— Temporal-difference learning

1

Recall from last time

e Reinforcement learning is learning from interaction with an
environment

e No labeled examples; agent tries to optimize a long-term
measure of performance

e Markov decision processes: states S, actions A, rewards rg,
next-state transition probabilities p?,, discount factor +.

e The goal is to learn a policy 7 : S x A — [0, 1] which
maximizes the expected return (total reward)

e Value functions measure the expected total return

e In an MDP, there exists a unique optimal value function, which
has at least one correspondig optimal policy

e How to compute the optimal value function/policy?

2




lllustration: A Deterministic Gridworld

A%O A A 1

0 o 72 81

r(s,a) (immediate reward) values Q" (s, a) values (y = 0.9)

.5 T I.

0 o 100

H—H
8l o 0 <

V*(s) values One optimal policy

Bellman Optimality Equation for V' *

The value of a state under the optimal policy must be equal to the

expected return for the best action in the state:
V() = maxQ"(s,a)
a
= max E{ri1 + YV (st41)|st = s,a+ = a}
a

= max (r? + Zp?s/V*(s')>

s/

V* is the unique solution of this system of non-linear equations




Value lteration

Main idea: Turn the Bellman optimality equation into an update rule

(same as done in policy evaluation):

1. Start with an arbitrary initial approximation Vj
2. Vig1(s) <~ maxa 75 + 7Y, pog Vi(s), Vs

lllustration: Rooms Example

Four actions, fail 30% of the time

No rewards until the goal is reached, v = 0.9.

Iteration #1 Iteration #2 Iteration #3




Policy Improvement

Suppose we have computed V™ for some deterministic policy 7

When is it better to do an action a # 7(s)?

Q" (s,a) > V7(s)

If we make the change at all states, we get a policy 7’ which is

greedy with respect to Q™ :

n'(s) = argmax Q" (s,a) = arg maxrg + vy Zp?s/VW(s')

s/

Then V™ (s) > V™ (s), Vs

Policy Improvement (continued)

What if at some point VT =V

Then we have:

V7™ (s) = maxrg + Zpgs,V” (s")

s/

But this is the Bellman optimality equation!

So if the value does not change at some point, both 7 and 7’ are

optimal.




Policy Iteration

1. Start with an initial policy g
2. Repeat:
(a) Compute V™ using policy evaluation
(b) Compute a new policy 7;41 that is greedy with respect to
Vﬂ'z’
until V™ = Y/ Titt

Generalized Policy Iteration

Any combination of policy evaluation and policy improvement steps,

even if they are not complete
evaluation

SN
V

T greedy(V)

Tt

improvement

10




How do we tie learning with dynamic programming?

e Observe transitions in the environment, learn an approximate
model 75, p%./
Note that this is just a supervised learning problem!

e Pretend the approximate model is correct and use it for any
dynamic programming method

e This approach is called model-based RL

e Many believers, especially in the robotics community

11

Asynchronous dynamic programming

e All the methods described so far require sweeps over the entire
state space

e A more efficient idea: repeatedly pick states at random, and
apply a backup, until some convergence criterion is met

e How should states be selected?
Based on the agent’s experience! l.e. along trajectories.

e Still needs lots of computation, but does not get locked into very

long sweeps

12




Efficiency of DP

Good news: finding an optimal policy is polynomial in the
number of states

Bad news: finding an optimal policy is polynomial in the number
of states!

Number of states is often astronomical; typically number of
states is exponential in the number of state variables

In practice, classical DP can be applied to problems with a few
millions states

Asynchronous DP can be applied even to larger problems, and
is appropriate for parallel computation

It is surprisingly easy to find problems for which DP methods

are not feasible

13

Monte Carlo Methods

Suppose we have an episodic task (trials terminate at some

point)

The agent behave according to some policy 7 for a while,

generating several trajectories. How can we compute V™ ?

Compute V™ (s) by averaging the observed returns after s on

the trajectories in which s was visited.

Two main approaches:

— Every-visit: average returns for every time a state is visited in
a trial

— First-visit: average returns only for the first time a state is

visited in a trial

14




Implementation of Monte Carlo Policy Evaluation

n+1
Vn = n
+1 "+ 1 +1)
= R; —Rn
n + 1 n Z + +
- Vi + LR
— n+ n + 1 n+1

If we do not want to keep counts of how many times states have

been visited, we can use a learning rate version:

V(St) — V(St) -+ Oé(Rt — V(St))

15

Monte Carlo Estimation of Q values

e We use the same idea: Q7 (s, a) is the average of the returns
obtained by starting in state s, doing action a and then following
T

e Like the state-value version, it converges asymptotically if every
state-action pair is visited

e But 7 might not choose every action in every state!

e Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

16




Dynamic Programming vs. Monte Carlo

DP MC
Need model yes no (+)
Bootstrapping yes (+) no
Learn directly from interaction no yes (+)
Focus on visited states no yes (+)

Can we combine the advantages of both methods?

17




