Lecture 7: Artificial Neural Networks (Part 1)

e Gradient descent
e Sigmoid units

e Backpropagation

Linear units

ldea: consider just a linear unit:
0= Wy +W1T1 + *** T+ WnTy

The goal is to learn w;s that minimize the squared error

E@) =+ 3 (ta - 04)?

2
deD

where D is set of training examples.
The function F/(w) defines an error surface in weight space.

Hill-climbing search for a good set of weights!

Gradient descent

The direction of the steepest descent is given by the gradient

- > — | OE OE OF
function: 4@?& Hméiméi...mé:

Training rule:

OF

AW = —aVE[W]ie Aw; = —a——
w aVE[w]ie Aw Q@S&

Gradient descent for a linear unit

OF

Ow;

OF
%8&

0 1
5u 2 2t = 0’

Gradient descent algorithm

1. Initialize each w; to some small random value
2. Until the termination condition is met, Do:
(a) Initialize each Aw; to zero.
(b) For each (Z,t) intraining_examples, Do:
i. Input the instance & to the unit and compute the output o

li. For each linear unit weight w;, Do
Aw; < Aw; + a(t — o)z;
(c) For each linear unit weight w;, Do:

w; — W; + Dgs

Incremental (stochastic) gradient descent

Batch mode gradient descent: repeat until satisfied:
1. Compute the gradient V Ep W]
2. @ + @ — aVEp|[d]

Incremental mode gradient descent: repeat until satisfied:
For each training example d in D

1. Compute the gradient V E4|W]

2. W < @ — aVEg[u]

Epli] == S (ta—o0a)? Edif] =

> (ta — 04)
deD

1
2
Incremental gradient descent can approximate batch gradient

descent arbitrarily closely if & made small enough

Summary

Perceptron training rule guaranteed to succeed if:
e Training examples are linearly separable

e Sufficiently small learning rate «

Linear unit training rule uses gradient descent:
e Guaranteed to converge to hypothesis with minimum squared
error
e Given sufficiently small learning rate «
e Even when training data contains noise

e Even when training data not separable by H

The next step: increasing the expressivity of the representation!

Building networks of individual units

e Perceptrons have very simple decision surfaces
If we connect them into networks, the error surface for the
network is not differentiable (because of the hard threshold)
So we cannot apply gradient descent to find a good set of
weights...

e Networks of linear units are not satisfactory either (why?)

e \We would like a “soft” threshold!

Nicer math, and closer to biological neurons...

Sigmoid unit

1

o (x) is the sigmoid function: ;==

Nice property: QMWV =o(xz)(1 —o(x))

We can derive gradient decent rules to train
e One sigmoid unit

e Multi-layer networks of sigmoid units — Backpropagation

Error gradient for a sigmoid unit

OF 5
I — tg — — t, —
ow; QSS MA d om M QSSA 4~ 0d)

deD
1
= 3 MU 2(tqg — 04) mss. (tqg — 04)
d
0oy
= MUAE — 04) A mssv

dog Onety
= — M tqg — 0q) , where

Onety Ow;
n
nety = M W; T
1=0

Error gradient for a sigmoid unit (2)

But we know:

So:

OF
%8&

dog Oo(netq)

— — 1 —
onetg4 onetg4 oa 0d)
%3@@& o %T@. mlmgv o
Q\E& B Qgs — Tid
= - MUAS —04)04(1 — 04)x; 4

Learning curves for AND function

Sigmoid Unit for And Function
16
” ” | ” ” ‘'mse-curve-0.1' ——
14 b 'MSECUNVE=0.01

/
L e e -
,

Mean Square Error

1 \

[\

1 Y H : : L : i L : L

[1 -1

. i N i H i i i i i i

1 \

i N : : : : : : : :

3 N : : : : : : : :

[+

"

[
0.4 ¢

0.2 [o

0 S T ” ” ” ; ; ; L L
0O 100 200 300 400 500 600 700 800 900 1000
Number of Epochs

A single sigmoid unit cannot learn XOR!

N T T T T
m m ~ ’xor-no-hidden’ ——
18 e o o e .
H_um “““““““““““““““““““““““““““““““““““““““ -
14 — — — —]
w 1.2 b e — e — e — e — .
m ” ” ” ”
o H r “““
(]
5 ” ” ” ”
g osp e — e e :
06 s e e s -
0.4 e e e e 1
o2f — — E— — :
O 1 1 1 1
0 2000 4000 6000 8000 10000

Number of epochs

A network of sigmoid units can represent XOR.

1—
w30
(-3.06)
8 wmv
w50
— (-4.86)
Input 1 (10.28)
w51
w32 (6.91)
Ouput 1
w4l (4.5)
_39: N wbh2
(-10.34)
3 w@ 4
w40
(-6.8)
Inputl Input2 03 o4 Ouput 1
0 0 0.04 0.001 0.011
0 1 098 0.08 0.99
1 0

1 1

Squared Error

1.4

1.2

JAnd it can learn XOR too!

Learning Curve for XOR Function with 2-2-1 Architecture

'mse-curve’ ——

0 500 1000 1500 2000 2500 3000

Number of Epochs

Backpropagation algorithm

1. Initialize all weights to small random numbers.
2. Repeat until satisfied:
(a) Pick a training example
(b) Input the training example to the network and compute the
network outputs

(c) For each output unit £

%\a < QwAH — vaQw — Q\Av

(d) For each hidden unit h

%3 — Qmﬁ — va M \Sm\ﬂ%w

k€eoutputs

(e) Update each network weight w; ;

x;; is the input from unit ¢ into unit 7 (so for the output
neurons, the x’s are the signals received from the hidden
layer neurons)

This algorithm is the incremental version.

Alternatively, we can do a batch version: cycle through the training
data, accumulate the weight changes for all instances, then change

the weights.

Terminology: epoch = one pass through all the training instances

Why this algorithm?

For the output units, this is just like the update for a single neuron.
The only difference is that now the error function for the whole

network is defined over all the outputs:

E(w) = W M M (tka — Oka)®

deD k€outputs

where {14 and op4 are the target and output values associated with
the kth output unit and dth training example.

For the hidden units, we have to compute how much they influence
the overall error.

But they only influence the error of the units immediately
downstream from them!

The rest is a matter of applying the chain rule.

Convergence of backpropagation

Gradient descent to some local minimum

e Perhaps not global minimum...

e Can be much worse than global minimum

e There can be MANY local minima (Auer et al, 1997)
Partial solution: train multiple nets with different initial weights
Restarting is a standard trick in hill-climbing algorithms
More tricks:

e |nitialize weights near zero

e Therefore, initial networks near-linear

® [ncreasingly non-linear functions possible as training progresses

e Make sure the units start with different weights, to break

symmetry!

Expressiveness of feed-forward neural networks

e Every Boolean function can be represented by a network with
single hidden layer, but might require exponential (in number of
iInputs) hidden units

e Every bounded continuous function can be approximated with
arbitrarily small error, by a network with one, sufficiently large
hidden layer [Cybenko 1989; Hornik et al. 1989]

e Any function can be approximated to arbitrary accuracy by a
network with two hidden layers [Cybenko 1988].

Inductive bias is roughly smooth interpolation between points

More on backpropagation

Gradient descent over entire network weight vector

Easily generalized to arbitrary directed graphs (not only two
layers)

In theory it will find a local, not necessarily global error
minimum, but in practice, it often works well (can run multiple
times)

Minimizes error over training examples

Will it generalize well to subsequent examples?

See the overfitting issue...

Training can take thousands of iterations — VERY SLOW!

But using network after training is very fast.

Example: Learning an encoder function

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Learning hidden layer representations

Inputs Outputs

Learned hidden layer representation:

Input Hidden Layer Output
10000000 — .89 .04 .08 — 10000000
01000000 — 15 .99 .99 — 01000000
00100000 — .01 .97 27 — 00100000
00010000 — .99 .97 71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .01 A1 .88 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 01 — 00000001

Evolution during training

Sum of squared errors for each output unit
o.w T T T T

0.8
0.7
06

05
04
03 |
02
01

0

0 500 1000 1500 2000 2500

Hidden unit encoding for input 01000000

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Batch vs. incremental learning

Error

Comparing Batch and Incremental Backpropagation
m T T T T T
, , , . '8-3-8-batch’ —

| T S

0 1000 2000 3000 4000 5000 6000
Number of epochs

Adding momentum

On the n-th training sample, instead of the update:
D\E& — 3%&&@.

we do:
Aw;j(n) < ndjzi; + alAw;;(n —1)

The second term is called momentum
Advantages:

e Easy to pass small local minima

e Keeps the weights in areas where the error is flat

® Increases the speed where the gradient stays unchanged
Disadvantages:

e With too much momentum, it can get out of a global maximum!

e One more parameter to tune, and more chances of divergence

Error

Overfitting in feed-forward networks

Error versus weight updates (example 1) Error versus weight updates (example 2)
O.o”_n , T T T o.om }0 T T T
0009 L. Training set error .« 007 | Training set error ¢]
Validation set error + e, Validation set error *
0.008 7 0.06 r +++ﬁ 7
0007 | - 005 .f¢+++++++§%%¢%f¢¢+¢ 1
+ . Ty
0.006 [gg% m 004 . +i+++++++++¢++++++¢i++¢+f 4
% I i+¢+z+¢z+i+¢?¢zii+:+
0.005 [. 003 | .. p
0.004 T 002 A .
0003 - 001 | 1
{t
0.002 1 1 1 0 1 ! 000000000000000¢
0 5000 10000 15000 20000 0 1000 2000 3000 4000 5000 6000
Number of weight updates Number of weight updates

Use a validation set to decide when to stop training!

Practical issues

® The choice of initial weights has great impact on convergence!
If the input size is [V, and [V is large, a good heuristic is to
choose initial weights between —1 /N and 1/N.

e Backpropagation is very sensitive to the size of the learning
rate! If it is too large, the weights diverge.

® Sometimes it is appropriate to use different learning rates for
different layers.

e The choice of input encoding and network topology can
drastically affect learning!
— It is bad to have inputs of very different magnitude
— A thermometer encoding can be better than a 1-of-n

— Too many hidden units hurt (why?)! Good heuristic: log (V).

Alternative error functions

Penalize large ém_@:ﬁm”

TR

&mU k€outputs

Used to avoid overfitting.

Train on target slopes as well as values:

TR DS

&mU k€outputs

(tka — S&vw + MU

JEwnputs

(tka — oivm + MU \Ew&

,J

Otkd

J
ox,

@Qw&

J
ox,

Tie together weights: Train each weight individually, but then replace

the values with the mean of the weights obtained by backprop.

2

Constructive methods for neural networks

Meiosis networks (Hanson):
e Start with just one hidden unit, train using backprop
e Compute the variance of each weight during training
e |f a unit has one or more weights of high variance, it is split into
two units, and the weights are perturbed
Cascade correlation (Fahlman & Lebiere):
e Start with outputs only and train using backprop
e Add a neuron connected to all inputs, and train it to correlate to
the residual error
e Connect the neuron to the output node, then freeze its weights
and train the output again

e Continue until the residual error is below a threshold

When to consider using neural networks

Input is high-dimensional discrete or real-valued (e.g. raw
sensor input)

Output is discrete or real valued, or a vector of values
Possibly noisy data

Training time is unimportant

Form of target function is unknown

Human readability of result is unimportant

The computation of the output based on the input has to be fast

Examples:

Speech phoneme recognition [Waibel] and synthesis [Nettalk]
Image classification [Kanade, Baluja, Rowley]

Financial prediction

