
Lecture 20: Reinforcement Learning - Part II

� Methods for computing value functions

– Dynamic programming

– Monte Carlo

– Temporal-difference learning

1

Recall from last time

� Reinforcement learning is learning from interaction with an

environment
� No labeled examples; agent tries to optimize a long-term

measure of performance
� Markov decision processes: states

�
, actions � , rewards ���� ,

next-state transition probabilities ����	��
 , discount factor � .
� The goal is to learn a policy � � � � � ��������� which

maximizes the expected return (total reward)
� Value functions measure the expected total return
� In an MDP, there exists a unique optimal value function, which

has at least one correspondig optimal policy
� How to compute the optimal value function/policy?

2

Illustration: A Deterministic Gridworld

G
100

100

0

0

0

0

0

0

0

0

0
0

0

G
10090

100

81

90

81
81

90
81

72

72
81

0

� ��� ����� (immediate reward) values �	� ��� �
��� values (��� ����)

G100

10090

90

81

0
G

� � ��� � values One optimal policy

3

Bellman Optimality Equation for � �
The value of a state under the optimal policy must be equal to the

expected return for the best action in the state:

� � ��� � � �����
�

� � ��� �����
� �����

�
� � �������! � � � ��� �"���#�%$ � �&� � �
�'�(� �*)

� �����
�

� �� �
��

� � �	�
 � � �+�%, �
� � is the unique solution of this system of non-linear equations

4

Value Iteration

Main idea: Turn the Bellman optimality equation into an update rule

(same as done in policy evaluation):

1. Start with an arbitrary initial approximation
� �

2.
��� � � �+� ��� ����� � � �� � � ��
 � � �	��
 ��� ��� � ��� �

5

Illustration: Rooms Example

Four actions, fail 30% of the time

No rewards until the goal is reached, � � ���� .

Iteration #1 Iteration #2 Iteration #3

6

Policy Improvement

Suppose we have computed
� �

for some deterministic policy
When is it better to do an action � �� ��� � ?

� � �+� � ����� � � �+� �
If we make the change at all states, we get a policy , which is

greedy with respect to � �
:

 , ��� �(� ����� �����
�

� � �+� �
���(� ���	� ��� �
�

� �� �
��

� � �	�
 � � �+� , �

Then
� �
 ��� ��
 � � ��� � � � �

7

Policy Improvement (continued)

What if at some point
� �
 � � �

?

Then we have:

� � �+� � � �����
�

� �� �
��

� � �	�
 � � ��� , �

But this is the Bellman optimality equation!

So if the value does not change at some point, both and , are

optimal.

8

Policy Iteration

1. Start with an initial policy �
2. Repeat:

(a) Compute
� � �

using policy evaluation

(b) Compute a new policy �� � � that is greedy with respect to� � �

until
� � � � � � �����

9

Generalized Policy Iteration

Any combination of policy evaluation and policy improvement steps,

even if they are not complete

π V

evaluation

improvement

V →V
π

π→greedy(V)

Vπ

10

How do we tie learning with dynamic programming?

� Observe transitions in the environment, learn an approximate

model
�� �� � �� � �	��

Note that this is just a supervised learning problem!
� Pretend the approximate model is correct and use it for any

dynamic programming method
� This approach is called model-based RL
� Many believers, especially in the robotics community

11

Asynchronous dynamic programming

� All the methods described so far require sweeps over the entire

state space
� A more efficient idea: repeatedly pick states at random, and

apply a backup, until some convergence criterion is met
� How should states be selected?

Based on the agent’s experience! I.e. along trajectories.
� Still needs lots of computation, but does not get locked into very

long sweeps

12

Efficiency of DP

� Good news: finding an optimal policy is polynomial in the

number of states
� Bad news: finding an optimal policy is polynomial in the number

of states!

Number of states is often astronomical; typically number of

states is exponential in the number of state variables
� In practice, classical DP can be applied to problems with a few

millions states
� Asynchronous DP can be applied even to larger problems, and

is appropriate for parallel computation
� It is surprisingly easy to find problems for which DP methods

are not feasible

13

Monte Carlo Methods

� Suppose we have an episodic task (trials terminate at some

point)
� The agent behave according to some policy for a while,

generating several trajectories. How can we compute
� �

?
� Compute

� � ��� � by averaging the observed returns after
�

on

the trajectories in which
�

was visited.
� Two main approaches:

– Every-visit: average returns for every time a state is visited in

a trial

– First-visit: average returns only for the first time a state is

visited in a trial

14

Implementation of Monte Carlo Policy Evaluation

�
� � � � �

� �
� ���
�����

�
� � �

� �
� �

�����
�
� �

� ��� �

�
�

� �
�
�

�

�����
�
� �

� �
�
� ���

�
�

� �
�
� �

� �
�
� ���

If we do not want to keep counts of how many times states have

been visited, we can use a learning rate version:

� ��� � � � � ��� � � �
� � ���

� ��� � �
�
15

Monte Carlo Estimation of Q values

� We use the same idea: � � ��� �
��� is the average of the returns

obtained by starting in state
�
, doing action � and then following

� Like the state-value version, it converges asymptotically if every

state-action pair is visited
� But might not choose every action in every state!
� Exploring starts: Every state-action pair has a non-zero

probability of being the starting pair

16

Dynamic Programming vs. Monte Carlo

DP MC

Need model yes no (+)

Bootstrapping yes (+) no

Learn directly from interaction no yes (+)

Focus on visited states no yes (+)

Can we combine the advantages of both methods?

17

