
Lecture 17: More on Markov Decision Processes.
Reinforcement learning

• Learning a model: maximum likelihood

• Learning a value function directly

– Monte Carlo
– Temporal-difference (TD) learning

COMP-424, Lecture 17 - March 18, 2013 1

Recall: MDPs, Policies, Value functions

• An MDP consists of states S, actions A, rewards ra(s) and transition
probabilities Ta(s, s

′)

• A policy π describes how actions are picked at each state:

π(s, a) = P (at = a|st = s)

• The value function of a policy, V π, is defined as:

V π(s) = Eπ[rt+1 + γrt+2 + γ2rt+3 + . . .]

• We can find V π by solving a linear system of equations

• Policy iteration gives a greedy local search procedure based on the value
of policies

COMP-424, Lecture 17 - March 18, 2013 2

Optimal Policies and Optimal Value Functions

• Our goal is to find a policy that has maximum expected utility, i.e.
maximum value
• Does policy iteration fulfill this goal?
• The optimal value function V ∗ is defined as the best value that can be

achieved at any state:

V ∗(s) = max
π

V π(s)

• In a finite MDP, there exists a unique optimal value function (shown by
Bellman, 1957)
• Any policy that achieves the optimal value function is called optimal

policy
• There has to be at least one deterministic optimal policy
• Both value iteration and policy iteration can be used to obtain an optimal

value function.

COMP-424, Lecture 17 - March 18, 2013 3

Main idea

• Turn recursive Bellman equations into update rules

• Eg value iteration

1. Start with an arbitrary initial approximation V0
2. On each iteration, update the value function estimate:

Vk+1(s)← max
a

(
ra(s) + γ

∑
s′

Ta(s, s
′)Vk(s

′)

)
,∀s

3. Stop when the maximum value change between iterations is below a
threshold

• The algorithm converges (in the limit) to the true V ∗

• Similar update for policy evaluation.

COMP-424, Lecture 17 - March 18, 2013 4

A More Efficient Algorithm

• Instead of updating all states on every iteration, focus on important
states

• Here, we can define important as visited often

E.g., board positions that occur on every game, rather than just once in
100 games

• Asynchronous dynamic programming:

– Generate trajectories through the MDP
– Update states whenever they appear on such a trajectory

• This focuses the updates on states that are actually possible.

COMP-424, Lecture 17 - March 18, 2013 5

How Is Learning Tied with Dynamic Programming?

• Observe transitions in the environment, learn an approximate model
r̂a(s), T̂a(s, s

′)

– Use maximum likelihood to compute probabilities
– Use supervised learning for the rewards

• Pretend the approximate model is correct and use it for any dynamic
programming method

• This approach is called model-based reinforcement learning

• Many believers, especially in the robotics community

COMP-424, Lecture 17 - March 18, 2013 6

Simplest Case

• We have a coin X that can land in two positions (head or tail)

• Let P (X = H) = θ be the unknown probability of the coin landing head

• In this case, X is a Bernoulli (binomial) random variable

• Given a sequence of independent tosses x1, x2, . . . xm we want to estimate
θ.

COMP-424, Lecture 17 - March 18, 2013 7

More Generally: Statistical Parameter Fitting

• Given instances x1, . . . xm that are independently identically distributes
(i.i.d.):

– The set of possible values for each variable in each instance is known
– Each instance is obtained independently of the other instances
– Each instance is sampled from the same distribution

• Find a set of parameters θ such that the data can be summarized by a
probability P (xj|θ)
• θ depends on the family of probability distributions we consider (e.g.

binomial, multinomial, Gaussian etc.)

COMP-424, Lecture 17 - March 18, 2013 8

Coin Toss Example

• Suppose you see the sequence:

H,T,H,H,H, T,H,H,H, T

• Which of these values of P (X = H) = θ do you think is best?

– 0.2
– 0.5
– 0.7
– 0.9

COMP-424, Lecture 17 - March 18, 2013 9

How Good Is a Parameter Set?

• It depends on how likely it is to generate the observed data

• Let D be the data set (all the instances)

• The likelihood of parameter set θ given data set D is defined as:

L(θ|D) = P (D|θ)

• If the instances are i.i.d., we have:

L(θ|D) = P (D|θ) = P (x1, x2, . . . xm|θ) =
m∏
j=1

P (xj|θ)

COMP-424, Lecture 17 - March 18, 2013 10

Example: Coin Tossing

• Suppose you see the following data:

D = H,T,H, T, T

What is the likelihood for a parameter θ?

L(θ|D) = θ(1− θ)θ(1− θ)(1− θ) = θNH(1− θ)NT

COMP-424, Lecture 17 - March 18, 2013 11

Sufficient Statistics

• To compute the likelihood in the coin tossing example, we only need to
know N(H) and N(T) (number of heads and tails)

• We say that N(H) and N(T) are sufficient statistics for this probabilistic
model (binomial distribution)

• In general, a sufficient statistic of the data is a function of the data that
summarizes enough information to compute the likelihood

• Formally, s(D) is a sufficient statistic if, for any two data sets D and D′,

s(D) = s(D′)⇒ L(θ|D) = L(θ|D′)

COMP-424, Lecture 17 - March 18, 2013 12

Maximum Likelihood Estimation (MLE)

• Choose parameters that maximize the likelihood function

• We want to maximize:

L(θ|D) =

m∏
j=1

P (xj|θ)

This is a product, and products are hard to maximize!

• Standard trick is to maximize logL(θ|D) instead

logL(θ|D) =

m∑
j=1

logP (xj|θ)

• To maximize, we take the derivatives of this function with respect to θ
and set them to 0

COMP-424, Lecture 17 - March 18, 2013 13

MLE Applied to the Binomial Data

• The likelihood is:

L(θ|D) = θN(H)(1− θ)N(T)

• The log likelihood is:

logL(θ|D) = N(H) log θ +N(T) log(1− θ)

• Take the derivative of the log likelihood and set it to 0:

∂

∂θ
logL(θ|D) =

N(H)

θ
+
N(T)

1− θ
(−1) = 0

• Solving this gives

θ =
N(H)

N(H) +N(T)

COMP-424, Lecture 17 - March 18, 2013 14

Observations

• Depending on our choice of probability distribution, when we take the
gradient of the likelihood we may not be able to find θ analytically

• An alternative is to do gradient descent instead:

1. Start with some guess θ̂
2. Update θ̂:

θ̂ ← θ̂ + α
∂

∂θ
logL(θ|D)

where α ∈ (0, 1) is a learning rate
3. Go back to 2 (for some number of iterations, or until θ stops changing

significantly

• Sometimes we can also determine a confidence interval around the
value of θ

COMP-424, Lecture 17 - March 18, 2013 15

MLE for multinomial distribution

• Suppose that instead of tossing a coin, we roll a K-faced die

• The set of parameters in this case is p(k) = θk, k = 1, . . .K

• We have the additional constraint that
∑K
k=1 θk = 1

• What is the log likelihood in this case?

logL(θ|D) =
∑
k

Nk log θk

where Nk is the number of times value k appears in the data

• We want to maximize the likelihood, but now this is a constrained
optimization problem

• (Without the details of the proof) the best parameters are given by the
”empirical frequencies”:

θ̂k =
Nk∑
kNk

COMP-424, Lecture 17 - March 18, 2013 16

MLE for Bayes Nets

• Recall: For more complicated distributions, involving multiple variables,
we can use a graph structure (Bayes net)

0.65
P(C|A)
C=0

A=0
A=1

0.05 0.95
0.7 0.3

C=1

P(B)
B=1 B=0
0.01 0.99

B=0,E=0
B=0,E=1
B=1,E=0
B=1,E=1

A=1 A=0
0.001 0.999
0.3
0.8
0.95

0.7

0.05
0.2

P(A|B,E)

E B

A

C

R

P(E)
E=1 E=0

0.9950.005

P(R|E)
R=1

E=0
E=1

R=0
0.99990.0001
0.35

• Each node has a conditional probability distribution of the variable at
the node given its parents (eg multinomial)

• The joint probability distribution is obtained as a product of the
probability distributions at the nodes.

COMP-424, Lecture 17 - March 18, 2013 17

MLE for Bayes Nets

• Instances are of the form 〈rj, ej, bj, aj, cj〉, j = 1, . . .m

L(θ|D) =

m∏
j=1

p(rj, ej, bj, cj, aj|θ) (from i.i.d)

=

m∏
j=1

p(ej)p(rj|ej)p(bj)p(aj|ej, bj)p(cj|ej) (factorization)

= (

m∏
j=1

p(ej))(

m∏
j=1

p(rj|ej))(
m∏
j=1

p(bj))(

m∏
j=1

p(aj|ej, bj))(
m∏
j=1

p(cj|ej))

=
n∏
i=1

L(θi|D)

where θi are the parameters associated with node i.

COMP-424, Lecture 17 - March 18, 2013 18

Consistency of MLE

• For any estimator, we would like the parameters to converge to the “best
possible” values as the number of examples grows

We need to define “best possible” for probability distributions
• Let p and q be two probability distributions over X. The

Kullback-Leibler divergence between p and q is defined as:

KL(p, q) =
∑
x

p(x) log
p(x)

q(x)

COMP-424, Lecture 17 - March 18, 2013 19

A very brief detour into information theory

• Suppose I want to send some data over a noisy channel

• I have 4 possible values that I could send (e.g. A,C,G,T) and I want to
encode them into bits such as to have short messages.

• Suppose that all values are equally likely. What is the best encoding?

COMP-424, Lecture 17 - March 18, 2013 20

A very brief detour into information theory (2)

• Now suppose I know A occurs with probability 0.5, C and G with
probability 0.25 and T with probability 0.125. What is the best encoding?

• What is the expected length of the message I have to send?

COMP-424, Lecture 17 - March 18, 2013 21

Optimal encoding

• Suppose that I am receiving messages from an alphabet of m letters,
and letter j has probability pj

• The optimal encoding (by Shannon’s theorem) will give − log2 pj bits to
letter j

• So the expected message length if I used the optimal encoding will be
equal to the entropy of p:

−
∑
j

pj log2 pj

COMP-424, Lecture 17 - March 18, 2013 22

Interpretation of KL divergence

• Suppose now that letters would be coming from p but I don’t know this.
Instead, I believe letters are coming from q, and I use q to make the
optimal encoding.

• The expected length of my messages will be −
∑
j pj log2 qj

• The amount of bits I waste with this encoding is:

−
∑
j

pj log2 qj +
∑
j

pj log2 pj =
∑
j

pj log2
pj
qj

= KL(p, q)

COMP-424, Lecture 17 - March 18, 2013 23

Properties of MLE

• MLE is a consistent estimator, in the sense that (under a set of
standard assumptions), w.p.1, we have:

lim
|D|→∞

θ = θ
∗
,

where θ∗ is the “best” set of parameters: θ∗ = argminθKL(p
∗(X), p(X|θ))

(p∗ is the true distribution)

• With a small amount of data, the variance may be high (what happens
if we observe just one coin toss?)

COMP-424, Lecture 17 - March 18, 2013 24

Model-based reinforcement learning

• Very simple outline:

– Learn a model of the reward (eg by averaging; more on this next time)
– Learn a model of the probability distribution (eg by using MLE)
– Do dynamic programming updates using the learned model as if it

were true, to obtain a value function and a policy

• Works very well if you have to optimize many reward functions on the
same environment (same transitions/dynamics)

• But you have to fit a probability distribution, which is quadratic in the
number of states (so could be very big)

• Obtaining the value of a fixed policy is then cubic in the number of
states, and then we have to tun multiple iterations...

• Can we get an algorithm linear in the number of states?

COMP-424, Lecture 17 - March 18, 2013 25

Monte Carlo Methods

• Suppose we have an episodic task: the agent interacts with the
environment in trials or episodes, which terminate at some point

• The agent behaves according to some policy π for a while, generating
several trajectories.

• How can we compute V π?

• Compute V π(s) by averaging the observed returns after s on the
trajectories in which s was visited.

• Like in bandits, we can do this incrementally: after received return Rt,
we update

V (st)← V (st) + α(Rt − V (st))

where α ∈ (0, 1) is a learning rate parameter

COMP-424, Lecture 17 - March 18, 2013 26

Temporal-Difference (TD) Prediction

• Monte Carlo uses as a target estimate for the value function the actual
return, Rt:

V (st)← V (st) + α [Rt − V (st)]

• The simplest TD method, TD(0), uses instead an estimate of the return:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

If V (st+1) were correct, this would be like a dynamic programming
target!

COMP-424, Lecture 17 - March 18, 2013 27

TD Is Hybrid between Dynamic Programming and
Monte Carlo!

• Like DP, it bootstraps (computes the value of a state based on estimates
of the successors)

• Like MC, it estimates expected values by sampling

COMP-424, Lecture 17 - March 18, 2013 28

TD Learning Algorithm

1. Initialize the value function, V (s) = 0,∀s
2. Repeat as many times as wanted:

(a) Pick a start state s for the current trial
(b) Repeat for every time step t:

i. Choose action a based on policy π and the current state s
ii. Take action a, observed reward r and new state s′

iii. Compute the TD error: δ ← r + γV (s′)− V (s)
iv. Update the value function:

V (s)← V (s) + αsδ

v. s← s′

vi. If s′ is not a terminal state, go to 2b

COMP-424, Lecture 17 - March 18, 2013 29

Example

Suppose you start will all 0 guesses and observe the following episodes:

• B,1

• B,1

• B,1

• B,1

• B,0

• A,0; B (reward not seen yet)

What would you predict for V (B)? What would you predict for V (A)?

COMP-424, Lecture 17 - March 18, 2013 30

Example: TD vs Monte Carlo

• For B, it is clear that V (B) = 4/5.

• If you use Monte Carlo, at this point you can only predict your initial
guess for A (which is 0)

• If you use TD, at this point you would predict 0 + 4/5! And you would
adjust the value of A towards this target.

COMP-424, Lecture 17 - March 18, 2013 31

Example (continued)

Suppose you start will all 0 guesses and observe the following episodes:

• B,1

• B,1

• B,1

• B,1

• B,0

• A,0; B 0

What would you predict for V (B)? What would you predict for V (A)?

COMP-424, Lecture 17 - March 18, 2013 32

Example: Value Prediction

• The estimate for B would be 4/6

• The estimate for A, if we use Monte Carlo is 0; this minimizes the
sum-squared error on the training data

• If you were to learn a model out of this data and do dynamic
programming, you would estimate the A goes to B, so the value of
A would be 0 + 4/6

• TD is an incremental algorithm: it would adjust the value of A towards
4/5, which is the current estimate for B (before the continuation from
B is seen)

• This is closer to dynamic programming than Monte Carlo

• TD estimates take into account time sequence

COMP-424, Lecture 17 - March 18, 2013 33

Advantages

• No model of the environment is required! TD only needs experience with
the environment.

• On-line, incremental learning:

– Can learn before knowing the final outcome
– Less memory and peak computation are required

• Both TD and MC converge (under mild assumptions), but TD usually
learns faster.

COMP-424, Lecture 17 - March 18, 2013 34

