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Some  Studies  in  Machine  Learning 
Using  the  Game of Checkers.  II-Recent  Progress 

Abstract: A new  signature  table technique is described  together  with  an  improved  book  learning  procedure  which  is  thought to be  much 
superior to the linear  polynomial method described  earlier.  Full  use is made of the so called  “alpha-beta”  pruning and several  forms  of 
forward  pruning to restrict  the  spread of the move tree  and to permit  the  program to look  ahead to a much  greater depth than  it  other- 
wise could do. While  still  unable to outplay checker  masters, the program’s  playing  ability has been  greatly  improved. 

Introduction 
Limited  progress  has been made in the development  of an 
improved  book-learning  technique and in the optimization 
of playing  strategies as applied to the checker  playing  pro- 
gram  described  in an earlier  paper  with  this  same title.’  Be- 
cause  of the sharpening in our understanding and the sub- 
stantial improvements in playing  ability that have  resulted 
from these  recent  studies, a reporting at this  time seems  de- 
sirable. Unfortunately, the most  basic  limitation of the 
known  machine  learning  techniques, as previously out- 
lined,  has not yet  been  overcome nor has the program  been 
able to outplay the best human  checker  players? 

We  will  briefly  review the earlier  work. The reader  who 
does not find  this  review  adequate  might do well to refresh 
his  memory  by referring to the earlier  paper. 

Two  machine  learning  procedures were  described in some 
detail: (1) a rote learning  procedure in which a record was 
kept of the board situation encountered in actual play to- 
gether  with information as to  the results of the machine 
analyses of the situation; this record  could  be  referenced 
at terminating board situations  of  each newly initiated tree 
search and thus, in  effect,  allow the machine to look ahead 
turther than time  would  otherwise  permit and, (2) a gen- 
eralization  learning  procedure in which the program  con- 
tinuously  re-evaluated the coefficients for the linear  poly- 
nomial used to evaluate the board positions at the ter- 
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Coast Champion, has beaten current versions of the program on two separate 

minating board situations of a look-ahead tree  search. In 
both cases, the program  applied a mini-max  procedure to 
back up scores  assigned to the terminating  situations and so 
select the best  move, on the assumption that the opponent 
would  also  apply the same  selection  rules  when it was  his 
turn to play. The rote learning  procedure was characterized 
by a very  slow but continuous learning rate. It was  most  ef- 
fective in the opening and end-game  phases  of the play. The 
generalization  learning  procedure, by  way  of contrast, 
learned at a more rapid rate but soon approached a plateau 
set by limitations as  to the adequacy of the man-generated 
list of parameters used in the evaluation  polynomial. It was 
surprisingly good at mid-game  play but fared  badly  in the 
opening and end-game  phases. Both learning  procedures 
were  used in cross-board play against  human  players and in 
self-play, and in spite of the absence of absolute standards 
were able to improve the play, thus demonstrating the use- 
fulness  of the techniques  discussed. 

Certain expressions  were  introduced  which we will find 
useful.  These are: Ply,  defined as the number of moves 
ahead, where a ply  of  two  consists of one  proposed move  by 
the machine and one anticipated  reply by the opponent; 
6oardparameter value,* defined as the numerical  value  as- 
sociated  with  some  measured  property or parameter of a 
board situation. Parameter  values, when multiplied by 
learned coefficients,  become terms in the learning  poly- 
nomial. The value of the entire polynomial  is a score. 

The most  glaring  defects of the program, as earlier dis- 
cussed,  were (1) the absence  of an effective machine  proce- 
dure for generating new parameters  for the evaluation pro- 
cedure, (2) the incorrectness of the assumption of linearity 

squares to which the player can potentially move. disregarding forced jumps 
*Example of  a board parameter is MOB (total mobility):  the number of 
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which underlies the use of a linear polynomial, (3) the gen- 
eral slowness of the learning procedure, (4) the inadequacies 
of the heuristic procedures used to  prune  and to terminate 
the tree search, and (5) the absence of any strategy con- 
siderations for altering the machine  mode of play in  the 
light of the tactical  situations as they develop during play. 
While no progress has been made with respect to the first 
of these defects, some progress has been made in overcom- 
ing the other four  limitations, as will now be described. 

We will restrict the discussion in  this paper to generaliza- 
tion learning schemes in which a preassigned list of  board 
parameters is used. Many  attempts have been made to im- 
prove this list, to make it both  more precise and  more in- 
clusive. It still remains a man-generated list and  it is subject 
to all the  human failings, both of the programmer, who is 
not a very good checker player, and of the checker experts 
consulted, who are good players (the best in the world,  in 
fact) but who, in general, are quite  unable to express their 
immense knowledge of the game in words, and certainly not 
in words understandable to this  programmer. At  the pres- 
ent time, some twenty-seven parameters are in use, selected 
from  the list given in Ref. 1 with a few additions and modi- 
fications, although a somewhat longer list was used for some 
of the experiments which will be described. 

Two  methods of combining  evaluations of these param- 
eters have been studied  in considerable detail. The first, as 
earlier described, is the linear  polynomial method in which 
the values for  the individual parameters are multiplied by 
coefficients determined through  the learning process and 
added together to obtain a score. A second, more recent 
procedure is to use tabulations called “signature tables” to 
express the observed relationship between parameters  in 
subsets. Values read from  the tables for a number of subsets 
are  then combined for  the final evaluation. We will have 
more  to say on evaluation procedures after a digression on 
other matters. 

The heuristic  search for heuristics 
At  the risk of some repetition, and of sounding  pedantic, it 
might  be well to say a bit about  the problem of immensity 
as related to the game of checkers. As  pointed out  in  the 
earlier paper, checkers is not deterministic in  the practical 
sense since there exists no known  algorithm which will pre- 
dict the best move short of the complete exploration of 
every acceptable3 path to the end of the game. Lacking time 
for  sucha search, we must  depend  upon heuristic procedures. 

Attempts to see how people deal  with games such as 
checkers or chess4 reveal that  the better players engage in 
behavior that seems extremely complex, even a bit irra- 
tional  in  that they jump  from  one aspect to  another, with- 
out seeming to complete any one line of reasoning. In fact, 
from  the writer’s limited observation of checker players he 
is convinced that  the better the player, the  more  apparent 
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the  more intuitive his reactions seem to be, at least as viewed 
by the average person not blessed with a similar proficiency. 
We conclude5 that  at  our present stage of knowledge, the 
only  practical approach, even with the help of the digital 
computer, will be through the development of heuristics 
which tend to  ape  human behavior. Using a computer, 
these heuristics will, of course, be weighted in  the direction 
of placing greater reliance on speed than might be the case 
for a human player, but we assume that  the complexity of 
the  human response is dictated by the complexity of the 
task to be performed and is,  in  some way, an indication of 
how such  problems  can best be handled. 

We will go a step  further and maintain that  the task of 
making decisions as to the heuristics to be  used  is also a 
a problem which can only be attacked by heuristic proce- 
dures, since it is essentially an even more complicated task 
than is the playing itself. Furthermore, we will seldom, if 
ever, be able to perform a simple test to determine the ef- 
fectiveness of any  particular heuristic, keeping everything 
else the same, as any scientist generally tends to  do. There 
are simply too many heuristics that should be tested and 
there is simply not enough  time to embark  on such a pro- 
gram even if the cost of computer  time were no object. 
But,  more  importantly, the heuristics to be tested are  not 
independent of each other and they affect the other param- 
eters which we would like to hold  constant. A definitive set 
of experiments is virtually impossible of attainment. We are 
forced to make compromises, to make complicated changes 
in the program, varying many  parameters at  the same time 
and then, on  the basis of incomplete tests, somehow con- 
clude that  our changes are  or  are  not in the right direction. 

Playing techniques 
While the investigation of the  learning  procedures  forms the 
essential core of the experimental work, certain improve- 
ments  have been made in playing techniques which must 
first be described. These improvements are largely con- 
cerned  with  tree searching. They involve schemes to increase 
the effectiveness of the alpha-beta  pruning, the so-called 
“alpha-beta heuristic”6 and a variety of other techniques 

sons which relate to the so-called alpha-beta heuristic, as will be described later. 
3. The word “acceptable” rather than “possible” is used advisedly for rea- 
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so conclude 
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Figure 1 A (look-ahead) move  tree in which alpha-beta  pruning is fully effective  if the  tree is explored  from  left to right.  Board  positions 
for a look-ahead  move by the first player are shown by squares,  while board  positions  for the second  player are shown  by  circles. The 
branches shown by dashed lines  can  be  left  unexplored  without  in  any  way  influencing the final  move  choice. 

going under the generic name  of tree pruning.’ These im- 
provements enable the program to analyze further  in depth 
than it otherwise could do, albeit with the introduction of 
certain  hazards which will be discussed. Lacking an ideal 
board evaluation scheme, tree searching still occupies a cen- 
tral role  in the checker program. 

Alpha-beta pruning 
Alpha-beta pruning can be explained simply as a technique 
for not exploring those branches of a search tree that  the 
analysis up  to any given point indicates not  to be of further 
interest either to the player making the analysis (this is ob- 
vious) or  to his opponent (and it is this that is frequently 
overlooked). In effect, there  are always two scores, an alpha 
value which must be exceeded for a board to be considered 
desirable by the side about  to play, and a beta value which 
must not be exceeded for the move leading to  the  board  to 
have h e n  made by the opponent. We note  that if the board 
should not be acceptable to  the side about  to play, this play- 
er will usually be able to deny his opponent the opportunity 
of making the move leading to this board, by  himself mak- 
ing a different earlier move. While people use this technique 
more  or less instinctively during  their  look-ahead analyses, 
they sometimes do  not understand the full implications of 
the principle. The saving in  the required amount of tree 
searching which can be achieved through  its use is extreme- 
ly large, and  as a consequence alpha-beta  pruning is an al- 
most essential ingredient in any game playing program. 
There are no hazards associated with this form of pruning. 

in making improvements in the tree  pruning techniques. It would be nice if we 
7. It  is interesting to speculate on the fact that human learning is involved 

could assign this learning task to the computer but no practical way of doing 
this has yet been devised. 

A move tree of  the type that results when alpha-beta 
pruning is  effective  is shown in Fig. 1, it being assumed that 
the moves are investigated from left to right. Those  paths 
that  are shown in dashed lines need never be considered, as 
can be verified  by assigning any  arbitrary scores to the ter- 
minals of  the dashed  paths and by mini-maxing in the usual 
way. Admittedly the example chosen is quite special but it 
does  illustrate the possible savings that can result. To 
realize the maximum saving in  computational effort as 
shown in this example one must investigate the moves in an 
ideal order,  this being the  order which would result were 
each side to always consider its best possible move first. A 
great  deal of thought  and effort has gone into devising tech- 
niques which increase the probability that the moves will be 
investigated in something approaching  this order. 

The way in which two limiting values (McCarthy’s alpha 
and beta) are used in pruning  can be seen by referring to 
Fig. 2 ,  where the tree of Fig. 1 has been redrawn with the 
uninvestigated branches deleted. For reasons of symmetry 
all boards  during the look-ahead are scored as viewed by 
the side whose turn  it then is to move. This  means that 
mini-maxing is actually done by changing the sign  of a score, 
once for each ply on backing up  the tree, and  then always 
maximizing. Furthermore, only one set of values (alpha 
values) need be considered. Alpha values are assigned to all 
boards  in  the tree (except for the terminating boards) as 
these boards are generated. These values reflect the  score 
which must be exceeded before the branch leading to this 
board will be entered by the player whose turn it is to play. 
When the look-ahead is terminated and  the terminal board 
evaluated (say at board e in Fig. 2)  then the value which cur- 
rently is assigned the  board two levels up  the tree (in this 603 
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Figure 2 The move  tree  of  Fig. 1 redrawn to illustrate the detailed  method  used to keep track of the  comparison  values.  Board  positions 
are lettered in the  order that they are investigated  and  the  numbers are the successive alpha values that are assigned to the  boards  as  the 
investigation  proceeds. 

case at board c) is used as  the alpha value, and unless the 
terminal board score exceeds this alpha value, the player at 
board c would be ill advised to consider entering the  branch 
leading to this  terminal board. Similarly if the negative 
of the terminal board score  does not exceed the  alpha 
value associated with the  board immediately above in  the 
tree (in this case at board 6) then the player at bourd d will 
not consider this to be a desirable move. An alternate way 
of stating  this second condition, in keeping with Mc- 
Carthy’s usage, is to say that  the negative of the  alpha value 
associated with the  board  one level up  the tree (in this case 
board 6) is the beta value which must not be exceeded by 
the score associated with the  board  in question (in this case 
board e). A single set of alpha values assigned to the boards 
in the tree thus performs a dual role, that of McCarthy’s 
alpha  as referenced by boards two levels down in  the  tree 
and, when negated, that of McCarthy’s beta as referenced 
by boards  one level down  in  the tree. 

Returning to the analysis of Fig. 2 ,  we note  that  during 
the initial look-ahead (leading to boarde) nothing is known 
as  to  the value of the boards, consequently the assigned al- 
pha values are all set at minus infinity (actually within the 
computer  only at a very large negative number). When 
board e is evaluated, its  score (4-2) is compared  with the 
alpha  at c (- w ), and  found to be larger. The negative of 
the score ( - 2 )  is then  compared with the  alpha at  d (  - 00) 
and, being larger, it is used to replace it.  The  alpha at d is 
now - 2  and  it  is unaffected by the subsequent considera- 
tion of terminal boardsfand g. When  all paths  from board 
d have been considered, the final alpha value at d is com- 

604 pared  with the current alpha value at board b (- 00); it is 

larger, so the negative of alpha  at d (now + 2) is compared 
with the current alpha value at c (- m )  and, being larger, 
it is used to replace the c value, and a new move from 
board c is investigated leading to board h and then board i. 
As we go down the tree we must assign an  alpha value to 
board h. We cannot use the  alpha value at board c since 
we are now interested in  the minimum that  the  other side 
will accept. We can however advance the  alpha value from 
board b, which in this case is still at  its initial value of 
- a. Now when board i is evaluated at  +1 this value is 
compared  with the  alpha at board c (4-2). The comparison 
being unfavorable, it is quite unnecessary to consider any 
other moves originating at board h and we go immediately 
to a consideration of boards j and k,  where a similar situa- 
tion exists. This process is simply repeated throughout  the 
tree. On going forward  the  alpha values are advanced  each 
time from two levels above and,  on backing up, two com- 
parisons are always made.  When the  tree is completely ex- 
plored, the final alpha value on the initial board is the 
score, and  the correct  move is along the  path  from which 
this alpha was derived. 

The saving that results from alpha-beta pruning  can be 
expressed either as a reduction in  the  apparent  amount of 
branching at each node or as  an increase in the maximum 
ply to which the search may be extended in a fixed time in- 
terval. With optimum  ordering, the  apparent branching 
factor is reduced very nearly to the square root of its 
original value or, to put  it  another way, for a given invest- 
ment  in  computer time, the maximum ply is very nearly 
doubled. With moderately complex trees the savings can  be 
astronomical. For example consider a situation  with a 
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c 
branching factor of  8. With  ideal alpha-beta pruning  this 
factor is  reduced to approximately 2.83. If time  permits the 
evaluation of  66,000 boards (about 5 minutes  for checkers), 
one can look ahead  approximately 10 ply  with alpha-beta 
pruning. Without alpha-beta  this depth would  require the 
evaluation of 81° or  approximately lo9 board positions and 
would  require over 1,000 hours of computation!  Such sav- 
ings are of course  dependent  upon  perfect  ordering of the 
moves.  Actual  savings are not as great but alpha-beta prun- 
ing can easily reduce the work by factors of a thousand or 
more in real game situations. 

Some  improvement  results  from the use  of alpha-beta 
pruning even without  any attempt to optimize the search 
order. However, the number  of  branches  which are pruned 
is then highly variable  depending  upon the accidental or- 
dering of the moves. The problem  is further complicated in 
the case  of  checkers  because  of the variable nature of the 
branching.  Using  alpha-beta  alone the apparent branching 
factor  is  reduced  from  something  in the vicinity of 6 (re- 
duced from the value of 8 used above because of forced 
jump moves) to about 4, and with the best  selection  of or- 
dering  practiced to date, the apparent branching  is  reduced 
to 2.6. This  leads to a very substantial  increase in the depth 
to which the search  can  be  carried. 

Although the principal use  of the alpha and beta  values 
is to prune useless branches  from the move tree,  one can 
also  avoid a certain amount of inconsequential  work when- 
ever the difference  between the current alpha value and the 
current  beta  value becomes  small.  This  means that the two 
sides  have  nearly  agreed as to the  optimum  score and that 
little  advantage to either  one side or the other can  be found 
by further exploration  along  the paths under  investigation. 
It is therefore  possible to back-up  along the tree  until a part 
of the tree is found at which this  alpha-beta  margin  is no 
longer  small. Not finding  such a situation one may terminate 
the search. The added  savings  achieved in this way,  while 
not as spectacular as the savings from the initial use  of 
alpha-beta, are quite  significant,  frequently  reducing the 
work by an additional factor of two or more. 

Plausibility analysis 
In order for the alpha-beta  pruning to be  truly effective, it is 
necessary, as already  mentioned, to introduce  some  tech- 
nique for increasing  the  probability that the better paths are 
explored  first.  Several ways  of doing  this  have been tried. 
By far the most  useful  seems to be to conduct a preliminary 
plausibility  survey for any given board situation by looking 
ahead a fixed amount, and then to list the available moves 
in their apparent order of goodness on the basis  of  this  in- 
formation and to specify this as the order to be  followed in 
the subsequent  analysis. A compromise  is  required  as to the 
depth to which this  plausibility  survey  is to be conducted; 
too short a look-ahead  renders it of doubtful value,  while 
too long a look-ahead takes so much  time that the depth of 

the final  analysis  must  be  curtailed.  There  is  also a question 
as  to whether or not this  plausibility  analysis  should  be ap- 
plied at all ply  levels during the main  look-ahead or only for 
the first few  levels. At one time the program used a plausi- 
bility  survey for only the first  two  ply  levels of the main 
look-ahead  with the plausibility  analysis  itself  being  carried 
to a minimum ply  of  2. More  recently the plausibility  analy- 
sis  has  been  applied at all stages  during  the  main look-ahead 
and it has  been  carried to a minimum ply  of 3 during  certain 
portions of the look-ahead and under  certain  conditions, as 
will be explained  later. 

We pause to note that the  alpha-beta  pruning as described 
might  be  called a backward  pruning  technique in that it 
enables  branches to be pruned at that time  when the pro- 
gram is  ready to back up and is  making  mini-max  compari- 
sons. It assumes that the analyses of all branches are other- 
wise carried to a fixed  ply and that all board evaluations are 
made at this fixed  ply  level. As mentioned  earlier,  the  rig- 
orous application of alpha-beta  technique  introduces no 
opportunities for erroneous pruning. The results  in  terms of 
the final  moves  chosen are always  exactly  as  they  would 
have  been without the pruning. To this  extent the procedure 
is not a heuristic although the plausibility  analysis  tech- 
nique which  makes  it  effective  is  certainly a heuristic. 

While the simple  use  of the plausibility  analysis  has  been 
found to be  quite effective  in  increasing the amount of 
alpha-beta  pruning, it suffers from two  defects. In the  first 
place the actual amount of pruning  varies  greatly from move 
to move,  depending  upon random variations in the average 
correctness  of  the  plausibility  predictions.  Secondly,  within 
even the best  move  trees a wrong  prediction at any  one  point 
in the search  tree  causes the program to follow a less than 
optimum path, even  when it should have  been  possible to 
detect the fact that a poor prediction  had been  made  before 
doing an excessive amount of  useless  work. 

A multiple-path enhanced-plausibility procedure 
In studying  procedures used  by the better  checker  players 
one is struck  with the fact that evaluations are being  made 
continuously at all levels  of look-ahead.  Sometimes  un- 
promising  lines  of  play are discarded  completely after only 
a cursory  examination. More often less promising  lines are 
put aside  briefly and several  competing  lines  of  play  may  be 
under  study  simultaneously  with attention switching from 
one to another as the relative  goodness of the lines of play 
appears to change  with  increasing  depth  of the tree search. 
This  action  is  undoubtedly  prompted by a desire to improve 
the alpha-beta  pruning effectiveness, although I have  yet to 
find a checker master who  explains  it  in  these  terms.  We are 
well  advised to copy  this  behavior. 

Fortunately, the plausibility  analysis  provides the neces- 
sary  information for making the desired  comparisons at a 
fairly  modest  increase  in data storage  requirements and 
with a relatively  small amount of reprogramming of the 605 
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tree search. The procedure used  is as follows. At the begin- 
ning of each move, all possible moves are considered and a 
plausibility search is made for the opponent’s replies to each 
of these plays. These moves are sorted  in their apparent 
order of goodness. Each  branch is then carried to a ply of 
3; that is, making the machine’s first move, the opponent’s 
first reply and the machine’s counter move. In each case 
the moves made are based on a plausibility analysis which is 
also carried to a minimum depth of 3 ply. The  path yielding 
the highest score to  the machine at this level  is then chosen 
for investigation and followed forward  for two moves only 
(that is, making the opponent’s indicated best reply and  the 
machine’s best counter reply, always based on a plausibility 
analysis). At this  point  the  score  found for this path is com- 
pared with the score for  the second best path  as saved ear- 
lier. If  the path under investigation is now found to be less 
good  than  an alternate path,  it is stored and  the alternative 
path is picked up  and is extended in depth by two moves, A 
new comparison is made  and  the process is repeated. Al- 
ternately, if the original path under investigation is still 
found to be the best it is continued for two more moves. The 
analysis continues  in  this way until a limiting depth as set by 
other considerations has been reached. At this point the 
flitting from  path  to  path is discontinued and the  normal 
mini-maxing procedure is instituted. Hopefully, however, 
the probability of having found  the  optimum  path  has been 
increased by this procedure and  the alpha-beta  pruning 
should work with greater effectiveness. The net effect of all 
of this is to increase the  amount of alpha-beta pruning, to 
decrease the playing time, and  to decrease the spread in 
playing time from move to move. 

This enhanced plausibility analysis does not in  any way 
affect the hazard-free nature of the alpha-beta  pruning. 
The plausibility scores used during the look-ahead proce- 
dure  are used only to determine the  order of the analyses 
and they are all replaced by properly mini-maxed scores as 
the analysis proceeds. 

One minor point may require explanation. In  order  for all 
of the saved scores to be directly comparable, they are all 
related to  the same side (actually to  the machine’s  side) and 
as described they are compared only when it is the oppo- 
nent’s turn  to move; that is, comparisons are made only on 
every alternate play. It would, in principle, be possible to 
make  comparisons  after every move but little is gained by 
so doing and serious complications arise which are  thought 
to offset any possible advantage. 

A move tree as recorded by the computer  during actual 
play is shown in Fig. 3. This is simply a listing of the moves, 
in  the order in which they were considered, but arranged on 
the page to reveal the tree  structure. Asterisks are used to 
indicate alternate moves at branch  points and  the principal 
branches are identified by serial numbers. In the interest of 
clarity, the moves made during  each individual plausibility 
search are  not shown, but  one such search was associated 

to be explained, the flitting from  path  to  path is clearly 
visible at the start.  In this case there were 9 possible initial 
moves which were surveyed at  the start and listed in  the 
initially expected best order as identified by the serial num- 
bers. Each of these branches was carried to a depth of 3 ply 
and  the apparent best branch was then found to be the one 
identified by serial number 9,  as may be verified  by reference 
to  the scores at  the  far right (which are expressed in  terms 
of the side which made  the last recorded move on the line in 
question). Branch 9 was then investigated for  four more 
moves, only to be put aside for  an investigation of the 
branch identified by the serial number 1 which in  turn was 
displaced by 9, then finally back to 1. At this  point  the  nor- 
mal mini-maxing was initiated. The  amount of flitting from 
move to move is,  of course, critically dependent upon the 
exact board configuration being studied. A fairly simple 
situation is portrayed by this illustration. It will be noted 
that  on  the completion of the investigation of branch 1,  the 
program went back to branch 9, then  to branch 3, followed 
by branch 2, and so on until all branches were investigated. 
As a matter of general interest this  tree is for  the fifth move 
of a game following a 9-14,22-17, 11-15 opening, after an 
opponent’s move of 17-13, and move 15-19 (branch 1)  was 
finally chosen. The 7094 computer took 1 minute and 3 sec- 
onds  to make the move and  to record  the tree. This  game 
was one of a set of 4 games being played simultaneously 
by the machine and  the length of the tree search had been 
arbitrarily reduced to speed up the play. The  alpha  and beta 
values listed in the columns to  the right are  both expressed 
in  terms of the side making the  last move, and hence a score 
to be considered must be larger than  alpha  and smaller than 
beta. For clarity of presentation deletions have been made 
of most large negative values when they should  appear in 
the  alpha column and of most large positive values when 
such values should appear in the beta column. 

Forward pruning 
In addition to  the hazardless alpha-beta  pruning,  as just 
described, there exist several forms of forward pruning 
which can be used to reduce the size of the search tree. 
There is always a risk associated with  forward  pruning since 
there  can be no absolute assurance that  the scores that 
would be obtained by a deeper analysis might not be quite 
different from those  computed at the earlier ply. Indeed if 
this were not so, there would never be any reasons for look- 
ing  ahead. Still it seems reasonable to assume that some net 
improvement should result from  the judicious use of these 
procedures. Two simple forms of forward  pruning were 
found to be useful after a variety of more complicated pro- 
cedures, based on  an initial imperfect understanding of the 
problem, had been tried with great effort and little success. 



Figure 3 An actual look-ahead move tree as printed by the computer during play. 
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To apply the first form it is  only  necessary to limit the 
number of  moves  saved for future analysis at each point in 
the tree,  with  provisions for saving all moves  when the ply 
is  small and gradually  restricting the number saved, as the 
ply  becomes  greater until finally  when the maximum  feasi- 
ble ply  is  being approached only two or three moves are 
saved.  (The  decision as to which are saved is, of course, 
based on the plausibility  analysis.) * 

In the second form of forward pruning one compares the 
apparent scores as measured by the plausibility analysis 
with the current values of alpha and beta that are being 
carried forward, and terminates the look-ahead if this com- 
parison is  unfavorable. Rather  than to apply this compari- 
son in an unvarying way it seems reasonable to set margins 
which  vary  with the ply so that the amount of pruning in- 
creases  with  increasing  ply. At low  plies only the most un- 
likely paths can then be pruned, while  fairly  severe pruning 
can be caused to occur as the effective  ply  limit  is ap- 
proached. If the margins are set too high, then only  negligi- 
ble pruning will result,  while if they are low or nonexistent, 
the pruning will  be extreme and the risks of  unwise pruning 
correspondingly  large. 

There are, then, several factors which  may  be  experimen- 
tally studied, these  being the magnitudes of the several forms 
of pruning and the way in which  these magnitudes are 
caused to vary  with the ply. The problem is  even more com- 
plicated than it  might at first appear since the various kinds 
of forward pruning are not independent. It seems reason- 
able to assume that the rate at which the margins are re- 
duced  in the last described form of forward pruning and the 
rate at which the number pruning is increased in the earlier 
described form should both depend upon the position in the 
plausibility  listings of earlier boards along the branch under 
investigation. It is quite impractical to make a detailed 
study of these  interdependencies  because the range of  pos- 
sible combinations is  extremely  large and a whole  series of 
games  would  have to be played for each combination before 
valid  conclusions could be drawn. Only a very  few arrange- 
ments have,  in fact, been tried and the final scheme adopted 
is  based more on the apparent reasonableness  of the ar- 
rangement than upon any real data. 

The problem o j  “pitch”  moves 
In both of the above forms of forward pruning serious dif- 
ficulties arise with  respect to the proper consideration of so 
called “pitch moves,” that is, of  moves in which a piece  is 
sacrificed  in return for a positional advantage which eventu- 
ally leads at least to an equalizing capture if not to  an ac- 
tual winning  position. In principle, one should be able to as- 
sign the proper relative  weights to positional and material 
advantages so as to assess such moves correctly, but these 
situations generally appear to be so detail-specific that it  is 
impossible to evaluate them directly in any way other  than 
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limited look-ahead distance to which the plausibility 
analysis can be extended; the equalizing  moves  may not be 
found and as a consequence a good pitch  move may be 
pruned. A two-ply  plausibility search in which the analysis is 
terminated only on a non-jump situation will correctly 
evaluate move  sequences of the type P, J, J, where P stands 
for pitch and J for jump (with N used later for non-jump 
moves  which are not forcing) but it is  powerless to evaluate 
sequences of the P, J, P, J, J type or of the P, J, N, P, J type. 
Both of these occur quite frequently  in normal play. A 
three-ply  search will handle the first of these situations but 
will still not handle the second  case. Unsatisfactory as it  is, 
the best  practical  compromise  which has been  achieved to 
date seems to be to employ a two-ply  plausibility  search for 
the normal non-pitch situation and to extend the search to 
three-ply  whenever the first or the second  move  of the 
plausibility search is a jump. As noted earlier a three-ply 
search is customarily  employed during the preliminary 
multi-path phase of the analysis. 

Several more complicated methods of handling this prob- 
lem  have  been considered, but all of the methods tried to 
date have  proved to be  very  expensive  in terms of computing 
time and all have  been discarded. One of  these methods 
which  seemed to be  marginally  effective  consisted  of a pro- 
cedure for keeping a separate account of all pitch moves  en- 
countered during the plausibility search, defined  in this case 
as sequences  in  which the first  move in  the search is  not a 
jump  and the second  move is a jump. These pitch moves 
were sorted on the basis of their relative  scores and a record 
was kept of the four best pitch moves. Of course some of 
these moves might have been also rated as good moves 
quite independently of their pitch status, either because 
most or all of the available moves  were  of this type or be- 
cause the return capture was not delayed beyond the ply 
depth of the search. After the normal number of unpruned 
moves at any branch point had been explored, the best  re- 
maining pitch move (eliminating any already considered) 
was then followed up. Since most of the  apparent pitch 
moves  may  in fact be sheer  giveaway  moves, it was quite 
impractical to consider more than a single pitch move but 
hopefully that apparent pitch which  led to the highest  posi- 
tional score should have  been the most likely  move to in- 
vestigate. This procedure causes a two-ply  plausibility 
search to salvage one likely candidate per  move  which 
could be of the P, J, N, J,  J, type and  it increases the power 
of the three-ply plausibility search correspondingly. Un- 
fortunately a rather high  percentage of the additional moves 
so considered were found to be of no value and the book- 
keeping costs of this procedure also seemed to be  excessive. 

As a further extension of this general method of handling 
pitch moves, it is possible to cause pitch sequences  of the 
P, J, N, P, J type to be  investigated  using a two-ply  plausi- 
bility search. One need only specify that the main tree not 
be terminated when there is a jump move  pending.  While 



the cost  of this addition might  seem to be small, in practice 
it leads to the exploration in depth of  extended  giveaway 
sequences, and as a consequence it is  of  very questionable 
value. 

Look-ahead termination 
Regardless of the form or amount of forward pruning the 
time arrives along each path when it is  necessary to termi- 
nate the look-ahead and evaluate the last board position. 
It is rather instructive to consider the termination as simply 
the end of the pruning process  in  which the pruning is  com- 
plete. The use  of a fixed depth for this final act of pruning, 
as previously  assumed, is  of course not at all reasonable and 
in fact it has never  been  used. In the earlier work1  much at- 
tention was  given to the wisdom  of terminating the look- 
ahead at so called "dead" positions. With the current use 
made of the plausibility  analysis this becomes a restriction 
mainly applicable to the plausibility  analysis and it is of  but 
little value in terminating the main tree itself. A limit is, of 
course, set by the amount of storage assigned for the tree 
but since the tree storage requirements are not excessive this 
should normally not be  allowed to operate. If the plausibili- 
ty analysis  is at all effective one should be able to ration the 
computing time to various branches on the basis of their 
relative probability of  being the best. For example, the ini- 
tial path which  survives the swapping routine during the 
initial look-ahead procedure should certainly  be carried 
quite far along as compared with a path resulting from in- 
vestigating, say, the  fourth choice as found by the plausi- 
bility, when this is again followed  by a fourth choice, etc., 
all the way through the tree. 

The procedure found most effective has been that of de- 
fining a parameter called the branching count which  is  as- 
signed a value for each board encountered during the tree 
search. To insure that all of the possible initial moves are 
given adequate consideration, identical values are given to 
the counts for the resulting boards after these initial moves. 
As each move originating with one of these boards is made, 
the branching count for the originating board is  reduced by 
one unit and the resulting board after the move  is  assigned 
this new value as well. This process is repeated at each 
branch point down the tree until the branching count 
reaches zero, whereupon the search down this path is ter- 
minated (more correctly steps are taken to initiate termina- 
tion unless other factors call for a further extension of  the 
search, as will  be  explained later). Along the preferred 
branch, the branching count will thus be reduced by one 
unit for each ply  level. For the second  choice at any branch 
point a two-unit reduction occurs, for the third choice a 
three-unit, etc. The net result is that the less  likely paths are 
terminated sooner than the most  likely paths and in  direct 
proportion to their decreasing likelihood. 

Actually, a slightly more complicated procedure is  used 
in that the branching count is set at a higher initial value 

and  it is reduced by one unit when the move under consider- 
ation is a jump move and by four units when it is a normal 
move. This procedure causes the search to be  extended fur- 
ther along those paths involving  piece  exchanges than  along 
those that  do not. Also the search is not permitted to termi- 
nate automatically when the branching count reaches zero 
if the indicated score for the move under consideration im- 
plies that this is in fact a preferred path. In this case the 
search is  extended until the same depth has been  reached 
along this path  as  had been reached along the previously 
indicated preferred path. 

Tree pruning results 
It has been found singularly diacult  to assess the relative 
value of the various tree pruning techniques  in terms of 
their effect on the goodness of play.  Special situations can 
always be found for which the various forward pruning 
procedures are either very  effective or quite inadequate. 
Short of  very  extensive tests indeed, there seems to be no 
very good way to determine the relative ferquency with 
which these different situations occur during normal play. 
About  all that has been done has been to observe the result- 
ing game trees and to depend upon the opinions of checker 
masters as to the goodness of the resulting  moves and as to 
the reasonableness in appearance of the trees. 

As mentioned earlier, for each move that is tabulated in 
Fig. 3 there was actually an auxiliary plausibility move 
analysis to a ply  of 2 or more which is not shown at all for 
reasons of  clarity. One can think of this as a fine brush of 
moves emanating from each recorded move. Examples of  all 
types of pruning can be noted in this tree, although addi- 
tional information is  needed for their unambiguous identi- 
fication. Checker experts all agree that such trees as these 
are much  denser than they probably should be. Attempts to 
make them less  dense by stronger pruning always  seem to 
result in occasional examples of conspicuously poor play. 
It may well  be that denser trees should be  used for machine 
play than for human play, to compensate for deficiencies  in 
the board evaluation methods. 

Evaluation  procedures  and  learning 
Having covered the major improvements in  playing  tech- 
niques as they relate to tree searching, we can now consider 
improvements in evaluation procedures, with particular 
reference to learning. We  will  first  discuss the older linear 
polynomial  scheme and then go on  to consider the signa- 
ture-table procedure. 

Linear polynomial evaluations 
While it is  possible to allow for parameter interaction, for 
example,  by  using binary connective terms as described in 
Ref. 1 the number of such interactions is large, and it seems 
necessary to consider more than pair-wise interactions. This 
makes it quite difficult to depart very much from the linear 609 
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case. Some  improvement  in  performance resulted when the 
overall  game  was split, initially, into 3 phases (opening, 
mid-game, and end-game) and more recently into 6 phases 
with a different set of coefficients determined for each phase. 
Various procedures for defining the phase of the game were 
tested, the simple one of making the determination solely in 
terms of the  total number of pieces on  the  board seemed as 
good as any tried,  and there were indications that little 
was to be gained by going to more than 6 phases. 

The  total number of parameters used at  any  one time has 
been varied from a very  few to as  many as 40. It  has been 
customary to use all of  the currently assessed successful 
parameters  during the learning phase. A number of attempts 
have been made to speed up  actual play by limiting the num- 
ber of parameters to 5 ,  10, 15,  or 20, selecting those  with 
the larger magnitude coefficients. Five  terms  in the learn- 
ing polynomial proved definitely inadequate, an improve- 
ment in going from 10 to 15 terms  appeared to be barely 
discernible, and  no evidence could be found for improve- 
ments in using more than 20 terms. In fact,  there seemed 
to be some  indication that a fortuitous combination of 
many ineffectual parameters with correspondingly low 
coefficients could, on occasion, override a more effective 
term and cause the program to play less  well than  it would 
with the ineffectual parameters  omitted. In a series of 6 
games played against R. W. Nealey (the U. S. blind check- 
er champion) using 15 terms, the machine achieved 5 
draws with one loss. The six poorest moves in these games 
as selected by L. W. Taylor, a checker analyst, were re- 
played, using 20 terms with no improvements and then 
using only 10 terms with a distinct improvement  in two 
cases. There is, of course, no reason to believe that  the 
program with the fewer number of terms  might not have 
made other  and more grievous errors  for  other untested 
board situations. Twenty terms were used during the games 
with W. F. Hellman referenced in footnote 2. No further 
work has been done  on  the linear polynomial schema in 
view of the demonstrated  superiority of the “signature- 
table”  procedure which will now be described. 

Signature-table evaluations 
The impracticality of considering all  inter-parameter ef- 
fects and  the obvious  importance of such interactions has 
led to  the consideration of a number of different compro- 
mise proposals. The first successful compromise solution 
was proposed and tested on  the Project Mac computer by 
Arnold  Criffith, a graduate student  at M.I.T. In  one early 
modification of this scheme, 8 subsets of 5 parameters  each 
were used, initially selected from 31 different parameters 
with some  redundancy between subsets. Each  subset was 
designated as a signature  type  and was characterized by an  
argument  computed  in  terms of the values measured for the 
parameters within the subset for any particular board situa- 
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particular  combinations of the parameters within the sub- 
set and serve as addresses for entering  signature  tables where 
the  tabulated values are meant to reflect the relative worth 
to the computer’s side of these particular  combinations. In 
the initial Griffith scheme the values read from  the 8 differ- 
ent signature  tables were simply added together to  obtain 
the final board evaluation. Parameters which are  thought 
to be somehow related were grouped  together  in the indi- 
vidual subsets. While it would have been desirable to con- 
sider all possible values for each  parameter and all possible 
interrelations between them,  this quickly becomes un- 
manageable. Accordingly, the range of parameter values 
was restricted to but three values + 1, 0, and - 1 ; that is, 
the two sides could be equal  or  one  or  the  other could  be 
ahead  in terms of the  board property in question. Many of 
the  board properties were already of this type. With each 
parameter limited to 3 values and with 5 parameters  in a 
subset, a total of 36 or 243 entries in a signature table com- 
pletely characterizes all possible interactions between the 
parameters. Actually since checkers is a “zero sum” game 
and since all  parameters are defined symmetrically, it should 
be possible to reduce the  table size roughly by two (122 
entries instead of 243) by listing values for positive argu- 
ments  only and taking values with a reversal of sign when 
negative arguments are evaluated. Allowing for 48 signa- 
ture tables, 8 signature types for each of the 6 different 
phases, we arrive at  a memory space requirement for 5856 
table entries. Actually two  words per table  entry are used 
during the learning phase, as explained later, so the  total 
memory requirement for  the learning data is 11,712 words. 

An example will make this  procedure clear. Consider one 
signature  type which might comprise the following 5 param- 
eters: ANGLE, CENTER, OREO, GUARD and KCENT, which will 
not be explained now but which all have to  do with the con- 
trol of the king row and  the center of the  board.  Now con- 
sider the GUARD parameter.  This can be assigned a value of 
0 if both  or neither of the sides have complete control of 
their  back rows, a value of +1 if the side in question  con- 
trols his back  row while the  opponent does not,  and a value 
of - 1 if the conditions are reversed. The  other 4 parameters 
can be similarly valued, giving a ternary  number consisting 
of a 5-digit string selected from  the set - , 0, and +, (where 
- is used for - 1,  etc.), e.g., “+ - 0 - -” characterizes 
one particular  combination of these five different parame- 
ters. This  argument  can  be  associated with some  function 
value, a large positive value if it is a desirable combination, 
a near  zero  function value if the advantages to  the two sides 
are  about even, and a large negative value if it is a disadvan- 
tageous  combination.  Both the arguments and functions 
are symmetric; that is, the argument and function for  the 
other side would be that gotten by reversing all signs. (In the 
- , 0, + ternary system the first symbol in the list gives the 
sign and  the processes of complementing and sign reversal 
are synonymous.) The argument for  the  other side would 
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I Figure 4 A 3-level signature-table  arrangement  with 27 terms. 

thus be - + 0 + +, a negative number which would not 
be tabulated  but  the function value would be the negative 
of the value listed under + - 0 - - , as  it of course  must 
be for  the sum of the functions for  the two sides to be zero. 

The results obtained  with  this relatively simple method 
of handling  parameter  interactions were quite encouraging 
and as  a result a series of more elaborate studies has been 
made using signature procedures of varying degrees of com- 
plexity. In  particular, efforts were made (1) to decrease the 
total number of parameters by eliminating those  found  to 
be of marginal utility, ( 2 )  to increase the range of values per- 
mitted for each  parameter, initially increasing the range for 
certain parameters to permit 7 values (- 3 ,  - 2 ,  - 1, 0, 
+ 1 ,  +2, +3) and more recently dividing the parameters 
into two equal groups-one group being restricted in  range 
to 5 values, and ( 3 )  to introduce  a hierarchical structure of 
signature  tables where the  outputs  from  the first level signa- 
ture tables are combined  in  groups and used as inputs  to a 
set of second level tables etc. (This is illustrated  in  a simpli- 
fied form in  the cover design of this issue.) 

Most of the experimental work has been restricted to a 
consideration of the two  arrangements  shown in Figs. 4 and 
5. These are  both three-level arrangements.  They differ in 
the degree of the correlation between parameters which is 

Range of level 
First 

values  tables 

values 

Entries 

5- 
3” 68 5 
3 - Entries  Entries 
3-  

125 

5- 
3- 6 5  - Entries 

3- 

3” 68 5 
3 - Entries 
3-  

125 Range of 
Entries 

5- 
3- 6 5  - Entries 

3- 
225 

Range of 
values 

Third 
level 
table 

\r 225 

5 
3 
3 
3 

5 

3 
3 

3 

5 

3 
3 
3 

Figure 5 Revised  3-level  signature-table  scheme  with 24 terms. 

recognized and in the range of values permitted the indi- 
vidual parameters. Both  are compromises. 

Obviously, the  optimum arrangement depends upon  the 
actual number of parameters that must be used, the degree 
to which these parameters are interrelated and  the extent 
to which these individual parameters can be safely repre- 
sented by a limited range of integers. In the case of checkers, 
the desired number of parameters seems to lie in  the range 
of 20 to 30. Constraints on  the range of values required to 
define the parameters  can  be easily determined but sub- 
stantially nothing is known concerning the interdependen- 
cies between the parameters. A series of quite inconclusive 
experiments was performed in an effort to measure these 
interdependencies. About all that can be said is that the  con- 
straints imposed upon  the permissible distribution of pieces 
on  the  board  in any actual game, as set by the rules of the 
game and  as dictated by good playing procedures, seem to 
produce an  apparent average correlation between all param- 
eters which is quite  independent of the specific character of 
these parameters. The problem is further  complicated by 
the fact that  two  quite opposing lines of argument can be 
advanced-the one  to suggest that closely related  terms  be 
placed in the same subsets to allow for their interdependen- 
cies and  the second to suggest that such terms be scattered 61 1 
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among groups. The second  suggestion can be made to look 
reasonable by considering the situation in  which two param- 
eters are unknowingly so closely related as to actually meas- 
ure the same property. Placing  these two terms in the same 
subset  would  accomplish nothing, while  placing them in 
different subgroups permits a direct trade-off evaluation to 
be made between this property in question and the proper- 
ties measured by the other parameters in  both subgroups. 

A few comments are  in order at this time as to  the sup- 
posedly  symmetrical nature of  the parameter data. While it 
is true that checkers is a zero-sum game and while it is true 
that the parameters are all defined in a symmetrical way, 
that is, as far  as black vs white  is concerned, the value  of a 
board situation as defined by these parameters is actually 
dependent upon whose turn it is to play. A small but real 
bias normally exists for most parameters in favor of the side 
whose turn it is to move, although for certain parameters 
the reverse is true. The linear polynomial method of scoring 
is unfortunately not sensitive to these peculiarities of the 
different parameters since the partial scores for all types are 
simply added together. The signature table procedure 
should be able to take  the added complication into account. 
Of course, the distinctions will  be lost if the data  are incor- 
rectly stored or if they are incorrectly acquired. By storing 
the data  in  the uncompressed form one can evaluate this 
effect. More will  be said about this matter later. 

In the arrangement shown in Fig. 4 there were  27 param- 
eters divided into 9 groups of three each, with each group 
being made up of one 3-valued parameter, one 5-valued 
parameter and one 7-valued parameter. Each first  level  sig- 
nature table thus had 105 entries. The  output values from 
each of these tables were quantized into five values and sec- 
ond level signature tables were  employed to combine these 
in  sets of three. These second level tables thus had 125 en- 
tries each. These outputs  are further quantized into 7 levels 
and a third level signature table with 343 entries was  used 
to combine the outputs from the three second-level tables 
into a final output which  was  used as the final board evalu- 
ation. Obviously, the parameters used to enter the first level 
tables were grouped together on the basis of their assumed 
(and  in some cases measured) interdependencies while the 
resulting signature types were again grouped together as 
well as possible, consistent with their assumed interdepen- 
dencies. As always, there was a complete set of these tables 
for each of the six game phases. The tables were stored in 
full, without making use  of the zero-sum characteristic to 
halve their size, and occupied 20,956  cells in memory. Out- 
puts from the first  level tables were quantized into 5 levels 
and the  outputs  from  the second  level tables into 7 levels. 

The latest signature table procedure 
The arrangement shown in Fig. 5 used  24 parameters which 
were  divided into 6 subgroups of 4 parameters each, with 
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three 3-valued parameters. In this case the first level tables 
were compacted by taking advantage of the assumed sym- 
metrical character of the data, although this is a dubious 
procedure as already noted. It was  justified  in this case  be- 
cause of the added parameter interactions which this made 
possible and because  of a very large inverse  effect  of table 
size on speed of learning. This reduced the size  of the first 
level tables to 68 words each. The  outputs  from  the first  lev- 
el tables were quantized into 5 levels as before and the  out- 
puts  from  the second level tables were quantized into 15 
levels. The second and third level tables were not com- 
pacted, in an attempt to preserve some non-symmetrical 
features. The total memory requirement for the tables as 
thus constituted was  10,136 words. 

Before we can discuss the results obtained with the signa- 
ture table scheme it will be  necessary to turn our attention 
to the various book learning procedures. 

Book learning 
While book learning was mentioned briefly in Ref. 1, we 
will  describe it  in some detail as  it was  used throughout  the 
studies now to be reported. Just as books speed up human 
learning, one might  expect that a substantial increase in 
machine-learning speed  might result if some use could be 
made of book information, in  this case, the existing library 
of master play. To this end a reasonable sample (approxi- 
mately 250,000 board situations) of this master play has 
been  key  punched and transcribed to magnetic tape. These 
are mostly draw games; in those cases  where a win  was 
achieved, data are used only from the moves made by the 
winning  side. The program has been arranged to play 
through these recorded games considering one side, then the 
other, much as a person might do, analyzing the situation in 
terms of the existing evaluation procedures and listing the 
preferred move. This move  is then compared with the book- 
recommended  move and a suitable adjustment made in the 
evaluation procedure. This, of course, assumes that the 
book-recommended move  is the only correct move,  which 
it may not be, either because of a plurality of good moves or 
in some cases  because  of an actual  error. However, if 
enough book moves are used, if the books are usually cor- 
rect and if the adjustments per move are of the proper size, 
the process should converge toward an optimum evaluation 
procedure, subject always to a basic limitation as to the ap- 
propriateness and completeness of the parameter list  used. 

While  it still takes a substantial amount of machine time 
to play through  the necessary book games, the learning 
process is  very  much faster than for learning from actual 
play. In the first  place, the game paths followed are from the 
start representative of the very  best  play  since the program 
is forced always to make the recommended book move be- 
fore proceeding to considering the next  move.  Secondly, it 
is  possible to assign  values to be associated with the moves 
in a very direct fashion without depending upon the unrelia- 



ble techniques which were earlier described. Finally the 
analysis of each move can be extremely limited, with  little 
or  no minimaxing, since the only use made of the overall 
scores is  that of measuring the learning, whereas in the 
earlier  procedures these scores were needed to determine 
credit assignments to  the parameters. The  net effect of these 
factors is to  make  it possible to consider many more moves, 
at  the  rate of 300 to 600 moves per minute rather than  the 
roughly one move per minute  rate which is typical for 
actual games. 

We will first explain how learning is achieved in terms of 
coefficients in a linear polynomial and  then go on  to  the 
signature table case. 

During  the learning process, use must be made of the 
previously determined coefficients to perform the evalua- 
tion of all board situations  either  right  after the initial moves 
or, if jump situations are encountered, at  some  terminating 
ply depth with the scores backed up by the mini-maxing pro- 
cedure. During this mini-maxing, it is also necessary to 
back up  the values of the parameter values themselves (i-e., 
the  terms without coefficients), associated with the selected 
terminating board situations  corresponding to  the opti- 
mized path leading from each of the possible first moves. If 
there  are 9 possible moves, a 9 X 27 table will be produced 
in which the rows correspond to  the 9 different moves and 
the columns  correspond to  the 27 different parameters. On 
the basis of the book  information, one  row is indicated as 
being the best move. 

The program  must analyze the  data within the  table  and 
accumulate totals which on  the average indicate the relative 
worth of the different parameters in predicting the  book 
move, and it must alter  the coefficients to reflect the cumula- 
tive learning indicated by these totals. A variety of different 
procedures has been tested for accumulating totals;  one of 
the simplest, and surprisingly, the most effective, seems to 
be to simply count  the number of moves, for each param- 
eter separately, for which the parameter value is larger than 
the value associated with the  book move and  the number of 
moves for which the parameter value is smaller than  the 
value associated with the  book move. If these cumulated 
counts over all board situations examined to  date  are 
designated H a n d  L, then one measure of the goodness of 
the parameter  in  predicting the  book move is given by 

c = (L  - H)/(L  + H )  . 
This  has  the dimensions of a correlation coefficient. It would 
have a value of + 1 if the parameter  in  question always pre- 
dicted the  book move, a value of - 1 if it never made a cor- 
rect prediction, and a value of 0 if there was no correlation 
between the machine indications and  the  book.  The best 
procedure found  to  date is simply to use the values of the 
C's so obtained as  the coefficients in  the evaluation poly- 
nomial, although arguments  can be advanced for  the use of 
the values of the C's raised to some power greater than 1 

to overcome the effect of several inconsequential terms over- 
riding a valuable indication from some other  term  as men- 
tioned earlier. 

Typical coefficients as  tabulated by the  computer  are 
shown  in  Table 1 based on roughly 150,000 board situations 
and using 31 functions  during the learning process. The 19 
terms per phase having the largest magnitude coefficients 
are listed. The play against Hellman mentioned earlier used 
this  particular set of terms. 

Book learning using signature tables 
Extending  this book learning  technique to  the signature 
table case is relatively easy. All that need be done is to back 
up  the signatures corresponding to the signature types being 
used in a way quite  analogous to  the handling of param- 
eters in  the linear  polynomial case. Taking  the example used 
earlier, one signature  corresponding to  one possible move 
might be + - 0 - - (actually stored in  the machine  in 
binary form). Each signature  type for each possible move is 
similarly characterized. Two  totals (called D and A )  are ac- 
cumulated for each of the possible signature types. Addi- 
tions of 1 each are  made to the D totals for  each signature 
for  the moves that were not identified as  the preferred book 
move and  an  addition of n, where n is the number of non- 
book moves, is made  to  the A totals  for the  signatures iden- 
tified with the recommended book move. The reason for 
adding n to  the  book move A totals is, of course, to give 
greater positive weight to  the  book recommended move 
than  is  the negative weight given to moves that  do  not hap- 
pen to correspond to  the currentIy found book recommen- 
dation (there may be more  than  one  good move and some 
other  authority might  recommend one of the  other moves). 
This procedure has  the incidental effect of maintaining 
equality between the  grand  totals of the A's and D's ac- 
cumulated  separately for all  signatures in each  table, and so 
of preserving a zero-sum character for  the  data. 

When enough data have been accumulated for  many dif- 
ferent board situations, additions will have been made in 
the A and D columns  against  most of the signature  argu- 
ments. The program then computes  correlation coefficients 
for each  signature defined in  an analogous  fashion to the 
earlier usage as 

c = ( A  - D ) / ( A  + 0) . 
In  the case of the  third level table these values are used di- 
rectly as  board evaluations. For  the  other two levels in  the 
signature table hierarchy, the  actual values to be entered 
must  be  quantized so as to restrict the  range  of  the  tabu- 
lated values. This  quantization has normally  been done by 
first separating out all  zero values and entering  them into 
the tables as such. The nonzero values are  then quantized 
by ranking the positive values and negative values sepa- 
rately into  the desired number of equisized groups.  The 
table  entries are then  made in  terms of the small positive 61 31 
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Table 1 Linear  polynomial  terms  (parameter  names  and  learned  coefficients)  as  used  in the games  with W. F. Hellman.  These  coefficients 
resulted  from  an  analysis of approximately 150,000 book moves. 

Phase I - Terms and coefficients 
GUARD QUART DIAGL EDGES FRONT ANGLE CENTR NODES DCHOL ADVAN 

0.33 
PINS DYKSQ FREE EXCHS THRET STARS PRESS UNCEN LINES 

0.07 0.07 0.06 -0.05 0.04 0.04 -0.04 0.03 0.02 

0.29 -0.21 -0.20 -0.19 -0.18 0.14 0.13 0.11 -0.08 

Phase 2 - Terms and coefficients 
SPIKE GUARD EDGES QUART CENTR ANGLE FRONT ADVAN SHOVE THRET 

0.85 0.36 -0.24 0.23 0.21 -0.21 -0.19 -0.18 0.16 0.14 
NODES PINS DCHOL STARS OFSET HOLES DIAGL UNCEN MOBIL 

0.13 0.11 -.lo -0.09 0.09 0.09 -0.09 0.08 0.05 
Phase 3 - Terms and coefficients 

SPIKE KCENT PANTS GUARD FRONT CRAMP ADVAN EDGES CENTR STARS 
0.88 0.48 0.42 0.37 -0.23 

QUART ANGLE THRET DCHOL PINS 
0.23 -0.23 -0.22 

SHOVE NODES UNCEN OFSET 
0.19 -0.19 0.15 0.14 0.13 0.10 0.10 0.09  0.08 

0.20 -0.19 

Phase 4 - Terms and  coefficients 
SPIKE GUARD PANTS KCENT STARS ADVAN FRONT THRET ANGLE EDGES 

DIAGL CENTR SHOVE QUART PINS UNCEN OFSET DENYS UNDEN 
0.86 0.62 0.61 0.56 -0.30 -0.30 -0.27 0.26 -0.23 -0.22 

0.22 0.20 0.18 0.16 0.12 0.1 1 0.09 0.09 -0.07 

Phase 5 - Terms and coefficients 
GUARD SPIKE PANTS KCENT THRET DIAGL ADVAN  UNCEN ANGLE SHOVE 

UNDEN FRONT  DENYS PINS CENTR EDGES DYKSQ QUART DEUCE 
0.81 0.68 0.62 0.55 0.36 0.33 -0.32 0.27 -0.26 0.25 

-0.22 -0.22 0.20 0.19 0.18 “0.16 -0.16 0.15 0.06 

Phase 6 - Terms and coefficients 
PRESS KCENT UNCEN  UNDEN DYKSQ DENYS SHOVE DIAGL SPIKE THRET 

EXCHS  OFSET ADVAN PINS ANGLE FRONT DEUCE FREE QUART 
- 0.54 0.54 0.45 -0.41 - 0.40 0.40 0.39 0.39 0.37 0.36 

“0.34 -0.26 -0.24 0.23 -0.23 -0.32 -0.16 -0.11 0.08 

and negative integer numbers used to specify the relative 
ranking order of these groups. 

This process of updating the signature  tables themselves 
is done  at intervals as determined by the  rate at which sig- 
nificant data accumulate. During  the intervals between up- 
dating,  additions are, of course, continually being made to 
the tables of A’s and D’s. 

There  are several problems associated with  this newer 
learning scheme. Reference has already been made to the 
space and time  limitations which restrict the number of 
parameters to be combined in  each  signature  type and re- 
strict the range allowed for each parameter. The program 
has been written so that these numbers may be easily varied 
but this facility is of little use because of the very rapid rate 
at  which the performance and  the storage  requirements vary 
with the values chosen. Values less than those  indicated  lead 
to performance but little different from  that exhibited by 
the older linear polynomial experiments, while larger values 
greatly increase the memory requirements and slow down 
the learning  rate. A great  deal of juggling is required in or- 
der  to  make even the simplest change if the operating times 
are  to be kept within a reasonable range, and this still fur- 
ther complicates the problem of considering meaningful 

614 experiments. 

This inverse effect  of the  table size on  the learning rate 
comes about because of the need to accumulate data in the 
A and D columns for each  signature  table  entry. The effect 
is, of course, compounded by the hierarchical nature of the 
table complex. At  the  start of a new learning run there will 
be no entries in  any of the tables, the computed C‘s must 
all be set to zero and  the program will have no basis for the 
mini-maxing procedure.  Depending  upon the particular 
selection of the  book games used there  may,  in  fact, be a 
relatively long  period of time before a significant fraction 
of signatures will have been encountered, and as a conse- 
quence, statistically unreliable data will persist in the “C” 
table. Not only will the individual  function values be sus- 
pect but  the quantizing levels  will perforce be based on in- 
sufficient data  as well. The magnitude of this effect  will, of 
course, depend upon the size of the tables that  the program 
is generating. 

Palliative measures can be adopted  to  smooth  the C tables 
in order to compensate for  the blank  entries and  for entries 
based on insufficient data.  Four of the more effective 
smoothing techniques have been found  to be (1) smoothing 
by inversion, (2 )  smoothing from adjacent phases, (3) 
smoothing by interpolation and (4) smoothing by extrapola- 
tion.  Smoothing is,  of course, most needed during the early 
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stages of the learning process but  it also must be used dur- 
ing play even after a rather extensive learning run. 

As a matter of fact,  certain signatures are so improbable 
during book play (some may in  fact be impossible) that 
voids are still found to exist in  the signature tables, even 
after playing 100,000 book game board situations.  There is 
the reassuring thought that signatures not  found during the 
learning process are also unlikely to be found during play. 
However, because of the very many board situations ex- 
plored during  the  look-ahead process and presumably be- 
cause of the consequences of making decisions on  the basis 
of statistically unreliable entries, the quality of the play 
using unsmoothed data was found to be somewhat erratic 
until a fairly large amount of learning had been achieved. 

It should be pointed out,  that  the smoothing techniques 
are employed as temporary expedients. All previous 
smoothed results are discarded and completely new calcu- 
lations of values of C are made periodically during learning 
from  the accumulated and uncorrupted A and D data.  The 
effects of smoothing do persist, however, since the entries 
in the second and  third level tables, and hence the locations 
at which the A and D data  are stored are influenced by it. 

Smoothing by inversion is done by averaging positive and 
negative entries (with compensating sign inversions), and  it 
is partially justified by the zero-sum symmetrical charac- 
teristic of the data. 

Smoothing from adjacent phases is done by transferring 
data between phases. This is possible because of the  random 
way in which data accumulate  for the different phases, and 
it is reasonably valid because the values associated with a 
given signature vary but little between adjacent phases. 
This form of smoothing has been found to be of  but lim- 
ited utility since the  same reasons which account for  the ab- 
sence of specific data  for  one phase often operate to prevent 
corresponding data  from being generated for adjacent 
phases. 

Smoothing by interpolation is based on  the assumption 
that a missing correlation  for a signature which contains 
one  or more  zeros in  its argument can  be approximated by 
averaging the values appearing for  the related signatures 
where the zeros are individually replaced by a + and then 
by a - . In  order  for this to be effective there  must be data 
available for  both  the + and - cases for at least one 
of the zero-valued parameters. This form of smoothing  as- 
sumes a linear relationship for  the effect  of the parameter 
to which the interpolation is applied. It is therefore, no bet- 
ter as  far  as this one parameter is concerned than  the older 
linear polynomial procedure. This  form  of smoothing is 
quite ineffectual since all too often balanced pairs of entries 
cannot be found. 

Smoothing by extrapolation may take two forms,  the 
simplest being when entries are  found  for  the zero value of 
some  particular  function and for  either the + or  the - case 
and a void for  the remaining case is to be filled. All too 

Table 2 Correlation coefficients  measuring the effects  of  learning 
for the signature  table  procedure and for the linear  polynomial 
procedure as a function of the total number of book  moves 
analyzed.  These  tests  used 27 parameters which for the signature 
table score  were  grouped  in the  configuration  shown  in  Figure 4. 

Correlation  coefficient,  C 

Signature 
Total number of table Polynomial 

book moves analyzed  case case 

336  -0.08 
826 

-0.18 
+0.06 -0.13 

1,272  0.13 +0.06 
1,769 0.18  0.10 
2,705  0.27  0.15 
3,487  0.31  0.16 
4,680  0.34  0.15 
5,446  0.36  0.16 
8,933  0.38  0.19 

10,762 0.39 0.20 
14,240 0.40  0.21 
17,527  0.41 0.22 
21,302 0.41 0.23 
23,666  0.42  0.23 
30,173  0.43  0.24 
40,082  0.43  0.25 
50,294  0.43  0.26 
55,165 0.44 0.26 
66,663  0.45  0.26 
70,083  0.45  0.26 
90,093  0.46  0.26 

106,477  0.46  0.26 
120,247  0.47  0.26 
145,021  0.47  0.26 
173,091 0.48 0.26 
183,877  0.48  0.26 

often however, the  more recalcitrant cases are those  in 
which the zero  entry  only for some one parameter is found 
and substitute data  are sought  for both  the + and  the - 
case. Here we have recourse to the fact that  it is possible to 
compute the  apparent effect of the missing parameter from 
all of the  pertinent data  in  the signature  table, on  the as- 
sumption of linearity. The program  therefore  computes a 
correlation coefficient for this  parameter alone  and uses 
this with the  found signature data. Admittedly this is a very 
dangerous form of extrapolation since it completely ignores 
all nonlinear effects, but  it is often the only recourse. 

Signature  table  learning results 
The results of the best signature table learning run made to 
date  are shown  in Table 2 .  This particular run was arranged 
to yield comparable figures for  both  the newer signature 
table  procedure and  the older  linear  polynomial procedure. 
Because of the great amount of machine  time required (ap- 
proximately 10 hours per run) it has  not yet been possible to 
optimize (1) the choice of parameters to be used, (2) the 
range of values to be assigned to these parameters, (3) the 
specific assignments of parameters to signature types, (4) the 6151 
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detailed hierarchical structure of the signature tables, (5) the 
table sizes and (6) the various smoothing techniques which 
must be  used during the early learning phases. 

Table 2 reports the apparent goodness of play  based upon 
a correlation factor defined as 

c = ( L  - H ) / ( L  + H )  , 
where L is the accumulated count of all available moves 
which the program rates lower than its rating for the book 
recommended  move and H is the accumulated count of all 
available moves  which the program rates higher than or 
equal to its rating for the book recommended  move. Dur- 
ing this learning run the program looked ahead only a single 
ply except in those cases  where jumps were  pending. The 
observed correlation coefficients are fairly good measures of 
the goodness of the evaluation procedures without mini- 
maxing.  Coefficients  were computed during the run both by 
using the signature table procedure and by the older linear 
polynomial procedure. These  figures are tabulated in  the 
second and third columns against the total number of moves 
in column one. It will  be observed that the coefficient for 
the polynomial procedure appears to stabilize at a figure of 
0.26 after about 50,000 moves,  while the coefficient for the 
signature table procedure continues to rise and finally after 
perhaps 175,000 moves  reaches a limit of  0.48. Interestingly 
enough the signature-table coefficient  was  always larger 
than the polynomial coefficient  even during the very early 
stage although a detailed analysis on a move-by-move  basis, 
which cannot be  easily reproduced here, did show that the 
signature table method was the more erratic of the two dur- 
ing this stage. 

It should be noted that these linear polynomial results are 
not directly comparable with the coefficients for individual 
terms as reported in Table 1, since for Table 1 the H values 
used  in computing the C‘s did not include those moves rated 
equal to the book move  while in Table 2 equals are included, 
and the computed coefficients are correspondingly lower. 
The discrepancy  is particularly marked with respect to those 
parameters which are usually  zero for most  moves but 
which  may  be  extremely valuable for their differentiating 
ability when  they do depart from zero. Most of the terms 
with  high  coefficients  in Table 1 have this characteristic. 
Furthermore, when  mini-maxing  was required during the 
two tests it was  based on different criteria, for Table 1 on the 
linear polynomial and for Table 2 on signature tables. 

The results of Table 2 seem to indicate that the signature 
table procedure is superior to the linear polynomial proce- 
dure even  in its presently unoptimized form. It would  be 
nice  if one could measure this improvement in some more 
precise  way, making a correct allowance for the difference 
in the computation times. 

higher than its rating of the book recommended  move. 
Typical figures are tabulated below,  measured for a test lot 
of  895 representative moves after the program had learned 
by analyzing 173,989 book moves: 

moves  higher or equal 0 1 2 3 4 5 6 
fractional times found 0.38  0.26  0.16 0.10 0.06  0.03  0.01 

In view  of the high probability of occurrence of two equally 
acceptable moves, the sum of the figures in  the first two 
columns, namely  0.64,  is a reasonable estimate of the frac- 
tion of time that the program would make an acceptable 
move without look-ahead and mini-maxing. Look-ahead 
greatly improves the play and accounts for the difference 
between this prediction and the observed fact that the play- 
ing program tends to follow  book-recommended  moves a 
much  higher fraction of the time. 

Introduction of strategies 
The chief  defect  of the program in the recent past, according 
to several  checker masters, seems to have  been its failure to 
maintain any fixed  strategy during play. The good player 
during his  own  play  will note that a given board situation is 
favorable to him in some one respect and perhaps unfavor- 
able in some second  respect, and he  will  follow some fairly 
consistent policy for several  moves in a row. In general he 
will try to maintain his advantage and at the same time to 
overcome the unfavorable aspect. In doing this he may 
more or less ignore other secondary properties which, under 
different  circumstances, might themselves  be dominant. 
The program, as described, treats each board situation as a 
new problem. It is true  that this procedure does not allow 
the program to exploit those human failings  of the op- 
ponent that might have been  revealed by the earlier play or 
to conduct a war of  nerves intended to trick the opponent. 
Such actions have little place in games of complete infor- 
mation and can well  be ignored.8 

What may certainly be questioned is the failure to take 
account of the initial board situation in setting the goals to 
be  considered during the look-ahead process.  Were the 

anonymous reviewer  who quite rightly pointed out that  it would  be desirable 
This statement can be questioned and, in fact, has been questioned by an 

for the program to be able to define what is called “deep objectives,” and, 
more importantly, to be able to detect such “deep objectives” on the part of 
a human opponent. The reviewer  went on  to say in part ““the good player 
will sometimes define a ‘deep  objective’ and maneuver toward that point. He 
is always on the lookout for possibilities  which  will  help him to get the better 
of the opponent. The opponent, unaware of his true objective until too late, 
does not defend adequately and loses.-It is most helpful to him to know 
that his opponent is  not also playing a similar ‘deep  game.’ I believe that the 
‘practical indeterminacy’ of  checkers makes the technique of  ‘deep’  objec- 
tives  by good players quite feasible. Indeed, I don’t doubt the technique is 
part of the basic equipment of any champion player, however inarticulately 
he may describe it. This is perhaps the reason Hellman did better in the games 
by mail. He bad time to study out appropriately ‘deep’ objectives and then 
to realize them. This is also what checker masters have in mind when  they 
criticize the program’s failure to maintain any fixed strategy during play.” 

This ooint of view finds suooort in the observation that those master ular- 
Perhaps a better way to assess the goodness of the play ers whd have defeated the computer have all asked searching questions re- 

using signature tables is to list the fraction of  the time that hold the program in awe and generally fail  to make any attempt  to under- 
garding the program, while good players who fail to win  usually  seem to 

stand  it. 
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program  able to  do this, then it could adopt a strategy for 
any  particular move. If the program finally made a move 
that was consistent with this strategy, and if the opponent 
were unable to vitiate this strategy, then the program would, 
on the next move, again  tend to adopt  the  same strategy. 
Of course, if the program  had been unable to maintain an 
advantage by following its initial strategy, it might now 
find that a different strategy was indicated and  it would 
therefore change its strategy. Nevertheless, on  the average, 
the program might follow a given strategy for several moves 
in a row and so exhibit playing characteristics that would 
give the impression of long  range planning. 

A possible mechanism for introducing  this kind of strate- 
gic planning is provided by the signature  table  procedure 
and by the plausibility analysis. It is only necessary to view 
the different signature types as different strategic elements 
and  to alter  the relative weights assigned to the different sig- 
nature types as a result of the plausibility analysis of  the 
initial board situation. For this to be effective, some care 
must  be given to  the groupings of the parameters into  the 
signature types so that these signature types tend to cor- 
respond to recognizable strategic concepts. Fortunately, the 
same initial-level grouping of parameters that  is indicated 
by interdependency considerations seems to be reasonable 
in  terms of strategies. We conclude that  it is quite feasible 
to introduce  the  concept of strategy in  this restricted way. 

For reasons of symmetry, it seems desirable to pick two 
signature types for emphasis, that  one yielding the highest 
positive value and  that  one yielding the most negative value 
for the  most plausible move found during the initial plausi- 
bility analysis. This  procedure recognizes the fact that  to 
the  opponent,  the signs are reversed and his strongest sig- 
nature type will be the first player’s weakest one and vice 
versa. The simplest way to emphasize a particular strategy 
is to multiply the resulting values found  for  the two selected 
signature types by some  arbitrary  constant before entering 
a subsequent  stage of the analysis. A factor of 2 (with a 
limit on  the maximum resulting value so as  not to exceed 

the table range) seemed reasonable and this has been used 
for most of the experiments to date. 

The results to date have been disappointing, presumably 
because of the ineffectual arrangement of terms into usable 
strategic groups, and  as a consequence, this  method of in- 
troducing strategies has been temporarily abandoned. 

Conclusions 
While the goal outlined in Ref. 1, that of getting the pro- 
gram to generate its own parameters,  remains  as fzr in the 
future as it seemed to be in 1959, we can conclude that tech- 
niques are now in hand  for dealing with many of the tree 
pruning and parameter  interaction problems which were 
certainly much less  well understood at  the time of the earlier 
paper. Perhaps with these newer tools we may be able to 
apply machine learning techniques to many problems of 
economic importance  without waiting for the long-sought 
ultimate solution. 
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