Lecture 2: Concept Learning

- Supervised learning
- Concept learning task
- Version spaces
- The need for bias

Supervised (Inductive) Learning

Assume somebody gives us labeled examples of the form

$$\langle v_1 \ v_2 \ \dots \ v_n, o \rangle$$
, where:

- v_i are values for *input variables* or *attributes* or *features*
- o is the output value

examples maps the input variables into the output domain that fits the Try to find a *target function* $f:V_1\times V_2\times \cdots \times V_n\to O$, which

Kinds of Supervised Learning

- If the output domain is Boolean, this problem is called concept learning
- If the output domain is discrete, this problem is called classification
- of function approximation. If the output is continuous, the problem is known as regression

The Big Question

points! There are an infinite number of functions that can fit the training

How do we find a good one?

I.e. one that will give approximately correct values for unseen data.

Choosing a Target Function Representation

- The learner usually considers a class of hypothesis combinations of 3rd-degree polynomials, linear combinations of the input etc. etc E.g. decision trees, artificial neural networks, linear
- Learning methods search through the class of hypothesis to find a good one
- If there are several hypothesis that fit the data about the same, choose the simplest one - Occam's razor

Issues:

- What should the hypothesis class be?
- What search method should we use?
- What is a "good" hypothesis?

Concept Learning

Inferring a Boolean function from labeled training examples

Example: "user profile" for web browsing

Yes	America	XVGA	Wed	Net2	Unix	org
N _o	Europe	VGA	Sat	⊞	PC	com
Yes	America	XVGA	Tue	NetCom	Mac	com
Yes	America	XVGA	Mon	Net3	Mac	edu
Click?	Continent	Screen	Day	Browser	Platform	Domain

What is the general concept?

Assumption of the day: the training examples are perfect (no noise)

Representing Hypotheses

Many possible representations!

attributes Consider hypotheses h formed as a conjunction of constraints on

Each constraint can be

- a specific value (e.g., Domain = com)
- don't care (e.g., Domain = ?)
- no value allowed (e.g., Domain=∅)

For example,

⟨ com	Domain
.>	Platform
.>	Browser
Sun	Day
.>	Screen
America >	Continent

Prototypical Concept Learning Task

Given:

- Instances $X\colon$ Possible days, each described by the attributes:
- Domain ∈ {com, edu, org}
- Platform ∈ {Mac, PC, Unix}
- Browser ∈ {Net2, Net3, NetCom, IE}
- $\mathit{Day} \in \Set{\mathit{Monday}, ...}$ Sunday $\Set{}$
- Screen ∈ $\{VGA, XVGA\}$
- Continent ∈ { America, Europe, Africa, Asia, Australia }

How many possible instances are there?

Target function (or concept) c: Click: $X o \{0,1\}$

How many concepts are possible?

Given (continued)

- Hypotheses H: Conjunctions of literals.
- E.g. (?, Cold, High, ?, ?, ?)

How many syntactically distinct hypotheses are there?

How many are semantically distinct?

Training examples D: Positive and negative examples of the target function

$$\langle x_1, c(x_1) \rangle, \ldots \langle x_m, c(x_m) \rangle$$

Determine:

A hypothesis h in H such that h(x)=c(x) for all x in X .

The Inductive Learning Hypothesis

also approximate the target function well over other well over a sufficiently large set of training examples will unobserved examples. Any hypothesis found to approximate the target function

Why would this be true?

samples Sampling: statistical theory for inferring population parameters from

Concept Learning as Search in Hypothesis Space

more-general-than-or-equal-to relation (\geq_g) The hypotheses can be partially ordered under the

Definition:
$$h_1 \ge_g h_2$$
 iff $\forall x \in X, h_2(x) = 1 \rightarrow h_1(x) = 1$

H.9

- $h_1 = \langle edu, Mac, ?, Mon, ?, ? \rangle$
- $h_2 = \langle edu, Mac, IE, Mon, ?, Europe \rangle$

Why is this a partial ordering?

Partial Ordering on Hypothesis Spaces

x2 = <edu,PC,IE,Mon,VGA,Eur>

x1 = <edu,Mac,IE,Mon,VGA,Eur>

h1 = <edu, Mac, ?, ?, ?, Eur>

h2 = <edu,?,IE,?,?,Eur>

h3 = <edu,?,?,?,?,Eur>

Find-S: Finding a Maximally Specific Hypothesis

- 1. Initialize h to the most specific hypothesis in ${\cal H}$
- 2. For each positive training instance x, do
- For each attribute constraint a_i in h, do general constraint that is satisfied by \boldsymbol{x} If x is not covered by h, replace a_i by the next more
- 3. Output hypothesis h

Hypothesis Space Search by Find-S

x3 = <com,PC,IE,Sat,VGA,Eur>, -

x4 = <org,Unix,Net2,Wed,XVGA,America>, +

x2 = <com, Mac, Net3, Tue, XVGA, America>, +

h1 = <edu, Mac, Net3, Mon, XVGA, America>

h0 = <0,0,0,0,0,0>

h2 = <?, Mac, Net3,?, XVGA, America>

h3 = <?, Mac, Net3,?, XVGA, America>

h4 = <?,?,?,?,XVGA,America>

x1 = <edu, Mac, Net3, Mon, XVGA, America>, +

Complaints about Find-S

Convergence: cannot tell whether it has learned concept

- Consistency: cannot tell when training data inconsistent
- ullet Picks a maximally specific h (why?)
- Depending on H, there might be several consistent specific hypotheses

Version Spaces

example $\langle x, c(x) \rangle$ in D. target concept c if and only if h(x)=c(x) for every training A hypothesis h is **consistent** with a set of training examples D of

consistent with all training examples in D. and training examples D, is the subset of hypotheses from HThe **version space**, $VS_{H,D}$, with respect to hypothesis space H

How can we compute the version space?

- Obvious idea: list-then-eliminate impractical!
- Candidate elimination (Mitchell)

Representing Version Spaces

ordering of the hypotheses space Key idea: keep only the boundary sets, exploiting the partial

The **General boundary**, G, of version space $VS_{H,D}$ is the set of its maximally general members

The **Specific boundary**, S, of version space $VS_{H,D}$ is the set of its maximally specific members

Every member of the version space lies between these boundaries

$$VS_{H,D} = \{ h \in H | (\exists s \in S) (\exists g \in G) (g \ge h \ge s) \}$$

where $x \geq y$ means x is more general or equal to y

Example Version Space

Candidate Elimination Algorithm

 $G \leftarrow \text{maximally general hypotheses in } H$

 $S \leftarrow$ maximally specific hypotheses in H

For each training example d, do

- ullet If d is a positive example
- Remove from G any hypothesis inconsistent with d
- For each hypothesis s in S that is not consistent with d
- st Remove s from S
- st Add to S all minimal generalizations h of s such that h is than h consistent with d, and some member of G is more general
- st Remove from S any hypothesis that is more general than another hypothesis in S

- If d is a negative example
- Remove from S any hypothesis inconsistent with d
- For each hypothesis g in ${\cal G}$ that is not consistent with d
- st Remove g from G
- * Add to G all minimal specializations h of g such that h is than h consistent with d, and some member of S is more specific
- st Remove from G any hypothesis that is less general than another hypothesis in G

Example Trace (1)

S0:

{<0,0,0,0,0,0>}

GO:

{<?,?,?,?,?,?>}

Example Trace (2)

S1: {<edu,Mac,Net3,Mon,XVGA,America>}

G1: {<?,?,?,?,?,?>}

<edu, Mac, Net3, Mon, XVGA, America>, +

Example Trace (3)

S2: {<?,Mac,?,?,XVGA,America>}

G2: {<?,?,?,?,?,?>}

<com,Mac,NetCom,Tue,XVGA,America>, +

Example Trace (4)

S3:

{<?,Mac,?,?,XVGA,America>}

G3: {<?,Mac,?,?,?,?>, <?,?,?,XVGA,?>. <?,?,?,?,America>}

<com,PC,IE,Sat,VGA,Eur>, -

Active Learning with Version Spaces

What should be the best new example?

Using Partially Learned Concepts

Given the version space:

$\overline{}$
六
9
>
S
\supset
0
ould
$\overline{}$
#
\preceq
these t
\mathcal{C}
(D
σ
be
-
<u>റ</u>
\overline{a}
$\overline{\Omega}$
Ś
classifi
₫;
\varkappa
<u> </u>
-

America	XVGA	Wed	Net2	Unix	org
Europe	VGA	Wed	NetCom	PC	com
America	XVGA	Fri	IE	Mac	edu

Example Trace (5)

S4:

{<?,?,?,?,XVGA,America>}

G4:

{ <?,?,?,?,XVGA,?>. <?,?,?,?,America>}

<org,Unix,Net2,Wed,XVGA,America>, +

Example Trace (Final)

S5:

{<?,?,?,?,XVGA,?>}

G5:

{ <?,?,?,?,XVGA,?>}

<com,Unix,Net2,Wed,XVGA,Europe>, +

VS has Exponential Sample Complexity

examples: n Boolean attributes, and consider the following sequence of Let the concept be $A_1=true$. Let the instances be described by

- $A_1 = true \land A_2 = true \land \dots \land A_{n-1} = false \land A_n =$ false
- $A_1 = true \land A_2 = true \land ... \land A_{n-1} = false \land A_n = true$
- $A_1 = true \land A_2 = true \land ... \land A_{n-1} = true \land A_n = false$
- •
- $A_1 = true \land A_2 = true \land ... \land A_{n-1} = true \land A_n = true$

Bias in Concept Learning

training data) used to select one hypothesis over another. Bias is defined as any criteria (other than consistency with the

Note: Inductive bias \neq statistical bias!

Sources of bias

- Hypothesis language representational bias
- E.g. our hypothesis language only allows conjunctions
- Search (generalization) algorithm algorithmic bias E.g. Find-S searches hypotheses from specific to general

An Unbiased Learner

the power set of X) Idea: Choose H that expresses every teachable concept (i.e., H is

over previous H . In our case: consider H'= disjunctions, conjunctions, negations

E.g., (Platform = Unix \lor Platform = Mac) $\land \neg$ (Platform = PC)

 $y_1, \ldots y_j$, what are S, G in this case? Given positive instances $x_1, \ldots x_i$ and negative instances

$$S \leftarrow x_1 \vee \ldots \vee x_i$$

$$\Im \leftarrow \neg y_1 \wedge \ldots \neg y_j$$

Bias-free learning does not allow any generalization beyond the training instances!

Bias Is Necessary!

elimination) that uses an unbiased hypothesis space (e.g. all instances Boolean functions) can never go beyond memorizing the training An unbiased generalization algorithm (e.g. version space candidate

appropriateness of its biases! The power of a learning system comes from the

Where do biases come from?

- Knowledge about the domain
- Knowledge about the source of the training data
- Intended use of the learned concept
- Simplicity and generality (e.g. Occam's razor)

Summary

- Concept learning can be viewed as search through some hypothesis space H
- Version space candidate elimination algorithm takes advantage of the partial ordering of hypotheses (general-to-specific)
- The S and G boundaries characterize learner's uncertainty
- Learner can generate useful queries
- Learner can use partially learned concepts to label new examples
- Inductive leaps are possible only if the learner is biased
- Bias is a constant theme in machine learning!