Lecture 14: Sequential decision making. Markov
Decision Processes

e Markov Decision Processes
e Policies and value functions
e Dynamic programming methods for computing value functions

— Policy evaluation
— Policy improvement

McGill University, COMP-424, Lecture 14 - March 9, 2010 1

Sequential Decision Making

e Decision graphs provide a useful tool for decision making

¢ If more than one decision has to be taken, reasoning about all of
them in general is very expensive

¢ In bandit problems, the assumption is of repeated interaction with an
unknown environment over time

e But in a bandit problem, the environment has no “state”

e Markov Decision Processes (MDPs) provide a framework for
modeling sequential decision making, where the environment has
different states

e Next class we see what to do if the environment is also unknown

McGill University, COMP-424, Lecture 14 - March 9, 2010 2

The General Problem: Control Learning

¢ Robot learning to dock on battery charger
e Choosing actions to optimize factory output
e Playing Backgammon, Go, Poker, ...

e Choosing medical tests and treatments for a patient with a chronic
illness

e Conversation

¢ Portofolio management
e Flying a helicopter
Queue / router control

All of these are sequential decision making problems

McGill University, COMP-424, Lecture 14 - March 9, 2010 3

Reinforcement Learning Problem

| 'I | Agent l

state reward action
S & a,

| 4

Py Environment]<—

] "

e At each discrete time ¢, the agent (learning system) observes state
s; € S and chooses action a; € A

e Then it receives an immediate reward r;, and the state changes to
St+1

McGill University, COMP-424, Lecture 14 - March 9, 2010 4

Example: Backgammon (Tesauro, 1992-1995)

white pieces move

24 23 22 21 20 19 18 17 16 15 14 13 COUﬂtel’C|OCkWISe

7878 ¢
lily

black pieces
move clockwise

-100

- |00

- 1000

- 1000
:|®@

=|1@

i €600

e The states are board positions in which the agent can move
e The actions are the possible moves

e Reward is 0 until the end of the game, when it is +1 depending on
whether the agent wins or loses

McGill University, COMP-424, Lecture 14 - March 9, 2010 5

Markov Decision Processes (MDPs)

e Finite set of states S (we will lift this later)
e Finite set of actions A

e ~ = discount factor for future rewards (between 0 and 1, usually close
to 1). Two possible interpretations:

— At each time step there is a 1 — v chance that the agent dies, and
does not receive rewards afterwards

— Inflation rate: if you receive the same amount of money in a year,
it will be worth less

e Markov assumption: s;+1 and r;,; depend only on s; and a; but not
on anything that happened before time ¢

McGill University, COMP-424, Lecture 14 - March 9, 2010 6

MDPs as Decision Graphs

A0 Al

D\

e The graph may be infinite

e But it has a very regular structure!

e At each time slice the structure and parameters are shared
e We will exploit this property to get efficient inference

McGill University, COMP-424, Lecture 14 - March 9, 2010

Models for MDPs

e Because of the Markov property, an MDP can be completely

described by:
— Reward functionr : S x A — R

r(s,a) = the immediate reward if the agent is in state s and takes

action a
This is the short-term utility of the action

— Transition model (dynamics): p: S x A x S — [0, 1]
p(s,a, s’) = probability of going from s to s’ under action a

p(s,a,s) = P(siy1=8'|sy = s,a;, = a)

e These form the model of the environment

McGill University, COMP-424, Lecture 14 - March 9, 2010

Planning in MDPs

The goal of an agent in an MDP is to be rational, i.e., maximize its
expected utility (respect MEU principle)

In this case, maximizing the immediate utility (given by the immediate
reward) is not sufficient.

- E.g., the agent might pick an action that gives instant gratification,
even if it later makes it "die”

Hence, the goal is to maximize long-term utility, also called return

The return is defined as an additive function of all rewards received
by the agent.

McGill University, COMP-424, Lecture 14 - March 9, 2010 9

Returns
e The return Ry for a trajectory, starting from time step ¢, can be defined
depending on the type of task
e Episodic tasks (e.g. games, trips through a maze etc)

Rt:rt+1+rt+2+"'+rT

where T is the time when a terminal state is reached
e Continuing tasks (tasks which may go on forever):

IS
2 t+k—1
Rt:Tt+1+’7/Tt+2+’Y Tt+3+"‘:Z’Y+ Tt+k
k=1

Discount factor v < 1 ensures that the return is finite, assuming that
rewards are bounded.

McGill University, COMP-424, Lecture 14 - March 9, 2010 10

Example: Mountain-Car

GOAL

j Gravity

States: position and velocity

Actions: accelerate forward, accelerate backward, coast

We want the car to get to the top of the hill as quickly as possible
How do we define the rewards? What is the return?

McGill University, COMP-424, Lecture 14 - March 9, 2010 11

Example: Mountain-Car

GOAL

j Gravity

e States: position and velocity

e Actions: accelerate forward, accelerate backward, coast

e Two reward formulations:
1. reward = —1 for every time step, until car reaches the top
2. reward = 1 at the top, 0 otherwise v < 1

¢ In both cases, the return is maximized by minimizing the number of
steps to the top of the hill

McGill University, COMP-424, Lecture 14 - March 9, 2010 12

Example: Pole Balancing

— = —

e We can push the cart along the track

e The goal is to avoid failure: pole falling beyond a given angle, or cart
hitting the end of the track

o What are the states, actions, rewards and return?

McGill University, COMP-424, Lecture 14 - March 9, 2010 13

Example: Pole Balancing

— = —

States are described by 4 variables: angle and angular velocity of the
pole relative to the cart, position and speed of cart along the track
We can think of 3 possible actions: push left, push right, do nothing
Episodic task formulation: reward = +1 for each step before failure
= return = number of steps before failure

Continuing task formulation: reward = -1 upon failure, 0 otherwise,
v<1

= return = —~* if there are k steps before failure

McGill University, COMP-424, Lecture 14 - March 9, 2010 14

Formulating Problems as MDPs

The rewards are quite “objective” (unlike, e.g., heuristics), they are
intended to capture the goal for the problem

Often there are several ways to formulate a sequential decision
problem as an MDP

It is important that the state is defined in such a way that the Markov
property holds

Sometimes we may start with a more informative or lenient reward
structure in the beginning, then change it to reflect the real task

In psychology/animal learning, this is called shaping

McGill University, COMP-424, Lecture 14 - March 9, 2010 15

Formulating Games as MDPs

Suppose you played a game against a fixed opponent (possibly
stochastic), which acts only based on the current board

We can formulate this problem as an MDP by making the opponent
part of the environment

The states are all possible board positions for your player

The actions are the legal moves in each state where it is your player’s
turn

If we do not care about the length of the game, then v =1

Rewards can be +1 for winning, —1 for losing, 0 for a tie (and 0
throughout the game)

But it would be hard to define the transition probabilities!

Later we will talk about how to learn such information from
data/experimentation

McGill University, COMP-424, Lecture 14 - March 9, 2010 16

Policies

e The goal of the agent is to find a way of behaving, called a policy
(plan or strategy) that maximizes the expected value of the return,
E[Rt]) Vi

e A policy is a way of choosing actions based on the state:

— Stochastic policy: in a given state, the agent can “roll a die” and
choose different actions

m: S xA—]0,1], w(s,a) = Pla; = als; = s)

— Deterministic policy: in each state the agent chooses a unique
action
T:S— A 7w(s)=ua

McGill University, COMP-424, Lecture 14 - March 9, 2010 17

Example: Career Options
0.8 0.2

n=Do Nothing

i = Apply to industry

g = Apply to grad school
a = Apply to academia

Grad School
(G)

r=+1

0.1

What is the best policy?

McGill University, COMP-424, Lecture 14 - March 9, 2010 18

Value Functions

Because we want to find a policy which maximizes the expected
return, it is a good idea to estimate the expected return

Then we can search through the space of policies for a good policy

Value functions represent the expected return, for every state, given
a certain policy

Computing value functions is an intermediate step towards
computing good policies

McGill University, COMP-424, Lecture 14 - March 9, 2010 19

State Value Function

The state value function of a policy w is a function V™ : § — R

The value of state s under policy 7 is the expected return if the agent
starts from state s and picks actions according to policy =:

V7(s) = Ex[Ri|st = s]

For a finite state space, we can represent this as an array, with one
entry for every state

We will talk later about methods used for very large or continuous
state spaces

McGill University, COMP-424, Lecture 14 - March 9, 2010 20

Computing the value of policy =
e First, re-write the return a bit:

Ry = 11 +yrisa+ 72rt+3 + -
= i1+ Y (g2 T3)
= T YR

e Based on this observation, V™ becomes:
V7 (s) = Ex[Ri|st = s8] = Ex[riv1 + YReyal|se = s

e Now we need to recall some properties of expectations...

McGill University, COMP-424, Lecture 14 - March 9, 2010 21

Detour: Properties of expectations

e Expectation is additive: E[X + Y] = E[X] + E[Y]
Proof: Suppose X and Y are discrete, taking values in X and Y

EIX+Y] = Y (zi+y)pla,y)
z,€X,y; €Y
= Z x; Z p(@i, yi) + Z Yi Z p(@i, i)
z,€X Yy €Y Yi€Y xeX
= > apl)+ Y yiply:) = B[X] + E[Y]
T, EX Y; €Y

e FlaX]=aF[X]isa € Ris a constant
Proof: ElaX] =" axp(x;) =a)_, zip(z;) = ab[X]

McGill University, COMP-424, Lecture 14 - March 9, 2010 22

Detour: Properties of expectations (2)

e The expectation of the product of random variables is not equal to
the product of expectations, unless the variables are independent

EXY] = Z T3Yip(Ti, Yi) = Z zyip(@i|yi)p(y:)
TiEX, Y €Y T €X,Y; €Y

e If X and Y are independent, then p(x;|y;) = p(z;), we can re-arrange
the sums and products and get E[X]E[Y] on the right-hand side

e But is X and Y are not independent, the right-hand side does not
decompose!

McGill University, COMP-424, Lecture 14 - March 9, 2010 23

Going back to value functions...
e We can re-write the value function as:

VTr(S) = EW[Rt|St = S] = ETr[Tt—l—l + ")/Rt_|_1|8t = S]
= FEr[ris1] + 7E[Rey1|s: = s] (by linearity of expectation)

= > w(s,a)r(s,a) + YE[Ry41|s: = s] (by using definitions)
acA

e The second term looks a lot like a value function, if we were to
condition on s, instead of s,
e So we re-write as:

E[Rialsi=s] =Y 7(s,a) Y p(s,a,8)E[Riia]si41 = 5
acA s'eS

e The last term is just V7 (')

McGill University, COMP-424, Lecture 14 - March 9, 2010 24

Bellman equations for policy evaluation

By putting all the previous pieces together, we get:

VT(s) =Y _w(s,a) [r(s.a) +7) p(s,a,8)V(s)

acA s'eS

This is a system of linear equations (one for every state) whose
unique solution is V™.

The uniqueness is ensured under mild technical conditions on the
transitions p

So if we want to find V™, we could try to solve this system!

McGill University, COMP-424, Lecture 14 - March 9, 2010 25

Iterative Policy Evaluation

e Main idea: turn Bellman equations into update rules.

1. Start with some initial guess Vj
2. During every iteration k, update the value function for all states:

Vier1(s) « Z m(s,a) | r(s,a) +~ Z p(s,a,8\Vi(s') | ,Vs

acA s'eS

3. Stop when the maximum change between two iterations is smaller
than a desired threshold (the values stop changing)
e This is a bootstrapping algorithm: the value of one state is updated
based on the current estimates of the values of successor states
e This is a dynamic programming algorithm
¢ If you have alinear system that is very big, using this approach avoids
a big matrix inversion

McGill University, COMP-424, Lecture 14 - March 9, 2010 26

Convergence of lterative Policy Evaluation

e Consider the absolute error in our estimate Vi11(s):

Vita(s) = V7 (s)| =

> w(s,a)(r(s,a) +v > pls,a,s")Vi(s))

a

—Z s, a) sa—l—’yZpsas)V"()

Z S&Zpsas)(vk() V(')
<vz saZpsas\Vk () = V()]

="

McGill University, COMP-424, Lecture 14 - March 9, 2010 27

Convergence of lterative Policy Evaluation (2)
e Let ¢, be the worst error at iteration k&:

ex = max |Vi(s') — V7 (s)
s'eS

e From previous calculation, we have:

[Vie+1(s) !<”/Z Sazpsas)|Vi(s") = V7 (s)]
S)Y s e
=yeR Z (s, a) Zp(s, a,s)

:f‘)/(—ijﬂ'(S,a) -1 =re,,Vse S

McGill University, COMP-424, Lecture 14 - March 9, 2010 28

Convergence of lterative Policy Evaluation (3)

Let €41 = max |[Viy1(s) — V7(s)]
Since the previous inequality holds for all states, we have:

€pt+1 < Y€k

Because v < 1, this means that lim;_.. € =0

So, in the limit, we get the correct values

More importantly, the error decreases exponentially

We say that the error contracts and the contraction factor is ~.

McGill University, COMP-424, Lecture 14 - March 9, 2010 29

Searching for a Good Policy

We say that 7 > «/ if V™(s) > V™ (s)Vs € S
This gives a partial ordering of policies: if one policy is better at one
state but worse at another state, the two policies are incomparable

Since we know how to compute values for policies, we can search
through the space of policies

Local search seems like a good fit.

McGill University, COMP-424, Lecture 14 - March 9, 2010 30

Policy Improvement

V7T(s) = Z m(s,a) [r(s,a)+~ Z p(s,a,s V(s

acA s'eS

Suppose that there is some action a*, such that:

r(s,a®) +v Y pls,a*, s)V(s') > V7(s)

s'esS

Then, if we set n(s,a*) < 1, the value of state s will increase

This is because we replaced each element in the sum that defines
V7 (s) with a bigger value

The values of states that can transition to s increase as well

The values of all other states stay the same

So the new policy using a* is better than the initial policy !

McGill University, COMP-424, Lecture 14 - March 9, 2010 31

Policy iteration idea

e More generally, we can change the policy = to a new policy 7/, which
is greedy with respect to the computed values V7™

/ _ / T™(
m(s) = argmax | r(s,a) +7 %p(s, a,s)V (s')
S

Then V™ (s) > V™(s),Vs

e This gives us a local search through the space of policies
e We stop when the values of two successive policies are identical

McGill University, COMP-424, Lecture 14 - March 9, 2010 32

Policy Iteration Algorithm

1. Start with an initial policy 7y (e.g., uniformly random)
2. Repeat:

(a) Compute V™ using policy evaluation
(b) Compute a new policy ;1 that is greedy with respect to V™

until V7™ = Vit

McGill University, COMP-424, Lecture 14 - March 9, 2010

33

Generalized Policy lteration

evaluation

m
v 1%
st—>greedy(V)
improvement

n—— V"

¢ In practice, we could run policy iteration incrementally
e Compute the value just to some approximation
e Make the policy greedy only at some states, not all states

McGill University, COMP-424, Lecture 14 - March 9, 2010

34

Properties of policy iteration

If the state and action sets are finite, there is a very large but finite
number of deterministic policies

Policy iteration is a greedy local search in this finite set

We move to a new policy only if it provides a strict improvement

So the algorithm has to terminate

But if it is a greedy algorithm, can we guarantee an optimal solution?
More on this next time...

McGill University, COMP-424, Lecture 14 - March 9, 2010 35

