Lecture 6: Game Playing

Why games?

Overview of state-of-art

Minimax search

Evaluation functions

e (- pruning

COMP-424, Lecture 6 - January 23, 2013

Game Playing

e One of the oldest, most well-studied domains in Al!
o Why?
— People like them! And are good at playing them
— Often viewed as an indicator of intelligence
* State space is very large and complicated
* Sometimes there is stochasticity and imperfect information
— There is a clear, clean description of the environment
— Easy to evaluate performancel!

e Samuel's checkers player - first notable success

“Games are to Al as grand prix racing is to automobile design”

COMP-424, Lecture 6 - January 23, 2013

Types of games

e Perfect vs. imperfect information

— Perfect: See the exact state of the game

E.g., chess, backgammon, checkers, go, othello
— Imperfect: Information is hidden

E.g., Scrabble, bridge, multi-player games

e Deterministic vs. stochastic

— Deterministic; Change in state is fully determined by player move
E.g. chess

— Stochastic: Change in state is partially determined by chance
E.g. backgammon, poker

COMP-424, Lecture 6 - January 23, 2013 3

Human or Computer: Who is Better?

Checkers:

— 1994: Chinook (UofA) beat human world champion Marion Tinsley
ending 42-year reign (during which he lost only 3 games!)

Chess:

— 1997: Deep Blue (IBM) beat world champion Gary Kasparov

— 2002: Fritz drew with world champion Vladimir Kramnik

Othello:

— 1997: Logistelo (NEC Research) beat world champion Takeshi
Murakami

— Today: human champions refuse to play best computer programs
(because computers are too good)

e Go:

— $1,000,000 prize available
— Master-level play achieved in the last two years

COMP-424, Lecture 6 - January 23, 2013 4

Human or Computer: Who Is Better?

Scrabble

— 1998: Maven (UofA) beats world champion Adam Logan 9-5
— Knowing the whole dictionary helps a lot!

Bridge:

— 1988: Ginsberg's program places 12th in world championships
— Coordination with partner still very difficult

Poker:

— 2008: Polaris (UofA) beats some of the best on-line human players
— Still very difficult to adapt to changing opponents

Commercial, multi-player games

— Very hard problems, progress slowly being made

— Real-time, opponents change, dynamic, cannot see everything,

— Goal is often not to beat human players, but to provide “interesting”
opponents

COMP-424, Lecture 6 - January 23, 2013 5

Game Playing as Search

e Consider two-player, perfect information, deterministic games.
e Can we formulate them as search problems?

— State: state of the board

— Operators: legal moves

— Goal: states in which the game is won/lost/drawn

— Cost:
x Simple utility: +1 for winning, -1 for losing, 0 for a draw
* More complex cases: points won, money, ...

— We want to find a strategy (i.e. a way of picking moves) that
maximizes utility

COMP-424, Lecture 6 - January 23, 2013 6

Game Search Challenge

e Not quite the same as simple searching
e There is a malicious opponent!

— It is trying to make things good for itself, and bad for us
— We have to simulate the opponent’s decision

e Main idea: utility from a single agent's perspective

— Define a max player (who wants to maximize its utility)
— And a min player (who wants to minimize it).

COMP-424, Lecture 6 - January 23, 2013

Example: Tic-Tac-Toe

g
X X X
7\ x
x|o x| Jo X
~— >
e T
x|o]x]| [x]olx] [x]o]x
olx| |ofo]x X
0 x|x]o| [x]olo
-1 0 +1 €—— Utility Function

COMP-424, Lecture 6 - January 23, 2013

Minimax Search

e Expand a complete search tree, until terminal states have been reached

and their utilities can be computed

e Go back up from the leaves towards the current state of the game

— At each min node, back up the worst value among children
— At each max node, back up the best value among children

MINIMAX(Node n) =

MAX UTILITY(n)
max MINIMAX(s)
seSucc(n)
MIN min MINIMAX(s)
seSucc(n)

COMP-424, Lecture 6 - January 23, 2013

if n is a terminal state

if n is a MAX node

if n is a MIN node

Minimax Algorithm

Operator MinimaxDecision ()
1. For each legal operator o:

(a) Apply the operator o and obtain the new game state s

(b) Valuelo] = MinimaxValue(s)

2. Return the operator with the highest value Value[o]

double MinimaxValue (s)
1. if isTerminal(s) return Utility(s);

. For each state s’ € Successors(s), Value(s') = MinimaxValue(s')

2
3. If Max is to move in s, return max, Value(s’)
4 s

. If Min is to move in s, return miny Value(s')

COMP-424, Lecture 6 - January 23, 2013

10

Properties of Minimax Search

e Complete if the game tree is finite

e Optimal against an optimal opponent
Otherwise, we do not know!

e Time complexity O(b™)

e Space complexity O(bm) (because search goes depth-first, and at each
of the m levels we keep b candidate moves)

e Why not use minimax to solve chess for example?

For chess, b &~ 35, m =~ 100 for “reasonable” games, so an exact solution
is impossible

COMP-424, Lecture 6 - January 23, 2013 11

Coping with Resource Limitations

e Suppose we have 100 seconds to make a move, and we can search 10*
nodes per second

— That means we have to limit the search to 10% nodes before choosing
a move.

e Standard approach:

— Use a cutoff test (e.g. based on depth limit)
— Use an evaluation function (akin to a heuristic) to estimate the value
of nodes where we cut off the search

e This resembles real-time search

COMP-424, Lecture 6 - January 23, 2013 12

Evaluation Functions

e An evaluation function v(s) represents the “goodness” of a board state
s (i.e. the chance of winning from that position)

e If the features of the board can be judged independently, then a good
choice is a weighted linear function:

v(s) = wifi(s) + wafa(s) + - - + wnfu(s)

where s is the board state

e This can be given by the designer or learned from experience

COMP-424, Lecture 6 - January 23, 2013 13

Example: Chess

Assign a value to each
piece: Pawn = 1; Knight
=3; Bishop =3; etc. Score
of a position is the sum of
the values of all my pieces
minus all opponent’s
pieces.

e
ARRRABRE
ROUESABR

More sophisticated: Linear evaluation function wy f1(s) + wafa(s) +
where, e.g.

e wy =9 with fi(s) = (nr. white queens) - (nr. black queens) etc.

e wy = 12 with f5(s) = nr. of available moves (mobility)

e w3 = —12 f3(s)=nr, available moves for opponents (it is bad for the
opponent to have many choices)

[J

COMP-424, Lecture 6 - January 23, 2013 14

How Precise Should the Evaluation Function Be?

e Evaluation function is only approximate, and is usually more accurate for
positions close to the end of the game

e The move chosen is the same if we apply a monotonic transformation to
the evaluation function!

MAX
MIN K 1& 20
4 1 0 20 400

e Only the order of the numbers matters: payoffs in deterministic games
act as an ordinal utility function

COMP-424, Lecture 6 - January 23, 2013 15

Cutting the Search Effort

e Evaluation functions help us make a decision without searching until the
end of the game

e Imagine a MinimaxCutoff algorithm, which is the same as MinimaxValue,
except it goes to some maximum depth m and uses the evaluation
function on those nodes (instead of going to the end of the game and
using the correct utility)

e How many moves can we search ahead in chess?

108 nodes with b = 35 allows us to search m = 4 moves ahead!

COMP-424, Lecture 6 - January 23, 2013 16

Minimax Cutoff in Chess

e 4-ply search gives a pretty bad chess player!
— 4-ply = human novice
— 8-ply = human master, typical PC
— 12-ply ~ Deep Blue, Kasparov

e Human experts tend to search very few lines of play, but they search
them very deeply!

e Main idea: use pruning!

COMP-424, Lecture 6 - January 23, 2013 17

a- pruning example

MAX

MIN

3 12 8 2 4 6 14 5 2

Suppose the leftmost subtree has been searched, and Max knows that
the value of its move there is 3

Searching the center tree, Max discovers than Min has a move of value
2, so Min can get a move of value < 2 in this subtree

But this is worse for Max!

Max would never take this move, since it has a better alternative, so
there is no point in searching this subtree further

COMP-424, Lecture 6 - January 23, 2013 18

a- pruning

e Standard technique for deterministic, perfect information games

e The idea is similar to a-pruning: if a move estimate looks worse than
another choice we already have, discard it

e The algorithm is like minimax, but keeps track of the best leaf value for
the Max palyer («) and the best value for the Min player (3)

e If the best move at a node cannot change, regardless of what we find by
searching, then no need to search further!

COMP-424, Lecture 6 - January 23, 2013 19

-3 Algorithm

Instead of MinimaxValue, we have two functions, MaxValue and MinValue,
which update the two cutoffs differently

double MaxValue(s, a, 3)
1. If cutoff(s) return Evaluation(s)

2. For each s’ in Successors(s)
(a) a < max(a, MinValue(s', o, B))
(b) If & > (3 return 8

3. Return «

double MinValue(s, o, ()
1. If cutoff(s) return Evaluation(s)

2. For each s’ in Successors(s)
(a) B < min(B, MaxValue(s', o, B))
(b) If > S return «

3. Return 8

COMP-424, Lecture 6 - January 23, 2013 20

Example

[-co, +cc]
A0

Initialize o and 3

COMP-424, Lecture 6 - January 23, 2013 21
Example
We search the first move for Max
COMP-424, Lecture 6 - January 23, 2013 22

Example

We discovered a move of value 3 for Min, so Max's value for this move will
be at most 3

COMP-424, Lecture 6 - January 23, 2013 23

Example

3 12

Now we see a move of value 12 for Min, but it already has a better option,
so no changes are made

COMP-424, Lecture 6 - January 23, 2013 24

Example

We finished searching all of Min's move on this branch, and figured out
that the best Max can hope for is to get a 3 (if Min plays optimally)

COMP-424, Lecture 6 - January 23, 2013 25

Example

Now we are about to search Max's middle move

COMP-424, Lecture 6 - January 23, 2013 26

Example

Min has a move of value 2, so Max’s value for this branch must be < 2.
Hence, Max should never take this move, and no further search can change
this decision. The subtree is pruned off

COMP-424, Lecture 6 - January 23, 2013 27

Example

[3,+]

Proceed to Max's rightmost move

COMP-424, Lecture 6 - January 23, 2013 28

Example

[3,+o]
[3,14]

We found a move for Min of value 14, so this move looks like it could be

better for Max than its current value of 3

COMP-424, Lecture 6 - January 23, 2013

29

Example

Max could still get a 5 on this move

COMP-424, Lecture 6 - January 23, 2013

30

Example

We finished searching, this last move was not as good as hoped. The
optimal play gives Max a value of 3, on the leftmost move

COMP-424, Lecture 6 - January 23, 2013

31

Example: Important lessons

e Order matters! On the middle branch, nodes were ordered well and we
pruned a lot; on the right branch, the order was bad and there was no

proning

e The best moves were same as returned by Mimimax (it can be proved

that this is always true for an optimal opponent)

COMP-424, Lecture 6 - January 23, 2013

32

Properties of a-3 Pruning

e Pruning does not affect the final result!
e Good move ordering is key to the effectiveness of pruning
— With bad move ordering complexity is = O(b™) (nothing pruned)
— With perfect ordering, the time complexity is &~ O(bm/2) (because we
cut off the branching at every other level)
*x Means we double the search depth for the same resources
% In chess (and other games) this is the difference between a novice
and an expert player
— On the average, O(b*™/4) (if we expect to find the max or min after
b/2 expansions)
— Randomizing the move ordering can achieve the average case
— Evaluation function can be used to give a good initial ordering for the
nodes
e - pruning demonstrates the value of reasoning about which
computations are important.

COMP-424, Lecture 6 - January 23, 2013 33

Deep Blue (IBM)

e Specialized chess processor, with special-purpose memory organization

e A very sophisticated evaluation function, with expert features and hand-
tuned weights

e Database of opening/closing moves

e Uses a version of a-f pruning with undisclosed improvements, which
allow searching some lines up to 40 ply deep.

e Can search over 200 million positions per second!
e Overall, an impressive engineering feat

e Now, several computer programs running on regular hardware are on par
with human champions (e.g. Fritz).

COMP-424, Lecture 6 - January 23, 2013 34

Chinook (Schaeffer, U. of Alberta)

e Plain a-f search, performed on standard PCs

e Evaluation function based on expert features of the board
e Opening database

e Huge endgame database!

Chinook has perfect information for all checkers positions involving 8 or
fewer pieces on the board, a total of 443,748,401,247 positions.

e Only a few moves in the middle of the game were actually searched!

e They have now done an exhaustive search for checkers, and discovered
that optimal play leads to a draw

COMP-424, Lecture 6 - January 23, 2013 35

Logistello (Buro, U. of Alberta)

e Opening book, continuously updated based on the games played (~
23000 games)

e «-f3 search with a linear evaluation function:

— Hand-selected features
— 1.5 million weights tuned by learning during self-play games

e Thinks during the opponent'’s time

e Search speed (on a Pentium-Pro 200) =~ 160,000 nodes/sec in the middle
game, ~ 480,000 nodes/sec in the endgame

e Search depth ~ 18-23 ply in the middle game

e Win/loss/draw determination at 26-22 empty squares, exact score 1-2
ply later

COMP-424, Lecture 6 - January 23, 2013 36

Drawbacks of a-f

If the branching factor is really big, search depth is still too limited
E.g. in Go, where branching factor b ~ 300

Optimal play is guaranteed against an optimal opponent if search
proceeds to the end of the game

But the opponent may not be optimal!

If heuristics are used, this assumption turns into the opponent playing
optimally according to the same heuristic function as the player

This is a very big assumption! What to do if the opponent plays very
differently?

COMP-424, Lecture 6 - January 23, 2013 37

Summary

Games are a cool, realistic testbed for Al ideas

Search is similar to A* (using heuristics), but one needs to consider that
the opponent will try to harm

It is crucial to decide where to spend the computation effort, and prune
unimportant paths

Computers dominate many classical, perfect-information games, using
« — [pruning

However, this may not be good enough in games with very large branching
factor (e.g. Go) or imperfect information / stochastic games

Next time: Monte Carlo tree search

COMP-424, Lecture 6 - January 23, 2013 38

