Lecture 12: Introduction to reasoning under uncertainty

- Preferences
- Utility functions
- Maximizing expected utility
- Value of information
- Bandit problems and the exploration-exploitation trade-off

COMP-424, Lecture 12 - February 25, 2013

1

Actions and Consequences

- Probability allows us to model an uncertain, stochastic world
- But intelligent agents should be not only observers, but also actors
 I.e. they should choose actions in a rational way
- Most often, actions produce *consequences* which cause the world to change

Three Theories

- Probability theory:
 - Describes what the agent should believe based on the evidence
- Utility theory:
 - Describes what the agent wants
- Decision theory:
 - Describes what a rational agent should do (based on probability theory)

COMP-424, Lecture 12 - February 25, 2013

2

Example: Buying a Football Ticket

- Possible consequences:
 - You start watching the game, but then it starts to rain and you catch pneumonia
 - You watch the game and get back home
 - You watch the game but when you get back home you find that the cat ate the parrot
 - You watch the game; when you want to get back home, the car won't start. But your favorite rock start passes by and gives you a ride.
- How should we choose between buying and not buying a ticket???

Preferences

- A rational method would be to evaluate the *benefit* (desirability, value) of each consequence and *weigh* it by the *probabilities of consequences*.
- We will call the consequences of an action *payoffs* or *rewards*
- In order to compare different actions we need to know, for each one:
 - The set of consequences $C = \{c_1, \dots c_n\}$
 - The *probability distribution* over the consequences, $P(c_i)$, such that $\sum_i P(c_i) = 1$.
- A pair L = (C, P) is called a *lottery* (Luce and Raiffa, 1957)
- So choosing between actions amounts to choosing between lotteries corresponding to these actions

COMP-424, Lecture 12 - February 25, 2013

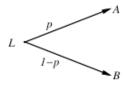
F

Lotteries

• A lottery can be represented as a list of pairs, e.g.

$$L = [A, p; B, (1 - p)]$$

or as a tree-like diagram:

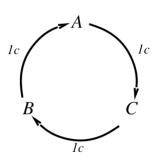


- Agents have preferences over payoffs:
 - $A \succ B$ A preferred to B
 - $A \sim B$ indifference between A and B
 - $-A \stackrel{\sim}{\sim} B$ B not preferred to A
- For an agent to act rationally, its preferences have to obey certain constraints

Example: Transitivity

Suppose an agent has the following preferences: $B \succ C$, $A \succ B$, $C \succ A$, and it owns C.

- If $B \succ C$, then the agent would pay (say) 1 cent to get B
- If $A \succ B$, then the agent, who now has B would pay (say) 1 cent to get A
- If $C \succ A$, then the agent (who now has A) would pay (say) 1 cent to get C



The agent looses money forever!

COMP-424, Lecture 12 - February 25, 2013

7

The Axioms of Utility Theory

These are constraints over the preferences that a rational agent can have:

- 1. *Orderability*: A linear and transitive preference relation must exist between the prizes of any lottery
 - Linearity: $(A \succ B) \lor (B \succ A) \lor (A \sim B)$
 - Transitivity: $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$
- 2. Continuity: If $A \succ B \succ C$, then there exists a lottery L with prizes A and C that is equivalent to receiving B for sure:

$$\exists p, L = [p, A; 1-p, C] \sim B$$

The probability p at which equivalence occurs can be used to compare the merit of B w.r.t A and C

The Axioms of Utility Theory (2)

3. *Substitutability*: Adding the same prize with the same probability to two equivalent lotteries does not change the preference between them:

$$\forall L_1, L_2, L_3, 0$$

4. *Monotonicity*: If two lotteries have the same prizes, the one producing the best prize most often is preferred

$$A \succ B \Rightarrow [p, A; (1-p), B] \stackrel{\sim}{\sim} [p', A; (1-p'), B] \text{ iff } p \ge p'$$

5. Reduction of compound lotteries ("No fun in gambling"): For any lotteries L_1 and $L_2 = [p, C_1; (1-p), C_2]$,

$$[p, L_1; (1-p), L_2] \sim [p, L_1; (1-p)q, C_1; (1-p)(1-q)C_2]$$

COMP-424, Lecture 12 - February 25, 2013

С

Utility Functions

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given preferences that satisfy these axioms, there exists at least one real-valued function U, called *utility function*, such that:

$$A \stackrel{\smile}{\sim} B$$
 if and only if $U(A) \ge U(B)$

and

$$U([p_1, C_1; \ldots; p_n, C_n]) = \sum_i p_i U(C_i)$$

Reminder: Expected value

• Suppose you have a discrete-valued random variable X, with n possible values $\{x_1, \ldots x_n\}$, occurring with probabilities p_1, \ldots, p_n respectively. Then the *expected value (mean)* of X is:

$$E[X] = \sum_{i=1}^{n} p_i x_i$$

• Example: suppose you play a game in which your opponent tosses a fair coin. If it comes up heads, you get \$1, if it comes up tails, you get \$0. What is your expected profit?

Answer:
$$(+1)\frac{1}{2} + (-1)\frac{1}{2} = 0$$

COMP-424, Lecture 12 - February 25, 2013

11

Utilities

- Utilities map outcomes (or states) to real numbers
- Note that given a preference behavior, the utility function is *not unique*
- Eg., Behavior (action choice) is invariant with respect to additive linear transformations:

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

• With deterministic prizes only (no lottery choices), only *ordinal utility* can be determined, i.e., total order on prizes

Money

- Suppose you had to choose between two lotteries:
 - L_1 :
 - * win \$1 million for sure
 - $-L_2$:
 - * win \$5 million w.p. 0.1
 - * win \$1 million w.p. 0.89
 - * win \$0 w.p. 0.01
- Which one would you choose?
- Which one *should* you choose?

COMP-424, Lecture 12 - February 25, 2013

13

Money (2)

- Suppose you had to choose between two lotteries:
 - L_1 :
 - * win \$1 million for sure
 - L_2 :
 - * win \$5 million w.p. 0.1
 - * win \$1 million w.p. 0.89
 - * lose \$1 million w.p. 0.01
- Which one would you choose?
- Which one *should* you choose?

Money (3)

- Suppose you had to choose between two lotteries:
 - L_1 :
 - * \$5 million w.p. 0.1
 - * \$0 w.p. 0.9
 - $-L_2$:
 - * \$1 million w.p. 0.3
 - * \$0 w.p. 0.7
- Which one would you choose?
- Which one *should* you choose?

COMP-424, Lecture 12 - February 25, 2013

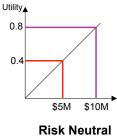
15

Utility Models

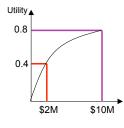
- Capture preferences towards rewards and resource consumption
- Capture risk attitudes

E.g. if one is risk-neutral, getting \$5 million has exactly half the utility of getting \$ 10 million

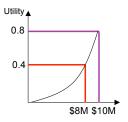
• People are generally *risk-averse* when it comes to money



Risk Neutral (= Expected reward)



Risk Averse



Risk Seeking

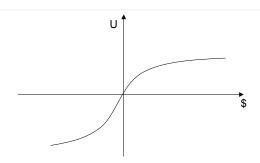
COMP-424, Lecture 12 - February 25, 2013

16

The Utility of Money

- Decision theory is *normative*: describes how *rational* agents should act
- People systematically violate the axioms of utility and decision theory, especially regarding money

Choose: 80% chance of \$4000 or 100% chance of \$3000Choose: 20% chance of \$4000 or 25% chance of \$3000



COMP-424, Lecture 12 - February 25, 2013

17

Preference Elicitation

- An increasing number of applications require recommending something to a user or making a decision for them:
 - E.g. movie or book recommendation systems
 - E.g. deciding which cancer treatment to give to a patient (has to take into account chance of survival, cost, side effects)
 - E.g. deciding which ads to show on a dynamic web page
- For this, we need to know the utility that the user associates to different items
- But people are very bad at specifying utility values!
- Preference elicitation refers to finding out their preferences and translating them into utilities
- Very hard problem, lots of current research

Acting under Uncertainty

- *MEU principle*: Choose the action that maximizes expected utility. Most widely accepted as a standard for rational behavior
- Note that an agent can be entirely rational (i.e. consistent with MEU) without ever representing or manipulating utilities and probabilities
 E.g., a lookup table for perfect tic-tac-toe

COMP-424, Lecture 12 - February 25, 2013

19

Acting under Uncertainty (2)

- Sometimes it can be advantageous to not always choose actions according to MEU, e.g. if the environment may change, or it is not fully known to the agent
- Random choice models: choose the action with the highest expected utility most of the time, but keep non-zero probabilities for other actions as well
 - Avoids being too predictable
 - If utilities are not perfect, allows for exploration
- Minimizing regret: consider the loss between current behavior and some "gold standard" and try to minimize it

Example: Single Stage Decision Making

- One random variable, X: does the kid have an ear infection or not?
- One decision, d: give antibiotic (yes) or not (no)
- The utility function associates a real value to possible states of the world and possible decisions

$$\begin{array}{ccc} X = \text{no} & X = \text{yes} \\ d = \text{no} & 0 & -50 \\ d = \text{yes} & -100 & 10 \end{array}$$

- Unfortunately *X* is not directly observable!
- But we know P(X = yes) = 0.1, P(X = no) = 0.9.

COMP-424, Lecture 12 - February 25, 2013

21

Example: Maximizing Expected Utility

ullet In our case, U is:

$$\begin{array}{ccc} X = \text{no} & X = \text{yes} \\ d = \text{no} & 0 & -50 \\ d = \text{yes} & -100 & 10 \end{array}$$

and P(X = yes) = 0.1, P(X = no) = 0.9. Compute:

$$EU(d=\text{no}) = 0.9 \times 0 + 0.1 \times (-50) = -5$$

$$EU(d=\text{yes}) = 0.9 \times (-100) + 0.1 \times 10 = -8$$

so according to MEU the best action is $d=\ensuremath{\operatorname{no}}$.

Some definitions

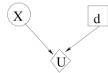
- Utility function: U(x)
 - Numerical expression of the desirability of a situation
- Expected utility: $EU(a|x) = \sum P(\textit{Effect}(a)|x)U(\textit{Effect}(a))$
 - Utility of each action outcome is weighted by the probability of that outcome
- Maximum expected utility: $\max_a EU(a|x)$
 - Best average payoff that can be achieved in situation x
- Optimal action: $\arg \max_a EU(a|x)$
 - Action chosen according to MEU principle
- Policy: a way of picking actions

COMP-424, Lecture 12 - February 25, 2013

2

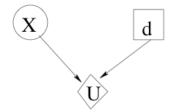
Decision Graphs

• We can represent the decision problem as a graphical model:



- Random variables are represented as oval nodes
 - Parameters associated with such nodes are *probabilities*
- Decisions are represented as rectangles
- Utilities are represented as diamonds
 - Parameters associated with such nodes are <u>utility values</u> for all possible values of the parents
- Restrictions on nodes:
 - Utility nodes have no out-going arcs
 - Decision nodes have no incoming arcs
- Computing the optimal action can be viewed as *inference*

Example



- Suppose we had evidence that X = yes.
- We can set d to each possible value (yes/no)
- \bullet For each value, ask the utility node to give the utility of that situation, then pick d according to MEU
- If there is no evidence at X, we will have to $sum\ out$ over all possible values of X, like in Bayes net inference
- ullet This will give the expected utility at node U, for each choice of action d

COMP-424, Lecture 12 - February 25, 2013

25

Information Gathering

- In an environment with hidden information, an agent can choose to perform *information-gathering actions*
 - E.g., taking the kid to the doctor
 - E.g., scouting the price of a product at different companies
- Such actions take time, or have associated costs (e.g., medical tests). When are they worth pursuing?
- The *value of information* specifies the utility of every piece of evidence that can be acquired.

Example: Buying oil drilling rights

- ullet Two blocks A and B, exactly one has oil, worth k
- Prior probabilities 0.5 each, mutually exclusive
- Current price of each block is k/2
- ullet Consultant offers accurate survey of A
- What is a fair price for the survey?

COMP-424, Lecture 12 - February 25, 2013

~-

Example: Solution

- Compute expected value of information as: expected value of best action given the information - expected value of best action without the information
- Survey may say "oil in A" or "no oil in A", with probability 0.5 each, so the value of the information is:

 $[0.5 \times$ value of "buy A" given "oil in A" + $0.5 \times$ value of "buy B" given "no oil in A" $]-0=(0.5 \times k/2)+(0.5 \times k/2)-0=k/2$

COMP-424, Lecture 12 - February 25, 2013

28

Value of Perfect Information (VPI)

• Suppose you have current evidence E, current best action a^* , with possible outcomes c_i . Then the expected utility of a^* is:

$$EU(a^*|E) = \max_{a} U(a) = \max_{a} \sum_{i} U(c_i)P(c_i|E, a)$$

ullet Suppose that you could gather further evidence about a variable X. Should you do it?

COMP-424, Lecture 12 - February 25, 2013

29

Value of Perfect Information

 $\bullet\,$ Suppose we knew X=x. Then we would choose a_x^* s.t.

$$EU(a_x^*|E, X = x) = \max_{a} \sum_{i} U(c_i)P(c_i|E, a, X = x)$$

 X is a random variable whose value is unknown, so we must compute expected gain over all possible values:

$$VPI_{E}(X) = \left(\sum_{x} P(X = x|E)EU(a_{x}^{*}|E, X = x)\right) - EU(a^{*}|E)$$

This is the value of knowing X exactly

Properties of VPI

- Nonnegative: $\forall X, E \ VPI_E(X) \geq 0$ Note that VPI is an <u>expectation!</u> Depending on the actual value we find for X, there can actually be a loss post-hoc
- \bullet *Nonadditive*: E.g. consider obtaining X twice

$$VPI_E(X,Y) \neq VPI_E(X) + VPI_E(Y)$$

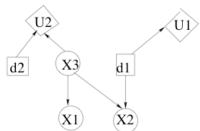
• Order-independent

$$VPI_E(X,Y) = VPI_E(X) + VPI_{E,X}(Y) = VPI_E(Y) + VPI_{E,Y}(X)$$

COMP-424, Lecture 12 - February 25, 2013

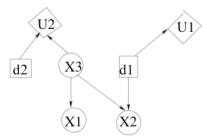
31

A More Complex Example



- X1: Symptoms
- X3: is there infection
- d1: decision to go to the doctor
- X2: result of consultation
- d2: treatment or no treatment

Example continued



- Total utility is U1+U2
- X2 is only observed if we decide that d1=1
- X3 is never observed

Now we have to optimize d1 and d2 together!

COMP-424, Lecture 12 - February 25, 2013

33

Summary

 To make decisions under uncertainty, we need to know the likelihood (probability) of different possible outcomes, and have preferences among outcomes:

Decision Theory = Probability Theory + Utility Theory

- An agent with consistent preferences has a utility function, which associates a real number to each possible state
- Rational agents try to maximize their expected utility.
- Utility theory allows us to tell whether gathering more information is valuable.
- Decision graphs can be used to represent the decision problem
- An algorithm similar to variable elimination is useful to compute optimal decision, but this is very expensive in general