Lecture 12: Introduction to reasoning under uncertainty

Preferences

Utility functions
Maximizing expected utility

Value of information

Bandit problems and the exploration-exploitation trade-off
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Actions and Consequences

e Probability allows us to model an uncertain, stochastic world
e But intelligent agents should be not only observers, but also actors
l.e. they should choose actions in a rational way

e Most often, actions produce consequences which cause the world to
change
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Three Theories

e Probability theory:
— Describes what the agent should believe based on the evidence
e Utility theory:
— Describes what the agent wants
e Decision theory:
— Describes what a rational agent should do (based on probability theory
and utility theory)
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Example: Buying a Football Ticket

e Possible consequences:
— You start watching the game, but then it starts to rain and you catch

pneumonia
— You watch the game and get back home
— You watch the game but when you get back home you find that the

cat ate the parrot
— You watch the game; when you want to get back home, the car won't

start. But your favorite rock start passes by and gives you a ride.

e How should we choose between buying and not buying a ticket???
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Preferences

A rational method would be to evaluate the benefit (desirability, value)

of each consequence and weigh it by the probabilities of consequences.

e We will call the consequences of an action payoffs or rewards

— The set of consequences C' = {c1,...cp}

In order to compare different actions we need to know, for each one:

— The probability distribution over the consequences, P(c;), such that

S Ple;) = 1.

corresponding to these actions
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Lotteries

e A lottery can be represented as a list of pairs, e.g.
L= [Aap;Ba (1 _p)]

or as a tree-like diagram:

B

e Agents have preferences over payoffs:
— A > B - A preferred to B
— A ~ B - indifference between A and B
-~ AZ B - B not preferred to A

A pair L = (C, P) is called a lottery (Luce and Raiffa, 1957)

So choosing between actions amounts to choosing between lotteries

e For an agent to act rationally, its preferences have to obey certain

constraints
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Example: Transitivity

Suppose an agent has the following preferences: B - C, A = B, C' > A,
and it owns C.

o If B > (', then the agent would A

pay (say) 1 cent to get B 7

e If A > B, then the agent, who now
has B would pay (say) 1 cent to
get A

e If C' > A, then the agent (who now ,
has A) would pay (say) 1 cent to T
get C

The agent looses money forever!
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The Axioms of Utility Theory

These are constraints over the preferences that a rational agent can have:

1. Orderability: A linear and transitive preference relation must exist
between the prizes of any lottery

e Linearity: (A= B)V (B> A)V (A~ B)
e Transitivity: (A= B)AN (B> C)= (A>C)

2. Continuity: If A = B > C, then there exists a lottery L with prizes A
and C' that is equivalent to receiving B for sure:

dp, L =[p,A; 1-p,C]~B

The probability p at which equivalence occurs can be used to compare
the merit of B w.r.t A and C
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The Axioms of Utility Theory (2)

3. Substitutability: Adding the same prize with the same probability to two
equivalent lotteries does not change the preference between them:

VLl7L27L?)70 <p S 13L1 ~ L2 ~ [paLl; (1_p)7L3] ~ [p7 L2; (1_p)aL3]

4. Monotonicity: If two lotteries have the same prizes, the one producing
the best prize most often is preferred

A=B=[p,A;(1—p),B|=[p,A;(1—p),Bliffp>p

5. Reduction of compound lotteries (“No fun in gambling”): For any
lotteries L1 and Lo = [p, Cq; (1 — p), Co),

[p, L1; (1 = p), La] ~ [p, L1; (1 = p)g, C1; (1 — p)(1 — q) O]
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Utility Functions

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given
preferences that satisfy these axioms, there exists at least one real-valued
function U, called utility function, such that:

AZ Bif and only if U(A) > U(B)

and
U(lpr, C; - 5 o, Cnl) = Y piU(Cy)
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Reminder: Expected value

e Suppose you have a discrete-valued random variable X, with n possible
values {x1,...x,}, occurring with probabilities p1,...,p, respectively.
Then the expected value (mean) of X is:

E[X] =) piz;
=1

e Example: suppose you play a game in which your opponent tosses a fair
coin. If it comes up heads, you get $1, if it comes up tails, you get $0.
What is your expected profit?

Answer: (+1)3 + (—1)1 =0
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Utilities

Utilities map outcomes (or states) to real numbers

Note that given a preference behavior, the utility function is not unique

Eg., Behavior (action choice) is invariant with respect to additive linear
transformations:

U/(ZE) = l{ilU(CU) + ko where k1 >0

With deterministic prizes only (no lottery choices), only ordinal utility
can be determined, i.e., total order on prizes
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Money

e Suppose you had to choose between two lotteries:

- L1:
* win $1 million for sure
- LQZ
* win $5 million w.p. 0.1
* win $1 million w.p. 0.89
* win $0 w.p. 0.01
e Which one would you choose?

e Which one should you choose?
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Money (2)
e Suppose you had to choose between two lotteries:
- Lli
* win $1 million for sure
- L2:

* win $5 million w.p. 0.1
* win $1 million w.p. 0.89
* lose $1 million w.p. 0.01

e Which one would you choose?

e Which one should you choose?
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Money (3)

e Suppose you had to choose between two lotteries:

- Lli
* $5 million w.p. 0.1
* $0 w.p. 0.9

- L2:
* $1 million w.p. 0.3
* $0 w.p. 0.7

e Which one would you choose?

e Which one should you choose?
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Utility Models

e Capture preferences towards rewards and resource consumption

e Capture risk attitudes

E.g. if one is risk-neutral, getting $5 million has exactly half the utility

of getting $ 10 million

e People are generally risk-averse when it comes to money

Utility o Utility o
0.8 0.8
0.4 0.4 7‘
$5M  $10M $2M $10M
Risk Neutral Risk Averse

(= Expected reward)
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Utility 5

0.8

0.4

A

$8M $10M

Risk Seeking

16




The Utility of Money

e Decision theory is normative: describes how rational agents should act
e People systematically violate the axioms of utility and decision theory,
especially regarding money
— Choose: 80% chance of $4000 or 100% chance of $3000
— Choose: 20% chance of $4000 or 25% chance of $3000

A

—

u

mv
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Preference Elicitation

e An increasing number of applications require recommending something

to a user or making a decision for them:

— E.g. movie or book recommendation systems

— E.g. deciding which cancer treatment to give to a patient (has to take
into account chance of survival, cost, side effects)

— E.g. deciding which ads to show on a dynamic web page

For this, we need to know the utility that the user associates to different

items

But people are very bad at specifying utility values!

Preference elicitation refers to finding out their preferences and
translating them into utilities

Very hard problem, lots of current research
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Acting under Uncertainty

e MEU principle: Choose the action that maximizes expected utility. Most
widely accepted as a standard for rational behavior

e Note that an agent can be entirely rational (i.e. consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tic-tac-toe
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Acting under Uncertainty (2)

e Sometimes it can be advantageous to not always choose actions according
to MEU, e.g. if the environment may change, or it is not fully known to
the agent

e Random choice models: choose the action with the highest expected
utility most of the time, but keep non-zero probabilities for other actions
as well
— Avoids being too predictable
— If utilities are not perfect, allows for exploration

e Minimizing regret: consider the loss between current behavior and some
“gold standard” and try to minimize it
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Example: Single Stage Decision Making

One random variable, X: does the kid have an ear infection or not?

One decision, d: give antibiotic (yes) or not (no)

The utility function associates a real value to possible states of the world
and possible decisions

X =no X =yes
d =no 0 —50
d=yes —100 10

Unfortunately X is not directly observable!
But we know P(X =yes) = 0.1, P(X = no) =0.9.
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Example: Maximizing Expected Utility
e In our case, U is:
X =no X =yes
d =no 0 —50
d=yes —100 10

and P(X =yes) = 0.1, P(X =no) = 0.9. Compute:

EU(d=no) = 09x0+40.1x(=50)=—5
EU(d=yes) = 0.9 x (—100)+0.1 x 10 = —8

so according to MEU the best action is d = no.
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Some definitions

Utility function: U (x)

— Numerical expression of the desirability of a situation

Expected utility: EU (a|x) = >  P(Effect(a)|z)U (Effect(a))

— Utility of each action outcome is weighted by the probability of that
outcome

Maximum expected utility: max, EU (a|x)

— Best average payoff that can be achieved in situation x

Optimal action: arg max, EU (a|x)

— Action chosen according to MEU principle

Policy: a way of picking actions
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Decision Graphs

We can represent the decision problem as a graphical model:

(x ) .

Y

Random variables are represented as oval nodes

— Parameters associated with such nodes are probabilities
Decisions are represented as rectangles
Utilities are represented as diamonds

— Parameters associated with such nodes are utility values for all possible
values of the parents
Restrictions on nodes:

— Utility nodes have no out-going arcs
— Decision nodes have no incoming arcs
Computing the optimal action can be viewed as inference
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Example

Suppose we had evidence that X = yes.

e We can set d to each possible value (yes/no)

For each value, ask the utility node to give the utility of that situation,
then pick d according to MEU

If there is no evidence at X, we will have to sum out over all possible
values of X, like in Bayes net inference

This will give the expected utility at node U, for each choice of action d
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Information Gathering

e In an environment with hidden information, an agent can choose to
perform information-gathering actions

— E.g., taking the kid to the doctor
— E.g., scouting the price of a product at different companies

e Such actions take time, or have associated costs (e.g., medical tests).
When are they worth pursuing?

e The value of information specifies the utility of every piece of evidence
that can be acquired.
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Example: Buying oil drilling rights

e Two blocks A and B, exactly one has oil, worth &
e Prior probabilities 0.5 each, mutually exclusive

e Current price of each block is k/2

e Consultant offers accurate survey of A

e What is a fair price for the survey?
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Example: Solution

e Compute expected value of information as:
expected value of best action given the information - expected value of
best action without the information

e Survey may say “oil in A" or “no oil in A", with probability 0.5 each, so
the value of the information is:
[0.5% value of “buy A" given “oil in A"+ 0.5x value of “buy B" given
“no oil in A"] — 0 = (0.5 x k/2) + (0.5 x k/2) — 0 =k/2
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Value of Perfect Information (VPI)

e Suppose you have current evidence FE, current best action a*, with
possible outcomes ¢;. Then the expected utility of a* is:

EU(a*|F) = max Ula) = mgxz Ul(ci)P(ci|E,a)

e Suppose that you could gather further evidence about a variable X.
Should you do it?
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Value of Perfect Information

e Suppose we knew X = z. Then we would choose a s.t.

EU(a}|E,X =2) =max Y  U(c;)P(c;|E, 0, X = z)

e X is a random variable whose value is unknown, so we must compute
expected gain over all possible values:

T

VPIg(X) = (Z P(X = z|E)EU(a*|E, X = :c)) — EU(a*|E)

This is the value of knowing X exactly
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Properties of VPI
e Nonnegative: VX, E VPIg(X)>0
Note that VPl is an expectation! Depending on the actual value we find
for X, there can actually be a loss post-hoc

e Nonadditive: E.g. consider obtaining X twice

VPIg(X,Y) # VPIg(X)+ VPIg(Y)

e Order-independent

VPIg(X,Y)=VPIg(X)+VPIgx(Y)=VPIg(Y)+ VPIgy(X)
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e X1: Symptoms
X3: is there infection

d1: decision to go to the doctor

X2: result of consultation

d2: treatment or no treatment
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e Total utility is U14U2
e X2 is only observed if we decide that d1=1

e X3 is never observed

Now we have to optimize d1 and d2 together!
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Summary

To make decisions under uncertainty, we need to know the likelihood
(probability) of different possible outcomes, and have preferences among
outcomes:

Decision Theory = Probability Theory + Utility Theory

An agent with consistent preferences has a utility function, which
associates a real number to each possible state

Rational agents try to maximize their expected utility.

Utility theory allows us to tell whether gathering more information is
valuable.

Decision graphs can be used to represent the decision problem

An algorithm similar to variable elimination is useful to compute optimal
decision, but this is very expensive in general
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