Lecture 5: Decision Trees (Part Il)

Dealing with noise in the data

— Overfitting

— Pruning

Dealing with missing attribute values
Dealing with attributes with multiple values
Integrating costs into node choice

Decision trees for regression



Dealing with noise in the training data

Noise is inevitable!
e Values of attributes can be misrecorded
e Values of attributes may be missing
® The class label can be misrecorded

What happens when adding a noisy example?



Example: The effect of noise

Outlook
unny Overcast Rain
Humidity Yes Wind
High Normal Srong Weak
No Yes No Yes

Suppose we add to the data a noisy example:
Sunny, Hot, Normal, Strong, PlayTennis=No

The tree grows unnecessarily!




Overfitting

Consider error of hypothesis h over
e Training data: errorirqin(h)
e Entire distribution D of data: errorp(h)
Hypothesis h overfits training data if there is an alternative

hypothesis h’ such that
errorirqin(h) < erroriqin(h’) and errorp(h) > errorp(h’)

This is a general problem for all supervised learning methods



Overfitting in decision trees
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As the tree grows, the accuracy degrades, because the algorithm is

finding irrelevant attributes.

Do not believe anyone’s results unless they report them on

separate training and test sets!



Avoiding overfitting

1. Stop growing the tree when further splitting the data does not
yield a statistically significant improvement

2. Grow a full tree, then prune the tree, by eliminating nodes
The second approach has been more successful in practice

In both cases, the leaves of the tree will now be impure:
e The leaf can be assigned the class label of the majority of the
Instances which reached the leaf
e Alternatively, one can use probability estimates of the class

membership, based on instance counts.



How to select the “best” tree

1. Measure performance over training data only
2. Measure performance over a separate validation data set

3. Minimum description length principle: minimize
size(tree) + size(misclassifications(tree))

The second one (training and validation set) is the most common.



Example: Reduced-err or pruning

1. Split data into a training set and a validation set
2. Grow a large tree (e.g. until each leaf is pure)
3. For each node:
(a) Evaluate the validation set accuracy of pruning the subtree
rooted at the node
(b) Greedily remove the node that most improves validation set
accuracy, with its corresponding subtree
(c) Replace the removed node by a leaf with the majority class
of the corresponding examples.
4. Stop when pruning starts hurting the accuracy on the validation

set.



Accuracy

Example: Effect of reduced-err or pruning
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Example: Rule post-pruning in C4.5

1. Convert the decision tree to rules
2. Prune each rule independently of the others, by removing
preconditions such that the accuracy is improved
3. Sort final rules in order of estimated accuracy
C4.5 builds a pessimistic estimate of the estimate from the accuracy
on the training set.
Advantages:
e Can prune attributes higher up in the tree differently on different
paths
e There is no need to reorganize the tree if pruning an attribute
that is higher up

e Most of the time people want rules anyway, for readability



Attrib utes with multiple values

If an attribute splits the data perfectly, it will always be preferred by
iInformation gain.
E.g. a unique ID for each data point!
But that has very poor generalization performance.
You would think pruning can help, but what can you do with a tree
that just has one node?
Two solutions:
1. Use another criterion that is more fair

2. Ensure that all attributes have the same number of values



A better criterion: Gain ratio

For a set of instances S and an attribute A with v possible values

Gain(S, A)

GainRatio(S, A) =
ainRatio( ) SplitIn formation(S, A)

where

v

SplitIn formation(S, A) = — MU
=1

Sol 1o 150!
ST 7% 8]

So for an attribute that splits the data into many partitions mostly
uniformly, Splitinformation will be high

Problem: It can actually become too high!

Solution: First use Gain, then use GainRatio for attributes with Gain
above average

Other such metrics are also used.



Ensuring the same number of values

If an attribute A has v > 2 possible values, Val;..Val,, replace it

by v Boolean attributes, Ay, k = 1..v, where:

1 ifA=Val
\Ta — ; Vk=1..v

0 otherwise

This is called 1-of-v encoding
Used more generally to encode learning data (e.g. in neural

networks)



Missing values during classification

e “Most likely” value based on all the data that reaches the current
node. “Most likely” means the most frequent attribute value

e Assign all possible values with some probability. Usually we just
count the occurrences of the different attribute values in the
Instances that have reached the same node. We will predict all

the possible class labels with the appropriate probabilities too.



Missing values during tree construction

1. Introduce an “unknown” value
2. Modify gain ratio to take into account the probability of an

attribute being known:
Gain(S, A)P(A)

where P(A) is the fraction of the instances that reached the

node, in which the value was known



Costs of attrib utes

Include cost in the metric, e.g.

Gain?(S, A)
Cost(A)

Mostly a problem in specific domains (e.g. medicine).
Multiple metrics have been studied and proposed, without a

consensus.



Decision trees for regression

mmoqmmm_o: problem: given a set of instances
&H o5yt 1 = 1..n, where &w are attribute-value pair and @
real :cSUms find a function f : X7 X ... X X,,, = R that

approximates the training points well.

Usually, by “approximate well” we mean minimize the mean squared

error.
n

MSE = w > ' —fai,...a,))°
1=1

How can we use decision trees for regression?

Main idea: construct a piece-wise constant approximation!




Basic CART algorithm (Breiman et. al, 1984)

Given a set of labeled training instances 7 ..x,,,y", 1 = 1..n,

where each label ¢* is a real number:

1.
2.

Noo 0 bk

Compute the average of all the labels: y = w MUM.@HH @@.

Compute the mean squared error of the instances:

1<, ;, _
MWMA@ ISM

If the error is below a desired threshold, create a leaf with the
label y (why?)

Otherwise pick the best attribute to split the data

Add a node that tests the attribute

Split the training set according to the value of the attribute

Recurse on each subset of the training data



Choosing the best attrib ute

The same principle as in classification: we want the attribute that

minimizes the error in each partition.

The error in this case is the sum of the mean square errors from

each partition.

If v € V are all the possible values of an attribute, and the
corresponding partitions have [V,, examples, then we want to

minimize:

MM

veV 1=1



Pruning in CART

The program looks for a tree that minimizes a cost function with two
components:
e The mean squared error on the training data

e The size of the tree

This is called cost-complexity pruning.



Summary

Decision trees are logical representations, and can represent
any hypothesis

The construction algorithm works top-down and is greedy with
respect to the information gain metric

This means that the decision trees obtained are not guaranteed
to be “optimal” in any sense

However, the algorithm has good accuracy in practice, is very
fast, and produces classifiers that are easy to interpret.

General mechanisms exist for dealing with problems in real data
sets (real-valued attributes, attributes with multiple values,

missing data, etc.)



Summar y (contin ued)

Like all machine learning algorithms, decision trees are prone to
overfitting (i.e. capturing the regularities of the training set).

In decision trees, overfitting causes too many nodes to be
created

Pruning methods avoid overfitting by regulating the number of
nodes (typically by deleting nodes)

Because all learning algorithms overfit, it is essential to
evaluate the algorithm on a separate test set, that has not
been used during training! Most of the time we do this using
cross-validation.

Decision trees can be used for regression tasks as well.



