
Lecture 19: Neural Networks

• Perceptrons

• Sigmoid neurons

• Adjusting parameters of the sigmoid using LMS

• Feed-forward neural networks

• Backpropagation

COMP-424, Lecture 19 - March 27, 2013 1



The Human Brain

• Contains ˜ 1011 neurons, each of which may have up to ˜ 104−5

input/output connections

• Each neuron is fairly slow, with a switching time of ˜ 1 millisecond

• Computers are at least 106 times faster in raw switching speed

• Yet the brain is very fast and reliable at computationally intensive tasks
(e.g. vision, speech recognition, knowledge retrieval)

• The brain is also fault-tolerant, and exhibits graceful degradation with
damage

• Maybe this is due to its architecture, which does massive parallel
computation!

COMP-424, Lecture 19 - March 27, 2013 2



Connectionist Models

• Based on the assumption that a computational architecture similar to
the brain would duplicate (at least some of) its wonderful abilities.

• Properties of artificial neural nets (ANNs):

– Many neuron-like threshold switching units
– Many weighted interconnections among units
– Highly parallel, distributed process
– Emphasis on tuning weights automatically

• Many different kinds of architectures, motivated both by biology and
mathematics/efficiency of computation

COMP-424, Lecture 19 - March 27, 2013 3



Recall: Linear Hypotheses

• Consider hypotheses of the form:

hw(x) = w · x = w0 + w1x1 + · · ·+ wnxn

where w = 〈w0, w1, . . . wn〉 is a weight or parameter vector

• The goal is to learn weights wj that minimize the sum squared error over
the training examples:

J(w) =
1

2

m∑
i=1

(yi − hw(xi))
2

where m is the number of training examples.

• The function J(w) defines an error surface in weight space.

• We use gradient descent to search for a good set of weights!

COMP-424, Lecture 19 - March 27, 2013 4



Gradient Descent

• Direction of the steepest descent is given by the gradient function:

∇J =

[
∂J

∂w0
,
∂J

∂w1
, · · · ∂J

∂wn

]

• Training rule:

wj ← wj − α
∂J

∂wj
,∀j = 0, . . . n

COMP-424, Lecture 19 - March 27, 2013 5



Linear Models for Classification

• The linear hypotheses we discussed are good for predicting real-valued
functions

• What if we want to solve a binary classification problem?

– E.g., predict whether a tumor will recur
– E.g., predict whether a game will be won or lost from a board position

• Recall: in a binary classification problem the outputs, yi, take one of two
discrete values: {0, 1} or {−1,+1} as convenient

• Can we develop linear models for classification as we did for regression?

COMP-424, Lecture 19 - March 27, 2013 6



Perceptron

• We can take a linear combination and threshold it:

hw(x) = sgn(x ·w) =

{
+1 if x ·w > 0
−1 otherwise

This is called a perceptron.

• The output is taken as the predicted class.

COMP-424, Lecture 19 - March 27, 2013 7



Decision Surface of a Perceptron

x1

x2
+

+

-
-

+
-

x1

x2

(a) (b)

-

+ -

+

• Represents some useful functions.

E.g., what weights represent x1 ∧ x2? (Assume boolean xi)

• But some functions not linearly separable!

E.g. XOR.

• Therefore, we need networks of perceptron-like elements.

COMP-424, Lecture 19 - March 27, 2013 8



The Need for Networks

• Perceptrons have very simple decision surfaces (only linearly separable
functions)

• If we connect them into networks, the error surface for the network is
not differentiable (because of the hard threshold)

• So we cannot apply gradient descent to find a good set of weights.

• We would like a soft threshold!

Nicer math, and closer to biological neurons.

COMP-424, Lecture 19 - March 27, 2013 9



Sigmoid Unit (Neuron)

4

COMP-424: Artificial intelligence Joelle Pineau7

Linear models for classification

• The linear hypotheses we discussed are good for predicting real-valued

functions (regression problems).

• What if we want to solve a binary classification problem?

E.g. tumor recurrence prediction

• Recall: in binary classification, the outputs yi take one of two discrete

values: {0, 1} or {-1, +1}.

• Can we develop linear models for classification as we did for

regression?

COMP-424: Artificial intelligence Joelle Pineau8

Perceptron

• We can take a linear combination and threshold it:

This is called a perceptron.

• The output is taken as the predicted class.

σ(x) is the sigmoid function: 1
1+e−x

Nice property: dσ(x)
dx = σ(x)(1− σ(x))

We can derive gradient decent rules to train:

• One sigmoid unit
• Multi-layer networks of sigmoid units (called Backpropagation)

COMP-424, Lecture 19 - March 27, 2013 10



Logistic (Sigmoid) Hypothesis

hw(x) = σ(w · x) = 1

1 + e−w·x

• We want to determine a ”good” weight vector w

• Assume again that we want to minimize the sum-squared error

• Note that in this case:

– If the output is predicted correctly the error is 0
– If the output is predicted incorrectly the error is 1

COMP-424, Lecture 19 - March 27, 2013 11



Minimizing Sum-Squared Error

• Error function:
J(w) = 1/2

∑
i

(yi − hw(xi))
2

• Gradient of the error:

∇J = −
∑
i

(yi − hw(xi))∇hw(xi)

• For sigmoid hypotheses, we have:

∇hw(xi) = hw(xi)(1− hw(xi))xi

• We obtain the weight update rule:

w← w + α
∑
i

(yi − hw(xi))hw(xi)(1− hw(xi))xi

• We can do batch or on-line updates

COMP-424, Lecture 19 - March 27, 2013 12



The Need for Networks

Sigmoid units vs. perceptron:

• Sigmoid units provide “soft” threshold, perceptron provides “hard”
threshold

• Expressive power is the same: limited to linearly separable instances

x1

x2
+

+

-
-

+
-

x1

x2

(a) (b)

-

+ -

+

COMP-424, Lecture 19 - March 27, 2013 13



Example: Logical Functions of Two Variables

• One sigmoid neuron can learn the AND function (left) but not the XOR
function (right)

• In order to learn in data sets that are not linearly separable, we need
networks of sigmoid units

COMP-424, Lecture 19 - March 27, 2013 14



Feed-Forward Neural Networks

i

j

Oi=Xji

WjiInput Layer

Hidden Layer

Output Layer

Input 1

Input n

1

1

.

.

. .
.
.

1

1

• A collection of units (neurons) with sigmoid activation, arranged in layers

• Layers 0 is the input layer, its units just copy the inputs

• Last layer, K, is called output layer, its units provide the output

• Layers 1, . . .K − 1 are hidden layers, cannot be detected outside of the
network

COMP-424, Lecture 19 - March 27, 2013 15



Why This Name?

• In feed-forward networks the output of units in layer k becomes an input
for units in layers k + 1, k + 2 . . .K.

• There are no cross-connections between units in the same layer

• There are no backward (“recurrent”) connections from layers downstream

• Typically, units in layer k provide input to units in layer k + 1 only

• In fully connected networks, all units in layer k are connected to all units
in layer k + 1

COMP-424, Lecture 19 - March 27, 2013 16



Notation

i

j

Oi=Xji

WjiInput Layer

Hidden Layer

Output Layer

Input 1

Input n

1

1

.

.

. .
.
.

1

1

• wj,i is the weight on the connection from unit i to unit j

• By convention, xj,0 = 1,∀j
• The output of unit j, denoted oj, is computed using a sigmoid: oj =
σ(wj ·xj) where wj is vector of weights entering unit j and xj is vector
of inputs to unit j

• By definition of the connections, xj,i = oi

COMP-424, Lecture 19 - March 27, 2013 17



Computing the Output of the Network

• Suppose that we want the network to make a prediction for instance
〈x, y〉
• In a feed-forward network, this can be done in a single forward pass:

For layer k = 1 to K

1. Compute the output of all neurons in layer k:

oj = σ(wj · xj),∀j ∈ Layer k

2. Copy this output as inputs to the next layer:

xj,i = oi,∀i ∈ Layer k, ∀j ∈ Layer k + 1

COMP-424, Lecture 19 - March 27, 2013 18



Learning in Feed-Forward Neural Networks

• Assume the network structure (units and connections) is given

• The learning problem is finding a good set of weights

• The answer: gradient descent, because the hypothesis formed by the
network, hw, is

– Differentiable! Because of the choice of sigmoid units
– Very complex! Hence, direct computation of the optimal weights is

not possible

COMP-424, Lecture 19 - March 27, 2013 19



Gradient Descent Update for Neural Networks

• Assume we have a fully connected network:

– N input units (indexed 1, . . . N)
– One hidden layer with H hidden units (indexed N + 1, . . . N +H)
– One output unit (indexed N +H + 1)

• Suppose we want to compute the weight update after seeing instance
〈x, y〉
• Let oi, i = 1, . . . N +H +1 be the outputs of all units in the network for

the given input x

• The sum-squared error function is:

J(w) =
1

2
(y − hw(x))2 =

1

2
(y − oN+H+1)

2

COMP-424, Lecture 19 - March 27, 2013 20



Gradient Descent Update for Networks (2)

• The derivative with respect to the weights wN+H+1,j entering oN+H+1

is computed as usual:

∂J

∂wN+H+1,j
= −(y − oN+H+1)oN+H+1(1− oN+H+1)xN+H+1,j

• For convenience, let

δN+H+1 = (y − oN+H+1)oN+H+1(1− oN+H+1)

• Hence, we can write:

∂J

∂wN+H+1,j
= −δN+H+1xN+H+1,j

COMP-424, Lecture 19 - March 27, 2013 21



Gradient Descent Update for Networks (3)

• The derivative wrt the other weights, wl,j where j = 1, . . . N and
l = N + 1, . . . N +H, can be computed using chain rule:

∂J

∂wl,j
= −(y − oN+H+1)oN+H+1(1− oN+H+1) ·

·
∂

∂wl,j
(wN+H+1 · xN+H+1)

= −δN+H+1wN+H+1,l
∂

∂wl,j
xN+H+1,l

• Recall that xN+H+1,l = ol. Hence, we have:

∂

∂wl,j
xN+H+1,l = ol(1− ol)xl,j

• Putting these together, and using similar notation as before:

∂J

∂wl,j
= −ol(1− ol)δN+H+1wN+H+1,lxl,j = −δlxl,j

COMP-424, Lecture 19 - March 27, 2013 22



Backpropagation Algorithm

• Just do gradient descent over all weights in the network!

• We put together the two phases described above:

1. Forward pass: Compute the outputs of all units in the network,
ok, k = N + 1, . . . N +H + 1, going in increasing order of the layers

2. Backward pass: Compute the δk updates described before, going from
k = N +H +1 down to k = N +1 (in decreasing order of the layers)

3. Update to all the weights in the network:

wi,j ← wi,j + αi,jδixi,j

COMP-424, Lecture 19 - March 27, 2013 23



Backpropagation Algorithm in Detail

• Initialize all weights to small random numbers.

• Repeat until satisfied:

– Pick a training example
– Input example to the network and compute output oN+H+1

– For the output unit, compute the correction: δN+H+1 ← oN+H+1(1−
oN+H+1)(y − oN+H+1)

– For each hidden unit h, compute its share of the correction:

δh ← oh(1− oh)wN+H+1,hδN+H+1

– Update each network weight: For h = 1, . . . H,

wh,i ← wh,i + αh,iδhxh,i, i = 1, . . . N

wN+H+1,h ← wN+H+1,h + αN+H+1,hδN+H+1oh

COMP-424, Lecture 19 - March 27, 2013 24



Expressiveness of Feed-Forward Neural Networks

• A single sigmoid neuron has the same representational power as a
perceptron: Boolean AND, OR, NOT, but not XOR

• Every Boolean function can be represented by a network with single
hidden layer, but might require a number of hidden units that is
exponential in the number of inputs

• Every bounded continuous function can be approximated with arbitrary
precision by a network with one, sufficiently large hidden layer

• Any function can be approximated to arbitrary accuracy by a network
with two hidden layers

COMP-424, Lecture 19 - March 27, 2013 25



Backpropagation Variations

• Previous version corresponds to incremental (stochastic) gradient descent

• An analogous batch version can be used as well:

– Loop through the training data, accumulating weight changes
– Update weights

• One pass through the data set is called an epoch

• Algorithm can be easily generalized to predict probabilities, instead of
minimizing sum-squared error

• It can also be generalized to arbitrary directed graphs

COMP-424, Lecture 19 - March 27, 2013 26



Convergence of Backpropagation

• Backpropagation performs gradient descent over all the parameters in
the network

• Hence, if the learning rate is appropriate, the algorithm is guaranteed to
converge to a local minimum of the cost function

– NOT the global minimum
– Can be much WORSE than global minimum
– There can be MANY local minima (Auer et al, 1997)

• Solution: random restarts = train multiple nets with different initial
weights.

• In practice, the solution found is often very good

• Training can take thousands of iterations → VERY SLOW!

But using network after training is very fast.

COMP-424, Lecture 19 - March 27, 2013 27



Overfitting in Feed-Forward Networks

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

Er
ro

r
Number of weight updates

Error versus weight updates (example 1)

Training set error
Validation set error

Overfitting in neural nets comes from three sources:

• Too many weights

• Training for too long

• Weights that have become too extreme

Use a validation set to decide when to stop training!

COMP-424, Lecture 19 - March 27, 2013 28



Practical Issues

• The choice of initial weights has great impact on convergence!

– If the input size is N , and N is large, a good heuristic is to choose
initial weights between −1/N and 1/N .

• Backpropagation is very sensitive to learning rate

– If it is too large, the weights diverge.
– If it is too small, convergence is very slow

• Sometimes it is appropriate to use different learning rates for different
layers and units

• There are algorithms that try to change the learning rate automatically

COMP-424, Lecture 19 - March 27, 2013 29



More Practical Issues

• It is bad to have inputs of very different magnitude

• To avoid this, sometimes we re-encode the input variables. E.g.

– 1-of-n encoding: discretize into a given number of intervals n

E.g. If x ∈ [0, 1000], n = 10:
x ∈ [0, 100] → 1 0 0 0 0 0 0 0 0 0
x ∈ [100, 200] → 0 1 0 0 0 0 0 0 0 0
etc.

– Thermometer encoding: like 1-of-n, but if the variable falls in the i-th
interval, all bits 1 . . . i are set to 1

E.g. If x ∈ [0, 1000], n = 10: x ∈ [0, 100] → 1 0 0 0 0 0 0 0 0 0
x ∈ [100, 200] → 1 1 0 0 0 0 0 0 0 0

• A thermometer encoding is usually better than 1-of-n

COMP-424, Lecture 19 - March 27, 2013 30



And Yet More Practical Issues...

• Too many hidden units hurt! Why?

– Good heuristic: log(N), where N is the number of inputs.

• Too many hidden layers also usually hurt!

• Remember: Two layers are always enough

COMP-424, Lecture 19 - March 27, 2013 31



Example: ALVINN (Pomerleau, 1993)

• Task: learn how to steer a car automatically

• Inputs: grey-level pixels from images captured by a camera on top of the
car

• Output: 30 units, corresponding to different steering angles

• The action is picked according to which unit has the highest activation

• Training data gathered during roughly 2 hours of driving by a person

• Training algorithm: backpropagation

• Was able to drive across the U.S (with a person braking, and on highways
only).

COMP-424, Lecture 19 - March 27, 2013 32



Example: ALVINN (Pomerleau, 1993)

20

COMP-424: Artificial intelligence Joelle Pineau39

Example: ALVINN (Pomerleau, 1993)

• Task: automatically learn how to steer a car.

• Inputs: grey-level pixels from images captured by camera on top of car.

• Output: 30 units, corresponding to different steering angles.

• The action is picked according to which unit has the highest activation.

• Training data gathered during roughly 2 hours of driving by a person.

• Training algorithm: backpropagation.

• Was able to drive across the US (with a person braking, and on

highways only.)

COMP-424: Artificial intelligence Joelle Pineau40

Example: ALVINN (Pomerleau, 1993)

• The right shows the weights of one of the hidden units to the output

(top row) and the weights coming into the hidden units from the inputs.
The right shows the weights of one of the hidden units to the output

(top row) and the weights coming into the same hidden unit from the inputs
(square)

COMP-424, Lecture 19 - March 27, 2013 33



When to Consider Using Neural Networks

• Input is high-dimensional discrete or real-valued (e.g. raw sensor input)

• Output is discrete or real valued, or a vector of values

• Possibly noisy data

• Training time is unimportant

• Form of target function is unknown

• Human readability of results is unimportant

• Computation of the output based on the input has to be fast

Examples:

• Speech phoneme recognition [Waibel] and synthesis [Nettalk]

• Image classification [Kanade, Baluja, Rowley]

• Financial prediction

COMP-424, Lecture 19 - March 27, 2013 34


