
Lecture 16: Markov Decision Processes. Policies and
value functions.

• Markov decision processes

• Policies and value functions

• Dynamic programming algorithms for evaluating policies and optimizing
policies

• Introduction to learning

COMP-424, Lecture 16 - March 13, 2013 1

Recall: Markov Decision Processes (MDPs)

• Finite set of states S (we will lift this later)

• Finite set of actions A

• γ = discount factor for future rewards (between 0 and 1, usually close
to 1). Two possible interpretations:

– At each time step there is a 1 − γ chance that the agent dies, and
does not receive rewards afterwards

– Inflation rate: if you receive the same amount of money in a year, it
will be worth less

• Markov assumption: st+1 and rt+1 depend only on st and at but not on
anything that happened before time t

COMP-424, Lecture 16 - March 13, 2013 2

Recall: Models for MDPs

• Because of the Markov property, an MDP can be completely described
by:

– Reward function r : S ×A→ R
ra(s) = the immediate reward if the agent is in state s and takes
action a
This is the short-term utility of the action

– Transition model (dynamics): T : S ×A× S → [0, 1]
Ta(s, s

′) = probability of going from s to s′ under action a

Ta(s, s
′) = P (st+1 = s′|st = s, at = a)

• These form the model of the environment

COMP-424, Lecture 16 - March 13, 2013 3

Recall: Discounted returns

• The discounted return Rt for a trajectory, starting from time step t, can
be defined as:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=1

γt+k−1rt+k

Discount factor γ < 1 ensures that the return is finite, assuming that
rewards are bounded.

COMP-424, Lecture 16 - March 13, 2013 4

Example: Mountain-Car

Gravity

GOAL

• States: position and velocity

• Actions: accelerate forward, accelerate backward, coast

• We want the car to get to the top of the hill as quickly as possible

• How do we define the rewards? What is the return?

COMP-424, Lecture 16 - March 13, 2013 5

Example: Mountain-Car

Gravity

GOAL

• States: position and velocity

• Actions: accelerate forward, accelerate backward, coast

• Two reward formulations:

1. reward = −1 for every time step, until car reaches the top
2. reward = 1 at the top, 0 otherwise γ < 1

• In both cases, the return is maximized by minimizing the number of steps
to the top of the hill

COMP-424, Lecture 16 - March 13, 2013 6

Example: Pole Balancing

• We can push the cart along the track

• The goal is to avoid failure: pole falling beyond a given angle, or cart
hitting the end of the track

• What are the states, actions, rewards and return?

COMP-424, Lecture 16 - March 13, 2013 7

Example: Pole Balancing

• States are described by 4 variables: angle and angular velocity of the
pole relative to the cart, position and speed of cart along the track
• We can think of 3 possible actions: push left, push right, do nothing
• Episodic task formulation: reward = +1 for each step before failure

⇒ return = number of steps before failure
• Continuing task formulation: reward = -1 upon failure, 0 otherwise,
γ < 1

⇒ return = −γk if there are k steps before failure

COMP-424, Lecture 16 - March 13, 2013 8

Formulating Problems as MDPs

• The rewards are quite “objective” (unlike, e.g., heuristics), they are
intended to capture the goal for the problem

• Often there are several ways to formulate a sequential decision problem
as an MDP

• It is important that the state is defined in such a way that the Markov
property holds

• Sometimes we may start with a more informative or lenient reward
structure in the beginning, then change it to reflect the real task

• In psychology/animal learning, this is called shaping

COMP-424, Lecture 16 - March 13, 2013 9

Formulating Games as MDPs

• Suppose you played a game against a fixed opponent (possibly
stochastic), which acts only based on the current board

• We can formulate this problem as an MDP by making the opponent part
of the environment

• The states are all possible board positions for your player

• The actions are the legal moves in each state where it is your player’s
turn

• If we do not care about the length of the game, then γ = 1

• Rewards can be +1 for winning, −1 for losing, 0 for a tie (and 0
throughout the game)

• But it would be hard to define the transition probabilities!

• Later we will talk about how to learn such information from
data/experimentation

COMP-424, Lecture 16 - March 13, 2013 10

Policies

• The goal of the agent is to find a way of behaving, called a policy (plan
or strategy) that maximizes the expected value of the return, E[Rt],∀t
• A policy is a way of choosing actions based on the state:

– Stochastic policy: in a given state, the agent can “roll a die” and
choose different actions

π : S ×A→ [0, 1], π(s, a) = P (at = a|st = s)

– Deterministic policy: in each state the agent chooses a unique action
π : S → A, π(s) = a

COMP-424, Lecture 16 - March 13, 2013 11

Example: Career Options

a = Apply to academia

Grad School
 (G)

Academia
 (A) r=+1

0.9

0.1

Unemployed
(U)

Industry
 (I)

0.8 0.2

r=+10r=!0.1

0.9

0.1

0.5

0.5

r=!1

0.6

0.4

i

a

ig

n

n=Do Nothing
i = Apply to industry
g = Apply to grad school

What is the best policy?

COMP-424, Lecture 16 - March 13, 2013 12

Value Functions

• Because we want to find a policy which maximizes the expected return,
it is a good idea to estimate the expected return

• Then we can search through the space of policies for a good policy

• Value functions represent the expected return, for every state, given a
certain policy

• Computing value functions is an intermediate step towards computing
good policies

COMP-424, Lecture 16 - March 13, 2013 13

State Value Function

• The state value function of a policy π is a function V π : S → R
• The value of state s under policy π is the expected return if the agent

starts from state s and picks actions according to policy π:

V π(s) = Eπ[Rt|st = s]

• For a finite state space, we can represent this as an array, with one entry
for every state

• We will talk later about methods used for very large or continuous state
spaces

COMP-424, Lecture 16 - March 13, 2013 14

Computing the value of policy π

• First, re-write the return a bit:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · ·
= rt+1 + γ (rt+2 + γrt+3 + · · ·)
= rt+1 + γRt+1

• Based on this observation, V π becomes:

V π(s) = Eπ[Rt|st = s] = Eπ[rt+1 + γRt+1|st = s]

• Now we need to recall some properties of expectations...

COMP-424, Lecture 16 - March 13, 2013 15

Detour: Properties of expectations

• Expectation is additive: E[X + Y] = E[X] + E[Y]

Proof: Suppose X and Y are discrete, taking values in X and Y

E[X + Y] =
∑

xi∈X ,yi∈Y

(xi + yi)p(xi, yi)

=
∑
xi∈X

xi
∑
yi∈Y

p(xi, yi) +
∑
yi∈Y

yi
∑
xi∈X

p(xi, yi)

=
∑
xi∈X

xip(xi) +
∑
yi∈Y

yip(yi) = E[X] + E[Y]

• E[cX] = cE[X] is c ∈ R is a constant

Proof: E[cX] =
∑
xi
cxip(xi) = c

∑
xi
xip(xi) = cE[X]

COMP-424, Lecture 16 - March 13, 2013 16

Detour: Properties of expectations (2)

• The expectation of the product of random variables is not equal to the
product of expectations, unless the variables are independent

E[XY] =
∑

xi∈X ,yi∈Y

xiyip(xi, yi) =
∑

xi∈X ,yi∈Y

xiyip(xi|yi)p(yi)

• If X and Y are independent, then p(xi|yi) = p(xi), we can re-arrange
the sums and products and get E[X]E[Y] on the right-hand side

• But is X and Y are not independent, the right-hand side does not
decompose!

COMP-424, Lecture 16 - March 13, 2013 17

Going back to value functions...

• We can re-write the value function as:

V π(s) = Eπ[Rt|st = s] = Eπ[rt+1 + γRt+1|st = s]

= Eπ[rt+1] + γE[Rt+1|st = s] (by linearity of expectation)

=
∑
a∈A

π(s, a)ra(s) + γE[Rt+1|st = s] (by using definitions)

• The second term looks a lot like a value function, if we were to condition
on st+1 instead of st
• So we re-write as:

E[Rt+1|st = s] =
∑
a∈A

π(s, a)
∑
s′∈S

Ta(s, s
′)E[Rt+1|st+1 = s′]

• The last term is just V π(s′)

COMP-424, Lecture 16 - March 13, 2013 18

Bellman equations for policy evaluation

• By putting all the previous pieces together, we get:

V π(s) =
∑
a∈A

π(s, a)

ra(s) + γ
∑
s′∈S

Ta(s, s
′)V π(s′)

• This is a system of linear equations (one for every state) whose unique

solution is V π.

• The uniqueness is ensured under mild technical conditions on the
transitions p

• So if we want to find V π, we could try to solve this system!

COMP-424, Lecture 16 - March 13, 2013 19

Iterative Policy Evaluation

• Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0
2. During every iteration k, update the value function for all states:

Vk+1(s)←
∑
a∈A

π(s, a)

ra(s) + γ
∑
s′∈S

Ta(s, s
′)Vk(s

′)

 ,∀s

3. Stop when the maximum change between two iterations is smaller
than a desired threshold (the values stop changing)

• This is a bootstrapping algorithm: the value of one state is updated
based on the current estimates of the values of successor states

• This is a dynamic programming algorithm

• If you have a linear system that is very big, using this approach avoids a
big matrix inversion

COMP-424, Lecture 16 - March 13, 2013 20

Searching for a Good Policy

• We say that π ≥ π′ if V π(s) ≥ V π′(s)∀s ∈ S
• This gives a partial ordering of policies: if one policy is better at one

state but worse at another state, the two policies are incomparable

• Since we know how to compute values for policies, we can search through
the space of policies

• Local search seems like a good fit.

COMP-424, Lecture 16 - March 13, 2013 21

Policy Improvement

V π(s) =
∑
a∈A

π(s, a)

r(s, a) + γ
∑
s′∈S

Ta(s, s
′)V π(s′)

• Suppose that there is some action a∗, such that:

r(s, a∗) + γ
∑
s′∈S

p(s, a∗, s′)V π(s′) > V π(s)

• Then, if we set π(s, a∗)← 1, the value of state s will increase
• This is because we replaced each element in the sum that defines V π(s)

with a bigger value
• The values of states that can transition to s increase as well
• The values of all other states stay the same
• So the new policy using a∗ is better than the initial policy π!

COMP-424, Lecture 16 - March 13, 2013 22

Policy iteration idea

• More generally, we can change the policy π to a new policy π′, which is
greedy with respect to the computed values V π

π′(s) = argmax
a∈A

r(s, a) + γ
∑
s′∈S

Ta(s, s
′)V π(s′)

Then V π

′
(s) ≥ V π(s),∀s

• This gives us a local search through the space of policies

• We stop when the values of two successive policies are identical

COMP-424, Lecture 16 - March 13, 2013 23

Policy Iteration Algorithm

1. Start with an initial policy π0 (e.g., uniformly random)

2. Repeat:

(a) Compute V πi using policy evaluation
(b) Compute a new policy πi+1 that is greedy with respect to V πi

until V πi = V πi+1

COMP-424, Lecture 16 - March 13, 2013 24

Generalized Policy Iteration

! V

evaluation

improvement

V "V!

!"greedy(V)

V!

• In practice, we could run policy iteration incrementally

• Compute the value just to some approximation

• Make the policy greedy only at some states, not all states

COMP-424, Lecture 16 - March 13, 2013 25

Properties of policy iteration

• If the state and action sets are finite, there is a very large but finite
number of deterministic policies

• Policy iteration is a greedy local search in this finite set

• We move to a new policy only if it provides a strict improvement

• So the algorithm has to terminate

• But if it is a greedy algorithm, can we guarantee an optimal solution?

COMP-424, Lecture 16 - March 13, 2013 26

Optimal Policies and Optimal Value Functions

• Our goal is to find a policy that has maximum expected utility, i.e.
maximum value

• Does policy iteration fulfill this goal?

• The optimal value function V ∗ is defined as the best value that can be
achieved at any state:

V ∗(s) = max
π

V π(s)

• In a finite MDP, there exists a unique optimal value function (shown by
Bellman, 1957)

• Any policy that achieves the optimal value function is called optimal
policy

• There has to be at least one deterministic optimal policy

COMP-424, Lecture 16 - March 13, 2013 27

Illustration: A Gridworld

• Transitions are deterministic, as shown by arrows

• Discount factor γ = 0.9

• Optimal state values give information about the shortest path to the goal

• There are ties between optimal actions, so there is an infinite number of
optimal policies

• One of the deterministic optimal policies is shown on right.

G
100

100

0

0

0

0
0

0

0

0
0

0

0

G100

10090

90

81

0

Reward values V ∗(s) values One optimal policy

COMP-424, Lecture 16 - March 13, 2013 28

Bellman Optimality Equation for V ∗

• The value of a state under the optimal policy must be equal to the
expected return for the best action in the state:

V ∗(s) = max
a

E [rt+1 + γV ∗(st+1)|st = s, at = a]

= max
a

(
r(s, a) + γ

∑
s′

Ta(s, s
′)V ∗(s′)

)

by an argument very similar to the policy evaluation case

• V ∗ is the unique solution of this system of non-linear equations (one
equation for every state)

• The fact that there is a unique solution was proven by Bellman, and
relies on the fact that γ < 1, and on an argument similar to the proof of
convergence of policy iteration from last time

COMP-424, Lecture 16 - March 13, 2013 29

Why Optimal Value Functions are Useful

• Any policy that is greedy with respect to V ∗ is an optimal policy!

• If we know V ∗ and the model of the environment, one step of look-ahead
will tell us what the optimal action is:

π∗(s) = argmax
a

(
r(s, a) + γ

∑
s′

Ta(s, s
′)V ∗(s′)

)

• This is in contrast to other algorithms we studied, for which finding an
optimal solution required deep search!

• If the values are not computed perfectly, search might still help, though
(e.g. in games)

• One way to compute optimal value functions is through policy iteration.

COMP-424, Lecture 16 - March 13, 2013 30

Computing Optimal Values: Value Iteration

• Main idea: Turn the Bellman optimality equation into an update rule
(same as done in policy evaluation):

1. Start with an arbitrary initial approximation V0
2. On each iteration, update the value function estimate:

Vk+1(s)← max
a

(
r(s, a) + γ

∑
s′

Ta(s, s
′)Vk(s

′)

)
,∀s

3. Stop when the maximum value change between iterations is below a
threshold

• The algorithm converges (in the limit) to the true V ∗ (almost identical
proof to policy evaluation)

COMP-424, Lecture 16 - March 13, 2013 31

Illustration: Rooms Example

• Each square is a state; black squares are walls, initial circle (left) is the
goal state
• Four actions, fail 30% of the time
• No rewards until the goal is reached, γ = 0.9.
• Circles indicate the magnitude of the value of the corresponding state

(no circle means 0 value)
• Values propagate backwards from the goal

Iteration #1 Iteration #2 Iteration #3

COMP-424, Lecture 16 - March 13, 2013 32

A More Efficient Algorithm

• Instead of updating all states on every iteration, focus on important
states

• Here, we can define important as visited often

E.g., board positions that occur on every game, rather than just once in
100 games

• Asynchronous dynamic programming:

– Generate trajectories through the MDP
– Update states whenever they appear on such a trajectory

• This focuses the updates on states that are actually possible.

COMP-424, Lecture 16 - March 13, 2013 33

How Is Learning Tied with Dynamic Programming?

• Observe transitions in the environment, learn an approximate model
R̂(s, a), T̂a(s, s

′)

– Use maximum likelihood to compute probabilities
– Use supervised learning for the rewards

• Pretend the approximate model is correct and use it for any dynamic
programming method

• This approach is called model-based reinforcement learning

• Many believers, especially in the robotics community

COMP-424, Lecture 16 - March 13, 2013 34

