
Lecture 7: Logic and Planning

• Planning and representing knowledge

• Logic in general

• Propositional (Boolean) logic and its application to planning
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What is planning?

• A plan is a collection of actions for performing some task

– E.g., my daughter’s birthday celebration
– E.g., a conference participation
– E.g., assembling furniture

• There are many programs that help human planners

• The goal in AI is to generate plans automatically

COMP-424, Lecture 8 - January 30, 2013 2



NASA’s Deep Space 1

• Launched in Oct. 1998 to test technologies and perform flybys of asteroid
Braille and Comet Borrelly.

• Autonav system used for autonomous navigation and finding imaging
targets.

• Remote Agent system used to perform automatic fault detection and
self-repair.

• First spacecraft to be controlled by AI system without human
intervention.
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NASA’s MAPGEN System

• Planning and scheduling system used daily to generate command
sequences for the Mars Exploration Rover mission.
• Uses primarily mixed- initiative planning (i.e. collaborative planning

between human and robot)
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Search vs. Planning

• In theory, the types of problems above could be tackled by search methods
we discussed so far

• Two main difficulties arise in complex search problems:

– Branching factor is huge!
– Difficult to find good heuristic functions

• Ideally, we don’t want to search over individual states, but over sets of
states or (as seen last time) beliefs over states

• Key idea in planning: use a more powerful form of knowledge
representation to describe sets of states (or similar “abstractions”)
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Example: Second Life

• How do we represent states in this game?

• How do we decide what to do?
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Knowledge Representation

• A complete intelligent agent needs to be able to perform several tasks:

– Perception: what is my state?
– Cognition/deliberation: what action should I take?
– Action: how do I execute the action?

• State recognition implies some form of representation

• Figuring out the right action implies some form of inference

• Two levels to think about:

– Knowledge level: what does the agent know?
– Implementation level: how is the knowledge represented?
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Knowledge Bases

• The golden dream:

– Tell the agent what it needs to know
– The agent uses rules of inference to deduce consequences

• This is the declarative approach to building agents.

4
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Knowledge bases

The golden dream of AI:

– Tell the agent what it needs to know.

– The agent uses rules of inference to deduce consequences.

This is the declarative approach to building agents.

Assumes agents have two different parts:

– A knowledge base, which contains a set of facts expressed in some formal,

standard language.

– An inference engine, with general rules for deducing new facts and drawing

conclusions.

Inference engine

Knowledge base

Domain-independent algorithms

Domain-specific content
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An example: Wumpus World

Percepts: Breeze, Glitter, Smell (not the full board).

Actions: Turn-left, Turn-right, Forward, Grab,

Release, Shoot

Goal: Get gold back to start without entering

pit or wumpus square

Rules of the environment:

• Squares adjacent to wumpus are smelly.

• Squares adjacent to pit are breezy.

• Glitter if and only if gold is in the same square.

• Shooting kills the wumpus if you are facing it.

• Shooting uses up the only arrow.

• Grabbing picks up the gold if in the same square.

Stench

Stench

Stench

START

Gold

PIT

PIT

PIT

You!

• Agents have two different parts:

– A knowledge base, which contains a set of facts expressed in some
formal, standard language

– An inference engine, with general rules for deducing new facts

COMP-424, Lecture 8 - January 30, 2013 8



An Example: Wumpus World
Percepts: Breeze, Glitter, Smell
Actions: Left turn, Right turn, Forward, Grab,
Release, Shoot
Goals: Get gold back to start without entering
pit or wumpus square
Environment:

• Squares adjacent to wumpus are smelly

• Squares adjacent to pit are breezy

• Glitter if and only if gold is in the same
square

• Shooting kills the wumpus if you are facing
it

• Shooting uses up the only arrow

• Grabbing picks up the gold if in the same
square
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Wumpus World Characteristics

• The world is static: the positions of the pits, gold, and monster do not
change during the course of a game

• The actions have deterministic effects.

• Unlike most search problems we talked about, here the world is partially
observable!

• The agent does not know the map from the beginning, it has to figure
it out based on local perception

COMP-424, Lecture 8 - January 30, 2013 10



Exploring a Wumpus world
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Example: Getting Out of Tight Spots

6
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Example: Getting out of tight spots

• Smell in (1, 1) ! cannot move

• Can use a strategy of coercion:

– Shoot straight ahead

– Wumpus was there ! dead ! safe

– Wumpus wasn’t there ! safe

What knowledge representation supports this reasoning?

A

S

COMP-424: Artificial intelligence Joelle Pineau12

Logic

• Logics are formal languages for representing information such that

conclusions can be drawn.

• Logic:

– Syntax defines which sentences are allowed in the language.

– Semantics define the “meaning” of sentences.

I.e. which sentences are true in a given world.

E.g. the language of arithmetic

X+2 ! y  is a sentence

x2 + y >  is not a sentence

X+2 ! y  is true iff the number x+2 is no less than the number y

X+2 ! y is true in a world where x=7, y=1

X+2 ! y is false in a world where x=0, y=6

Smell in (1,1) ⇒ cannot move
Can use a strategy of coercion:

• Shoot straight ahead

• Wumpus was there ⇒ dead ⇒ safe

• Wumpus was not there ⇒ safe

What knowledge representation supports this reasoning?
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Logic

• Logics are formal languages for representing information such that
conclusions can be drawn

• Logic has two components:

– Syntax defines the sentences in the language
– Semantics define the “meaning” of sentences

I.e. define the truth of a sentence in a world

• E.g., the language of arithmetic

x+ 2 ≥ y is a sentence; x2 + y > is not a sentence

x + 2 ≥ y is true if and only if the number x + 2 is no less than the
number y

x+ 2 ≥ y is true in a world where x = 7, y = 1
x+ 2 ≥ y is false in a world where x = 0, y = 6
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Types of logic

• Logics are characterized by what they commit to as “primitives”

– Ontological commitment: what exists—facts? objects? time? beliefs?
– Epistemological commitment: what states of knowledge?

Language Ontological Commitment Epistemological Comm.
Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief 0. . . 1
Fuzzy logic degree of truth degree of truth 0. . . 1
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Interpretations

• We want to have a rule for generating (or testing) new sentences that
are always true

• But the truth of a sentence may depend on its interpretation!

• Formally, an interpretation is a way of matching objects in the world with
symbols in the sentence (or in the knowledge database)

• A sentence may be true in one interpretation and false in another

• Terminology:

– A sentence is valid if it is true in all interpretations
– A sentence is satisfiable if it is true in at least one interpretation
– A sentence is unsatisfiable if it is false in all interpretations
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Entailment and Inference

KB |= α

• Knowledge base KB entails sentence α if and only if α is true in all
worlds where KB is true.

E.g., the KB containing “I finished AI homework” and “I am happy”
entails “I finished the AI homework or I am happy”

• KB `i α means sentence α can be derived from KB by inference
procedure i

• Desired qualities of an inference procedure i:

– Soundness: i is sound if, whenever KB `i α, it is also true that KB
|= α. In other words, we infer only necessary truths

– Completeness: i is complete if, whenever KB |= α, it is also true that
KB `i α. In other words, we can generate all the necessary truths
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Example: Entailment in wumpus worldEntailment in the wumpus world
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Example: Models in wumpus world

Wumpus models

CS 460,  Session 10 28
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Example: Knowledge base in wumpus world
Wumpus models

CS 460,  Session 10 29

! "#$%$&'()'*+&,-./$-'.0*$1$,2*0-3456,7*
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Example: Model checking in wumpus world
Wumpus models

CS 460,  Session 10 30

! "#$%$&'()'*+&,-./$-'.0*$1$,2*0-3456,7*
! 89 %$:;9<=>$6*$*4?0:<$"# ! 89<$)-,30/$2@$!"#$%&'($')*+,
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Example: Model checking in wumpus world
Wumpus models

CS 460,  Session 10 32

! "#$%$&'()'*+&,-./$-'.0*$1$,2*0-3456,7*
! 89 %$:;9<9=$6*$*4>0:<$"#$/,0*$7,5$07546.$89
! "#$! 89
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Propositional Logic: Syntax

• Propositional logic is the simplest logic.

• Syntax rules:

– Atomic symbols l1, l2 etc are sentences
– If S is a sentence, ¬S is a sentence
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence
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Propositional Logic: Semantics

• A model specifies true/false for each proposition symbol

E.g. A B C
True True False

(Think of a model as a possible world in which the symbols can be
evaluated)

• Rules for evaluating truth with respect to a model m:

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true
S1 ⇒ S2 is true iff S1 is false or S2 is true

i.e., is false iff S1 is true and S2 is false
S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true
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Validity and Satisfiability

• A sentence is valid if it is true in all models

e.g., A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:

KB |= α if and only if KB ⇒ α is valid

• A sentence is satisfiable if it is true in some model

e.g., A ∨ B, C

• A sentence is unsatisfiable if it is true in no models

e.g., A ∧ ¬A

• Satisfiability is connected to inference via the following:

KB |= α if and only if KB ∧¬α is unsatisfiable

This is proof by contradiction!
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Two kinds of inference (proof) methods

• Model checking:

– Truth table enumeration (sound and complete for propositional logic)
– Heuristic search in model space (sound but incomplete)

• Application of inference rules:

– Legitimate (sound) generation of new sentences from old
– A proof is a sequence of inference rule applications
– Inference rules can be used as operators in a standard search algorithm!
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Propositional Inference: Truth Table Method

• Let α = A ∨ B and KB =(A ∨ C) ∧ (B ∨¬ C)

• Is it the case that KB |= α?

• Check all possible models — α must be true wherever KB is true

A B C A ∨ C B ∨¬ C KB α
False False False
False False True
False True False
False True True
True False False
True False True
True True False
True True True
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Properties of truth table method

• The truth table method is a sound and complete inference method, which
checks truth in all possible models.

• But the truth table method is very inefficient! 2n models for n literals

• There must be a more efficient way to prove sentences...
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Normal Forms

• Normal forms are standardized forms for writing sentences, which will be
useful if we want to apply inference rules in a uniform way

• Conjunctive Normal Form (CNF—universal)

conjunction of disjunctions of literals︸ ︷︷ ︸
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Disjunctive Normal Form (DNF—universal)

disjunction of conjunctions of literals︸ ︷︷ ︸
E.g., (A ∧ B) ∨ (A ∧ ¬C) ∨ (A ∧ ¬D) ∨ (¬B ∧ ¬C) ∨ (¬B ∧ ¬D)

• Horn Form (restricted)

conjunction of Horn clauses (clauses with ≤ 1 positive literal) E.g.,
(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Often written as set of implications: B ⇒ A and (C ∧D)⇒ B
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Inference rules for propositional logic

• Resolution (for CNF): complete for propositional logic

α ∨ β, ¬β ∨ γ
α ∨ γ

• Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β

Can be used with forward chaining or backward chaining
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Forward chaining

• When a new sentence p is added to the KB

– Look for all sentences that share literals with p
– Perform resolution
– Add new sentences to the KB and continue

• Two important properties

– Forward chaining is data-driven
E.g., inferring properties and categories from new percepts

– Forward chaining is an eager method: new facts are inferred as soon
as possible
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Backward chaining

• When a query q is asked:

– If q is in the knowledge base, return true
– Else use resolution for q with other sentences in KB, and continue

from the result

• Two important properties:

– Backward chaining is goal-driven: it centers the reasoning around the
query begin asked

– It is a lazy reasoning method: new facts are only inferred as needed,
and only to the extent that they help answer the query.
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Forward vs backward chaining: Which one is better?

• It depends on the problem at hand!

• Backward chaining is parsimonious in the amount of computation
performed, and does not grow the knowledge base as much as forward
chaining

• Backward chaining is focused on the proof that needs to be generated,
so is generally more efficient

• But it does nothing until questions are asked!

• Backward chaining is usually used in proof by contradiction

• Forward chaining extends the knowledge base, and hence improves the
understanding of the world

• Typically, backward chaining is used in proofs by contradiction

• Forward chaining is used in tasks where the focus is not on producing a
proof, but on providing a model of the world
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Other useful rules

• And-elimination:
α1 ∧ · · · ∧ αn

αi,∀i = 1, . . . n

• Implication elimination:
α⇒ β

¬α ∨ β
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Example

• Knowledge base

– HaveAILecture ⇒ (TodayIsMonday ∨ TodayIsWednesday)
– ¬ TodayIsMonday
– HaveAILecture ∨ HaveNoClass
– HaveNoClass ⇒ Sad
– ¬ Sad

• Can you infer what day it is?
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Complexity of Inference

• What is the complexity of verifying the validity of a sentence of n literals?

2n

• What if our knowledge is expressed only in terms of Horn clauses?

The inference time becomes polynomial!

– Every Horn clause establishes exactly one new fact
– We can add all the new facts implied by the database in n passes

This is why Horn clauses are often used in expert systems
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An Example: Wumpus World

• Knowledge base:

¬S1,1 ¬S2,1 S1,2 ¬B1,1 B2,1 ¬B1,2

• Knowledge about the environment:

¬S1,1 ⇒ ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,1

¬S2,1 ⇒ ¬W1,1∧¬W2,2∧¬W2,1∧¬W3,1

S1,2 ⇒W1,1 ∨W1,2 ∨W2,2 ∨W1,3

• Now we can use inference rules to find out
where the Wumpus is!

16
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Complexity of inference

• What is the complexity of verifying the validity of a sentence of n

literals?

2n

• What if our knowledge is expressed only in terms of Horn

clauses?

Inference time is polynomial!

– Every Horn clause establishes exactly one fact.

– We can state all new facts implied by the KB in n passes.

– This is why Horn clauses are often used in expert systems.
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Example: The Wumpus World

• KB:

¬S1,1   ¬S2,1   S1,2

¬B1,1   B2,1   ¬B2,1

• Knowledge about the environment:

¬S1,1!¬W1,1"¬W1,2"¬W2,1

¬S2,1!¬W1,1"¬W2,1"¬W2,2"¬W3,1

S1,2!W1,1#W1,2#W2,2#W1,3

Now we can use inference rules to  find out where the Wumpus is!

Stench

Stench

Stench

START

Gold

PIT

PIT

PIT
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Summary of Propositional Logic

• The good: Propositional logic is very simple!

Few rules, inference is simple

• The bad: Propositional logic is very simple!

So we cannot express things in a compact way

• E.g for the wumpus world, we need propositions for ALL positions, AND
ALL TIMES!

• We cannot say things like “for all squares” or “the wumpus is in one of
the neighboring squares”
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Planning with propositional logic

• A planning problem is described just like a search problem (states,
actions/operators, goal), but the problem representation is more
structured:

Search Planning
States Data structures Logical sentences
Actions Code Preconditions/outcomes
Goal Goal test Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions

• Natural idea: represent states using propositions, and use logical inference
(forward / backward chaining) to find sequences of actions.
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Planning as Satisfiability: SatPlan

• Intorduced by Kautz and Selman, 1990s, very successful method over
the years

• Take a description of a planning problem and generate all possible literals,
at all time slices

• Generate a humongous SAT problem

• Use a state-of-art SAT solver (eg WalkSAT) to get a plan

• Randomized SAT solvers can be used as well
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Complexity of planning

• Clearly NP-hard (as it can be seen as SAT in finite-length plan case)

• But actually worse (PSPACE) if we let plan duration
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GraphPlan

• Introduced by Blum and Furst in 1995, currently the state-of-art in
planning algorithms

• Main idea:

– Construct a graph that encodes constraints on possible plans
– If a valid plan exists it will be part of this planning graph, so search

only within this graph

• Planning graph can be built in polynomial time.
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Problem description

• Goal is described in conjunctive form

• The preconditions of actions have to be conjunctions

• Usually operators are described in STRIPS-like notation
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Planning Graph

• Two types of nodes:

– Propositions
– Actions

These are arranged in levels: propositions and action levels alternate

• Three types of edges between levels:

– Precondition: edge from P to A if P is a precondition of A
– Add: edge from A to P if A has P as effect
– Delete: edge from A to ¬P if A deletes P

• Action level includes actions whose preconditions are satisfied in the
previous level, plus “no-op” actions (do nothing)
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Example: Dinner Date

• Initial state: garbage ∧ cleanHands ∧ quiet

• Goal state: dinner ∧ present ∧¬garbage

• Actions:

– Cook: precondition: cleanHands; effect: dinner
– Wrap: precondition: quiet; postcondition: present
– Carry: effect: ¬garbage ∧ ¬cleanHands
– Dolly: effect: ¬garbage ∧ ¬quiet
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Example: First Level of Planning Graph

11

Dinner Date example

• Thicker lines correspond to doing nothing

• Action level contains all actions whose preconditions are satisfied

• Edges between nodes on same level indicate mutual exclusion
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Mutual exclusion

• Two actions are mutually exclusive (mutex) at some stage if no valid
plan could contain both at that stage

• Two actions at the same level can be mutex because of:

– Inconsistent effects: an effect of one negates the effect of the other
– Interference: one negates a precondition of the other
– Competing needs: the actions have mutex preconditions

• Two propositions at the same level are mutex if:

– One is a negation of the other
– Inconsistent support: All ways of achieving the propositions are

pairwise mutex
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Example: Mutual Exclusions

11

Dinner Date example

• wrap and dolly are mutex because dolly negates the precondition of wrap

• carry and the no-op are mutex because one negates the effect of the
other

• present and ¬quiet are mutex because the actions achieving them, wrap
and dolly, are mutex
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Constructing the Planning Graph

• Level P1 is initialized with all the literals from the initial state

• Add an action at level Ai if all its preconditions are present in level Pi

• Add a proposition in level Pi+1 if it is the effect of some action in level
Ai (including no-ops)

• Maintain a set of exclusion relations to eliminate incompatible
propositions and actions
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Example: Two-level Planning Graph

12

Dinner Date example
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Observations

• Number of propositions always increases (because all the ones from the
previous level are carried forward)

• Number of actions always increases (because the number of preconditions
that are satisfied increases)

• Number of propositions that are mutex decreases (because there are
more ways to achieve same propositions, and not all will be mutex)

• Number of actions that are mutex decreases (because of the decrease in
the mutexes between actions)

• After some time, all levels become identical: graph “levels off”

• Because there is a finite number of propositions and actions, mutexes
will not reappear
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Valid Plan

• A valid plan is a subgraph of the planning graph such that:

– All goal propositions are satisfied in the last level
– No goal propositions are mutex
– Actions at the same level are not mutex
– Each action’s preconditions are made true by the plan

• Algorithm:

1. Grow the planning graph until all goal propositions are reachable and
not mutex

2. If the graph levels off first, return failure (no valid plan exists)
3. Search the graph for a planning graph
4. If no valid plan is found add a level and try again
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Example: Plan extraction

26

Dinner Date example
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