acture 21: Function Approximation in Reinforcement Learning

e General principle
e Gradient descent methods
e Using linear function approximation

e Control methods with linear function approximation



Why function approximation?

® In general, state spaces are continuous or too large to represent
as a table
e If every state has a separate entry in the table, then every state
has to be visited at least a few times before having a good
approximation; in the limit every state should be visited infinitely
often, which is not feasible
Main idea: Use a function approximator to generalize from the seen
states to unseen ones

This is what supervised learning algorithms do too!



Adapt supervised learning algorithms

e A training example has an input and a target output
e The error is measured based on the difference between the

actual output and the desired (target) output



Value-based methods

We will use a function approximator to represent the value function
e The input is a description of the state (or state-action pair)
e The output is the predicted value of the state (or state-action
pair)
e The target output comes from the RL update rule
E.g. for TD(0), the target would be rt+1 + YW (S+1)



What kind of function approximator can we use?

In principle anything we want

e A table where several states are mapped to the same location -
state aggregation

e Gradient-based methods:
— Linear approximators
— Atrtificial neural networks
— Radial Basis Functions
— SVMs?

e Memory-based methods:
— Nearest-neighbor
— Locally weighted regression

® Decision trees



Special requirements for the function approximator:
e Fast, incremental learning (so we can learn during the
Interaction)

e Ability to handle non-stationary target functions



Gradient Descent Methods

Consider the policy evaluation problem: learning V' for a given

policy Tt

The approximate value function V (§) = f(0,@ ), where @ are the
attributes (features) describing &, and 0 is a parameter vector

E.g. O could be the connection weights in a neural network

We will update B based on the errors computed by the

reinforcement learning algorithm



Performance measure

e We want to find a parameter vector O that minimizes the mean

squared error:

MSE(8) = 5 5 P(9) (V79 ~V(5)°

What should P be?
e In our case P is the on-policy distribution: distribution of

states created when the agent acts according to Tt



Gradient descent update

Works like in the supervised learning case:

6 «— 0—allgMSE(0)
— mloﬁmw M_u@ (VT(9) —V(9))°
— 8403 POV9-V(9) TV(9

To do this incrementally, we use the sample gradient:
0+ 0+a(VT(s)—V(s)) OgV(s)

The sample gradient is an unbiased estimate of the true gradient.
The rule would converge to a local minimum of the error function, if
X is decreased appropriately over time

But where do we get V''?



Using TD targets

Instead of V™', we will use the targets that come from the TD(A)

algorithm:

0 < Ba (vi(s) —V(s)) UgV(9)

If we use Monte Carlo, then Vi = R is an unbiased estimate of the
true value function, and the algorithm still converges to a local

minimum, provided O is decreased appropriately

If Vi = _&, with A < 1, V; is not an unbiased estimate, and we
cannot say anything about the convergence in general

But the algorithm is well defined, and used in practice



On-line gradient descent TD(A)

In addition to the weight vector B, we will have an eligibility trace
vector €, with one eligibility for every weight
1. Initialize the weight vector 8 arbitrarily, and €= 0.
2. Pick a start state S
3. Repeat for every time step 1{:
(a) Choose action a based on policy Ttand the current state S
(b) Take action &, observe immediate reward I and new state S’

(c) Compute the TD error: & <— I +W (S') —V(s)
(d) Compute the eligibility of every weight vector to be updated:

e+ yAe+ UgV(s)

(e) Update the weight vector: 0 < 0+ ade
f) S« S



Linear methods

Each state represented by feature vector @(S) = (@1(S)...@h(s))’
The value function is a linear combination of the features:

V(S =0-99 = 3 B

So the gradient is very simple: [lgV (S) = @(S)
The error surface is quadratic with a single global minimum

Tsitsiklis and Van Roy: Linear gradient-descent TD(A) converges
w.p.1 to a parameter vector B in the “vicinity” of the best parameter

vector 0*: \
MSE (B.,) < mzmmaj



Coarse coding

Main idea: we want linear function approximators, but with lots of

features, so they can represent complex functions
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Speed of learning with coarse coding
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The width of the cells affects the speed, not the precision of the learner



Discretizating the state space

Suppose we have a continuous state space with two continuous
variable (e.g. like in the Mountain-Car task)
The simplest tile coding approximator would be just a grid
discretizing the state space:
e The features are all 0O except for the cell holding the current
state, which is 1 (like a 1-of-n encoding)
e All states in the same cell have the same value (given by the

weight of the cell)




Pros and cons of discretizations

Pros:
e Easy to compute the value function of a state
e Easy to update as well (more like the table lookup case).
Cons:
e To get good precision, we need a very fine grid - going back to
the table lookup case?
e States in the vicinity of a separation line could have radically

different values (approximation is discontinuous)



Tile coding (continued)

Main idea: Overlap several tilings!
tiling #1 —

tiling #2 —

2D state Shape of tiles [ Generalization

space T~

#Tilings O Resolution of final approximation




Characteristics of tile coding

e Each tile is a binary feature

e The number of features that are activated at any time is
constant, equal to the number of tilings

® |tis easy to compute the indices of the features activated, and
easy to compute the weighted sum

e The overall discretization is very fine, and at the same time the
discontinuities are smoothed out

e The shape of the tiles reflects prior domain knowledge

Cf. CMAC (Albus, 1971)



Control with function approximation

Input: a description of the state-action pair (S, &)
Output: an action-value function OAm:mt

The general gradient descent rule:

0+« 0+ a(vi—Q(s,a)) DeQ(s, &)

Example: Sarsa(A)
0+ 0+ ade

where

O =rt+1+YQ(S+1,a+1) — Q(S,a) and & = yAa + e Q(s, &)
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Theory of control algorithms

® Sarsa proven to converge to a region of policy space (Gordon,
2001)

e Q-learning shown to diverge in extremely simple examples (see
next slide)

e A few off-policy evaluation algorithms that might shed light into
Q-learning behavior (Precup et al, 200, 2001)

e One of the convergence problems is bootstrapping
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Policy-based methods

Main idea: Instead of approximating the value function,
approximate the policy directly
e A function approximator which outputs the probability of taking
an action
e Parameters are updated in the direction of the gradient of the
return
e \We can compute this if the policy has special forms (e.g.
softmax)
e Much better theoretical guarantees!
The policy changes smoothly

e But initial empirical evidence suggests slow in practice



