
Lecture 14: Sequential decision making. Markov
Decision Processes

• Markov Decision Processes
• Policies and value functions
• Dynamic programming methods for computing value functions

– Policy evaluation
– Policy improvement

McGill University, COMP-424, Lecture 14 - March 9, 2010 1

Sequential Decision Making

• Decision graphs provide a useful tool for decision making
• If more than one decision has to be taken, reasoning about all of

them in general is very expensive
• In bandit problems, the assumption is of repeated interaction with an

unknown environment over time
• But in a bandit problem, the environment has no “state”
• Markov Decision Processes (MDPs) provide a framework for

modeling sequential decision making, where the environment has
different states

• Next class we see what to do if the environment is also unknown

McGill University, COMP-424, Lecture 14 - March 9, 2010 2

The General Problem: Control Learning

• Robot learning to dock on battery charger
• Choosing actions to optimize factory output
• Playing Backgammon, Go, Poker, ...
• Choosing medical tests and treatments for a patient with a chronic

illness
• Conversation
• Portofolio management
• Flying a helicopter
• Queue / router control

All of these are sequential decision making problems

McGill University, COMP-424, Lecture 14 - March 9, 2010 3

Reinforcement Learning Problem

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

• At each discrete time t, the agent (learning system) observes state
st ∈ S and chooses action at ∈ A

• Then it receives an immediate reward rt+1 and the state changes to
st+1

McGill University, COMP-424, Lecture 14 - March 9, 2010 4

Example: Backgammon (Tesauro, 1992-1995)

white pieces move

 counterclockwise

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

1 8 1 7 1 6 1 5 1 4 1 31 92 02 12 22 32 4

 black pieces

move clockwise

• The states are board positions in which the agent can move
• The actions are the possible moves
• Reward is 0 until the end of the game, when it is ±1 depending on

whether the agent wins or loses

McGill University, COMP-424, Lecture 14 - March 9, 2010 5

Markov Decision Processes (MDPs)

• Finite set of states S (we will lift this later)
• Finite set of actions A

• γ = discount factor for future rewards (between 0 and 1, usually close
to 1). Two possible interpretations:
– At each time step there is a 1− γ chance that the agent dies, and

does not receive rewards afterwards
– Inflation rate: if you receive the same amount of money in a year,

it will be worth less
• Markov assumption: st+1 and rt+1 depend only on st and at but not

on anything that happened before time t

McGill University, COMP-424, Lecture 14 - March 9, 2010 6

MDPs as Decision Graphs

!" !# !$

%# %$

&" &#

'''

• The graph may be infinite
• But it has a very regular structure!
• At each time slice the structure and parameters are shared
• We will exploit this property to get efficient inference

McGill University, COMP-424, Lecture 14 - March 9, 2010 7

Models for MDPs

• Because of the Markov property, an MDP can be completely
described by:
– Reward function r : S ×A→ R

r(s, a) = the immediate reward if the agent is in state s and takes
action a
This is the short-term utility of the action

– Transition model (dynamics): p : S ×A× S → [0, 1]
p(s, a, s′) = probability of going from s to s′ under action a

p(s, a, s′) = P (st+1 = s′|st = s, at = a)

• These form the model of the environment

McGill University, COMP-424, Lecture 14 - March 9, 2010 8

Planning in MDPs

• The goal of an agent in an MDP is to be rational, i.e., maximize its
expected utility (respect MEU principle)

• In this case, maximizing the immediate utility (given by the immediate
reward) is not sufficient.
– E.g., the agent might pick an action that gives instant gratification,

even if it later makes it ”die”
• Hence, the goal is to maximize long-term utility, also called return
• The return is defined as an additive function of all rewards received

by the agent.

McGill University, COMP-424, Lecture 14 - March 9, 2010 9

Returns

• The return Rt for a trajectory, starting from time step t, can be defined
depending on the type of task

• Episodic tasks (e.g. games, trips through a maze etc)

Rt = rt+1 + rt+2 + · · · + rT

where T is the time when a terminal state is reached
• Continuing tasks (tasks which may go on forever):

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑

k=1

γt+k−1rt+k

Discount factor γ < 1 ensures that the return is finite, assuming that
rewards are bounded.

McGill University, COMP-424, Lecture 14 - March 9, 2010 10

Example: Mountain-Car

Gravity

GOAL

• States: position and velocity
• Actions: accelerate forward, accelerate backward, coast
• We want the car to get to the top of the hill as quickly as possible
• How do we define the rewards? What is the return?

McGill University, COMP-424, Lecture 14 - March 9, 2010 11

Example: Mountain-Car

Gravity

GOAL

• States: position and velocity
• Actions: accelerate forward, accelerate backward, coast
• Two reward formulations:

1. reward = −1 for every time step, until car reaches the top
2. reward = 1 at the top, 0 otherwise γ < 1

• In both cases, the return is maximized by minimizing the number of
steps to the top of the hill

McGill University, COMP-424, Lecture 14 - March 9, 2010 12

Example: Pole Balancing

• We can push the cart along the track
• The goal is to avoid failure: pole falling beyond a given angle, or cart

hitting the end of the track
• What are the states, actions, rewards and return?

McGill University, COMP-424, Lecture 14 - March 9, 2010 13

Example: Pole Balancing

• States are described by 4 variables: angle and angular velocity of the
pole relative to the cart, position and speed of cart along the track

• We can think of 3 possible actions: push left, push right, do nothing
• Episodic task formulation: reward = +1 for each step before failure
⇒ return = number of steps before failure

• Continuing task formulation: reward = -1 upon failure, 0 otherwise,
γ < 1
⇒ return = −γk if there are k steps before failure

McGill University, COMP-424, Lecture 14 - March 9, 2010 14

Formulating Problems as MDPs

• The rewards are quite “objective” (unlike, e.g., heuristics), they are
intended to capture the goal for the problem

• Often there are several ways to formulate a sequential decision
problem as an MDP

• It is important that the state is defined in such a way that the Markov
property holds

• Sometimes we may start with a more informative or lenient reward
structure in the beginning, then change it to reflect the real task

• In psychology/animal learning, this is called shaping

McGill University, COMP-424, Lecture 14 - March 9, 2010 15

Formulating Games as MDPs

• Suppose you played a game against a fixed opponent (possibly
stochastic), which acts only based on the current board

• We can formulate this problem as an MDP by making the opponent
part of the environment

• The states are all possible board positions for your player
• The actions are the legal moves in each state where it is your player’s

turn
• If we do not care about the length of the game, then γ = 1
• Rewards can be +1 for winning, −1 for losing, 0 for a tie (and 0

throughout the game)
• But it would be hard to define the transition probabilities!
• Later we will talk about how to learn such information from

data/experimentation

McGill University, COMP-424, Lecture 14 - March 9, 2010 16

Policies

• The goal of the agent is to find a way of behaving, called a policy
(plan or strategy) that maximizes the expected value of the return,
E[Rt],∀t

• A policy is a way of choosing actions based on the state:
– Stochastic policy: in a given state, the agent can “roll a die” and

choose different actions

π : S ×A→ [0, 1], π(s, a) = P (at = a|st = s)

– Deterministic policy: in each state the agent chooses a unique
action
π : S → A, π(s) = a

McGill University, COMP-424, Lecture 14 - March 9, 2010 17

Example: Career Options

!"#"$%%&'"()"!*!+,-.!

/0!+"1*2))&

""3/4

$*!+,-.!

""""3$4
0#56

789

786

:;,-%&)',+

3:4

<;+=>(0'

"""3<4

78? 78@

0#5670#!786

789

786

78A

78A

0#!6

78B

78C

.

!

.D

;

;#E)"F)(2.;D

."#"$%%&'"()".;+=>(0'

D"#"$%%&'"()"D0!+">*2))&

What is the best policy?

McGill University, COMP-424, Lecture 14 - March 9, 2010 18

Value Functions

• Because we want to find a policy which maximizes the expected
return, it is a good idea to estimate the expected return

• Then we can search through the space of policies for a good policy
• Value functions represent the expected return, for every state, given

a certain policy
• Computing value functions is an intermediate step towards

computing good policies

McGill University, COMP-424, Lecture 14 - March 9, 2010 19

State Value Function

• The state value function of a policy π is a function V π : S → R
• The value of state s under policy π is the expected return if the agent

starts from state s and picks actions according to policy π:

V π(s) = Eπ[Rt|st = s]

• For a finite state space, we can represent this as an array, with one
entry for every state

• We will talk later about methods used for very large or continuous
state spaces

McGill University, COMP-424, Lecture 14 - March 9, 2010 20

Computing the value of policy π

• First, re-write the return a bit:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · ·
= rt+1 + γ (rt+2 + γrt+3 + · · ·)
= rt+1 + γRt+1

• Based on this observation, V π becomes:

V π(s) = Eπ[Rt|st = s] = Eπ[rt+1 + γRt+1|st = s]

• Now we need to recall some properties of expectations...

McGill University, COMP-424, Lecture 14 - March 9, 2010 21

Detour: Properties of expectations

• Expectation is additive: E[X + Y] = E[X] + E[Y]
Proof: Suppose X and Y are discrete, taking values in X and Y

E[X + Y] =
∑

xi∈X ,yi∈Y
(xi + yi)p(xi, yi)

=
∑

xi∈X
xi

∑

yi∈Y
p(xi, yi) +

∑

yi∈Y
yi

∑

xi∈X
p(xi, yi)

=
∑

xi∈X
xip(xi) +

∑

yi∈Y
yip(yi) = E[X] + E[Y]

• E[aX] = aE[X] is a ∈ R is a constant
Proof: E[aX] =

∑
xi

axip(xi) = a
∑

xi
xip(xi) = aE[X]

McGill University, COMP-424, Lecture 14 - March 9, 2010 22

Detour: Properties of expectations (2)

• The expectation of the product of random variables is not equal to
the product of expectations, unless the variables are independent

E[XY] =
∑

xi∈X ,yi∈Y
xiyip(xi, yi) =

∑

xi∈X ,yi∈Y
xiyip(xi|yi)p(yi)

• If X and Y are independent, then p(xi|yi) = p(xi), we can re-arrange
the sums and products and get E[X]E[Y] on the right-hand side

• But is X and Y are not independent, the right-hand side does not
decompose!

McGill University, COMP-424, Lecture 14 - March 9, 2010 23

Going back to value functions...

• We can re-write the value function as:

V π(s) = Eπ[Rt|st = s] = Eπ[rt+1 + γRt+1|st = s]

= Eπ[rt+1] + γE[Rt+1|st = s] (by linearity of expectation)

=
∑

a∈A

π(s, a)r(s, a) + γE[Rt+1|st = s] (by using definitions)

• The second term looks a lot like a value function, if we were to
condition on st+1 instead of st

• So we re-write as:

E[Rt+1|st = s] =
∑

a∈A

π(s, a)
∑

s′∈S

p(s, a, s′)E[Rt+1|st+1 = s′]

• The last term is just V π(s′)

McGill University, COMP-424, Lecture 14 - March 9, 2010 24

Bellman equations for policy evaluation

• By putting all the previous pieces together, we get:

V π(s) =
∑

a∈A

π(s, a)

r(s, a) + γ
∑

s′∈S

p(s, a, s′)V π(s′)

• This is a system of linear equations (one for every state) whose
unique solution is V π.

• The uniqueness is ensured under mild technical conditions on the
transitions p

• So if we want to find V π, we could try to solve this system!

McGill University, COMP-424, Lecture 14 - March 9, 2010 25

Iterative Policy Evaluation

• Main idea: turn Bellman equations into update rules.
1. Start with some initial guess V0

2. During every iteration k, update the value function for all states:

Vk+1(s)←
∑

a∈A

π(s, a)

r(s, a) + γ
∑

s′∈S

p(s, a, s′)Vk(s′)

 ,∀s

3. Stop when the maximum change between two iterations is smaller
than a desired threshold (the values stop changing)

• This is a bootstrapping algorithm: the value of one state is updated
based on the current estimates of the values of successor states

• This is a dynamic programming algorithm
• If you have a linear system that is very big, using this approach avoids

a big matrix inversion

McGill University, COMP-424, Lecture 14 - March 9, 2010 26

Convergence of Iterative Policy Evaluation

• Consider the absolute error in our estimate Vk+1(s):

|Vk+1(s)− V π(s)|=

∣∣∣∣∣
∑

a

π(s, a)(r(s, a) + γ
∑

s′

p(s, a, s′)Vk(s′))

−
∑

a

π(s, a)(r(s, a) + γ
∑

s′

p(s, a, s′)V π(s′))

∣∣∣∣∣

=γ

∣∣∣∣∣
∑

a

π(s, a)
∑

s′

p(s, a, s′)(Vk(s′)− V π(s′))

∣∣∣∣∣

≤γ
∑

a

π(s, a)
∑

s′

p(s, a, s′)|Vk(s′)− V π(s′)|

McGill University, COMP-424, Lecture 14 - March 9, 2010 27

Convergence of Iterative Policy Evaluation (2)

• Let εk be the worst error at iteration k:

εk = max
s′∈S

|Vk(s′)− V π(s′)

• From previous calculation, we have:

|Vk+1(s)− V π(s)|≤γ
∑

a

π(s, a)
∑

s′

p(s, a, s′)|Vk(s′)− V π(s′)|

≤γ
∑

a

π(s, a)
∑

s′

p(s, a, s′)εk

=γεk

∑

a

π(s, a)
∑

s′

p(s, a, s′)

=γεk

∑

a

π(s, a) · 1 = γεk,∀s ∈ S

McGill University, COMP-424, Lecture 14 - March 9, 2010 28

Convergence of Iterative Policy Evaluation (3)

• Let εk+1 = maxs |Vk+1(s)− V π(s)|
• Since the previous inequality holds for all states, we have:

εk+1 ≤ γεk

• Because γ < 1, this means that limk→∞ εk = 0
• So, in the limit, we get the correct values
• More importantly, the error decreases exponentially
• We say that the error contracts and the contraction factor is γ.

McGill University, COMP-424, Lecture 14 - March 9, 2010 29

Searching for a Good Policy

• We say that π ≥ π′ if V π(s) ≥ V π′(s)∀s ∈ S

• This gives a partial ordering of policies: if one policy is better at one
state but worse at another state, the two policies are incomparable

• Since we know how to compute values for policies, we can search
through the space of policies

• Local search seems like a good fit.

McGill University, COMP-424, Lecture 14 - March 9, 2010 30

Policy Improvement

V π(s) =
∑

a∈A

π(s, a)

r(s, a) + γ
∑

s′∈S

p(s, a, s′)V π(s′)

• Suppose that there is some action a∗, such that:

r(s, a∗) + γ
∑

s′∈S

p(s, a∗, s′)V π(s′) > V π(s)

• Then, if we set π(s, a∗)← 1, the value of state s will increase
• This is because we replaced each element in the sum that defines

V π(s) with a bigger value
• The values of states that can transition to s increase as well
• The values of all other states stay the same
• So the new policy using a∗ is better than the initial policy π!

McGill University, COMP-424, Lecture 14 - March 9, 2010 31

Policy iteration idea

• More generally, we can change the policy π to a new policy π′, which
is greedy with respect to the computed values V π

π′(s) = arg max
a∈A

r(s, a) + γ
∑

s′∈S

p(s, a, s′)V π(s′)

Then V π′(s) ≥ V π(s),∀s
• This gives us a local search through the space of policies
• We stop when the values of two successive policies are identical

McGill University, COMP-424, Lecture 14 - March 9, 2010 32

Policy Iteration Algorithm

1. Start with an initial policy π0 (e.g., uniformly random)
2. Repeat:

(a) Compute V πi using policy evaluation
(b) Compute a new policy πi+1 that is greedy with respect to V πi

until V πi = V πi+1

McGill University, COMP-424, Lecture 14 - March 9, 2010 33

Generalized Policy Iteration

! V

evaluation

improvement

V "V
!

!"greedy(V)

V!

• In practice, we could run policy iteration incrementally
• Compute the value just to some approximation
• Make the policy greedy only at some states, not all states

McGill University, COMP-424, Lecture 14 - March 9, 2010 34

Properties of policy iteration

• If the state and action sets are finite, there is a very large but finite
number of deterministic policies

• Policy iteration is a greedy local search in this finite set
• We move to a new policy only if it provides a strict improvement
• So the algorithm has to terminate
• But if it is a greedy algorithm, can we guarantee an optimal solution?
• More on this next time...

McGill University, COMP-424, Lecture 14 - March 9, 2010 35

