
Lecture 5: Genetic algorithms. Constraint Satisfaction

• Global search algorithms

– Genetic algorithms

• What is a constraint satisfaction problem (CSP)

• Applying search to CSP

• Applying iterative improvement to CSP

COMP-424, Lecture 5 - January 21, 2013 1

Recall from last time: Optimization problems

• There is a cost function we are trying to optimize (e.g. travelling
salesman problem)

• There may be constraints that need to be satisfied

• The state space is the set of all possible solutions, which is usually
combinatorial

• Local search methods start with some initial solution and try to improve
it iteratively by moving to “neighbouring” solutions.

– Hill-climbing (aka gradient descent)
– Simulated annealing

• Today: global search

– Can jump around arbitrarily between possible solutions
– Example: genetic algorithms, ant colony optimization etc.

COMP-424, Lecture 5 - January 21, 2013 2

Evolutionary computation

• Refers generally to computational procedures patterned after biological
evolution

• Nature looks for the best individual (i.e. fittest)

• Many solutions (individuals) exist in parallel

• Evolutionary search procedures are also parallel, perturbing at random
several potential solutions.

COMP-424, Lecture 5 - January 21, 2013 3

Genetic algorithms

• A candidate solution is called an individual

– In a traveling salesman problem, an individual is a tour

• Each individual has a fitness: numerical value proportional to the
evaluation function

• A set of individuals is called a population

• Populations change over generations, by applying operations to
individuals: selection, mutation, crossover

• Individuals with higher fitness are more likely to survive, as well as to
reproduce

• Individuals are typically represented by binary strings, to allow the
evolutionary operations to be carried out easily

COMP-424, Lecture 5 - January 21, 2013 4

Mutation

• Mutation is a way of generating desirable features that are not present
in the original population, by injecting random changes

• Typically mutation just means changing a 0 to a 1 (and vice versa)

!"

• The mutation rate µ gives the probability that a mutation will occur in
an individual

• We can allow mutation in all individuals, or just in “offspring”

COMP-424, Lecture 5 - January 21, 2013 5

Crossover

• Consists of combining parts of individuals to create new individuals
• Single-point crossover: choose a crossover point, cut the individuals
there, swap the pieces. E.g.:

101|1100 011|1110
=⇒ crossover =⇒

011|0101 101|0101

• Implementation: use a crossover mask, m, which is a binary string. In
our example, m = 111000.
Given two parents i and j, the offspring are generated by: (i∧m)∨ (j ∧
¬m), and (i ∧ ¬m) ∨ (j ∧m)

• Multi-point crossover can simply be implemented using arbitrary (possibly
random) masks

• In some applications, crossover has to be restricted, in order to produce
“viable” offspring

COMP-424, Lecture 5 - January 21, 2013 6

Genetic algorithm generic code

GA(Fitness, threshold, p, µ, r)

1. Initialize population P with p random individuals

2. Repeat

(a) For each Xi ∈ P , compute Fitness(Xi)
(b) If maxi Fitness(Xi) ≥ threshold return the fittest individual;
(c) Else generate a new generation Ps through the following operations:

i. Selection: Probabilistically select (1 − r) ∗ p members of P to
“survive” and copy them to Ps

ii. Crossover: Probabilistically select r ∗ p/2 pairs of individuals from
P . For each pair, produce two offspring by applying the crossover
operator (see next slides). Include all offspring in Ps.

iii. Mutation: Randomly select µ ∗ p individuals and flip one randomly
selected bit in each individual

iv. P ← Ps

COMP-424, Lecture 5 - January 21, 2013 7

Selection: Survival of the fittest

• Like in natural evolution, we would like the fittest individual to be more
likely to survive

• Several possible ways to implement this idea:
– Fitness proportionate selection: Pr(i) = Fitness(i)/

�p
j=1 Fitness(j)

(assuming fitness is positive)
– Tournament selection: pick i, j at random with uniform probability,

then with probability p, select the fitter one
Only requires comparing two individuals, which may be easier in some
applications (e.g. games) than computing a fitness measure

– Rank selection: sort all hypotheses by fitness; then probability of
selection is proportional to rank

– Softmax (Boltzman) selection:

Pr(i) =
exp(Fitness(i)/T)��p
j=1 exp(Fitness(j)/T)

�

COMP-424, Lecture 5 - January 21, 2013 8

Elitism

• The best solution can ”die” during evolution

• In order to prevent this, the best solution ever encountered can always
be ”preserved” on the side

• If the ”genes” from the best solution should always be present in the
population, it can also be copied in the next generation automatically,
bypassing the selection process.

• Note that the best solution ever encountered is typically saved in hill
climbing and simulated annealing as well

COMP-424, Lecture 5 - January 21, 2013 9

Genetic algorithms as search

• States: possible solutions

• Search operators: mutation, crossover, selection

• Parallel search, since several solutions are maintained in parallel

• An attempt at hill-climbing on the fitness function, but without following
the gradient

• Mutation and crossover should allow getting out of local minima

• Very related to simulated annealing, but this is a global (not local) search
method

COMP-424, Lecture 5 - January 21, 2013 10

TSP: Encoding as a GA

• Each individual is a tour (permutation of vertices)

• Mutation swaps a pair of edges (many other operations are possible, and
have been tried in the literature)

• Crossover cuts the parents in two and swaps them if this does not create
an invalid offspring

• Fitness is the length of the tour

• Note that the GA operations (crossover and mutation) are a lot fancier
for this realistic problem than for simple binary examples!

COMP-424, Lecture 5 - January 21, 2013 11

TSP example

!"

COMP-424, Lecture 5 - January 21, 2013 12

TSP example: Initial generation

!"

COMP-424, Lecture 5 - January 21, 2013 13

TSP example: Generation 15

!!

COMP-424, Lecture 5 - January 21, 2013 14

TSP example: Generation 30

!"

COMP-424, Lecture 5 - January 21, 2013 15

The good and bad of GAs

• Good things:

– Aesthetically pleasing, due to evolution analogy
– If tuned right, can be very effective (good solutions found with fewer

calls to the evaluation function than for simulated annealing)

• Not-so-good things:

– Performance depends crucially on the encoding of the problem for the
GA, and good encodings are difficult to find

– Many parameters to tweak! Bad parameter settings can result in
very slow progress, or the algorithm becoming stuck

– Some quirky phenomena, e.g overcrowding: too many individuals with
the same genes are in the population, so genetic diversity is lost
Overcrowding occurs especially if the mutation rate µ is too low,
or if multiple copies of the same individual can be kept in the next
generation

COMP-424, Lecture 5 - January 21, 2013 16

Constraint satisfaction problems

• We want to find a solution that satisfies a set of constraints

Eg. Sudoku, crossword puzzles

• Typically, very few “legal” solutions exist

• One can think of this problem as a cost function with minimum value at
the solution, maximum value elsewhere

• Hence, optimization algorithms may not be easy to apply directly

COMP-424, Lecture 5 - January 21, 2013 17

Canonical example: Graph coloring

6

COMP-424: Artificial intelligence Joelle Pineau11

Example: map coloring

• Color a map so that no adjacent countries have the same color.

– Variables: Countries Ci

– Domains: {Red, Blue, Green}

– Constraints: {C1!C2, C1!C5, …}

• Constraint graph: C1 C2

C3

C6

C5

C5

C1 C2

C3

C5

C6

C4

COMP-424: Artificial intelligence Joelle Pineau12

Standard search applied to map coloring

• Is this a practical approach? What is the complexity?

• Color the nodes such that two adjacent vertices are not the same color

• Variables: Vi

• Domains: Red, Blue, Green

• Constraints: If there is an edge between Vi and Vj, their value (color)
must be different)

COMP-424, Lecture 5 - January 21, 2013 18

Constraint satisfaction problems (CSPs)

• A CSP is defined defined by:

– A set of variables Vi that can take values from domain Di

– A set of constraints specifying what combinations of values are allowed
(for subsets of the variables)

– Constraints can be represented:
∗ Explicitly, as a list of allowable values (e.g., C1 =red)
∗ Implicitly, as a function testing for the satisfaction of the constraint
(e.g. C1 �= C2)

• A CSP solution is an assignment of values to variables such that all the
constraints are true.

• We typically want to find any solution or find that there is no solution

COMP-424, Lecture 5 - January 21, 2013 19

Example: 4-Queens as a CSP

Put one queen in each column. In which row does each one go?

Variables Q1, Q2, Q3, Q4

Domains Di = {1, 2, 3, 4}

Constraints:
Qi �= Qj (cannot be in same row)
|Qi −Qj| �= |i− j| (or same diagonal)

!"#$%&'()

*+

,!"#-%.

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1, Q2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)

COMP-424, Lecture 5 - January 21, 2013 20

Constraint graph

• Binary CSP: each constraint relates at most two variables

• Constraint graph: nodes are variables, arcs show constraints

3

COMP-424: Artificial intelligence Joelle Pineau5

Example: 4 queens as a CSP

• Put one queen in each column. Which row does each one go it?

• Variables: {Q1, Q2, Q3, Q4}

• Domain: {1, 2, 3, 4}

• Constraints:

– Qi ! Qj (cannot be in same row)

– |Qi-Qj| ! |i - j| (cannot be in same diagonal)

• Translate each constraint into set of allowable values for its

variables.

– E.g. values for (Q1, Q2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)

COMP-424: Artificial intelligence Joelle Pineau6

Constraint graph

• Binary CSP: each constraint relates at most two variables.

• Constraint graph: nodes are variables, arcs show constraints.

• The structure of the graph can be exploited to provide problem

solutions.

Q1 Q2

Q4Q3

• The structure of the graph can be exploited to provide problem solutions

COMP-424, Lecture 5 - January 21, 2013 21

Varieties of variables

• Boolean variables (e.g. satisfiability)

• Finite domain, discrete variables (e.g. colouring)

• Infinite domain, discrete variables (e.g. start/end of operation in
scheduling)

• Continuous variables

Problems range from solvable in poly-time using linear programming to
NP-complete to undecidable.

COMP-424, Lecture 5 - January 21, 2013 22

Varieties of constraints

• Unary: involve one variable and one value

• Binary

• Higher-order (involve 3 or more variables)

• Preferences (soft contraints): can be represented using costs, and lead
to constrained optimization problems

COMP-424, Lecture 5 - January 21, 2013 23

Real-world CSPs

• Assignment problems (E.g., who teaches what class)

• Timetabling problems (E.g., which class is offered when and where?)

• Hardware configuration

• Transportation scheduling

• Factory scheduling

• Floor planning

• Puzzle solving (E.g. crosswords, Sudoku)

COMP-424, Lecture 5 - January 21, 2013 24

Applying standard search

• Assume a constructive approach:

– States are defined by the values assigned so far
– Initial state: all variables unassigned
– Operators: assign a value to an unassigned variable
– Goal test: all variables assigned, no constraints violated

• This is a general purpose algorithm, which works for all CSPs!

COMP-424, Lecture 5 - January 21, 2013 25

Example: Map coloring

Color a map so that no adjacent countries have the same color

Variables: Countries Ci

Domains: {Red,Blue,Green}
Constraints: C1 �= C2, C1 �= C5, etc.
Constraint graph:

6

COMP-424: Artificial intelligence Joelle Pineau11

Example: map coloring

• Color a map so that no adjacent countries have the same color.

– Variables: Countries Ci

– Domains: {Red, Blue, Green}

– Constraints: {C1!C2, C1!C5, …}

• Constraint graph: C1 C2

C3

C6

C5

C5

C1 C2

C3

C5

C6

C4

COMP-424: Artificial intelligence Joelle Pineau12

Standard search applied to map coloring

• Is this a practical approach? What is the complexity?

6

COMP-424: Artificial intelligence Joelle Pineau11

Example: map coloring

• Color a map so that no adjacent countries have the same color.

– Variables: Countries Ci

– Domains: {Red, Blue, Green}

– Constraints: {C1!C2, C1!C5, …}

• Constraint graph: C1 C2

C3

C6

C5

C5

C1 C2

C3

C5

C6

C4

COMP-424: Artificial intelligence Joelle Pineau12

Standard search applied to map coloring

• Is this a practical approach? What is the complexity?

COMP-424, Lecture 5 - January 21, 2013 26

Standard search applied to map coloring

6

COMP-424: Artificial intelligence Joelle Pineau11

Example: map coloring

• Color a map so that no adjacent countries have the same color.

– Variables: Countries Ci

– Domains: {Red, Blue, Green}

– Constraints: {C1!C2, C1!C5, …}

• Constraint graph: C1 C2

C3

C6

C5

C5

C1 C2

C3

C5

C6

C4

COMP-424: Artificial intelligence Joelle Pineau12

Standard search applied to map coloring

• Is this a practical approach? What is the complexity?
Is this a practical approach? What is the complexity?

COMP-424, Lecture 5 - January 21, 2013 27

Analysis of the simple approach

• Maximum search depth = number of variables

– All variables have to get some value

• Search algorithm to use: depth-first search

– DFS is complete in this case because we know the maximum depth

• Branching factor =
�

i |Di| (at the top of the tree, at least)

– This can be a big search!

But: this can be improved dramatically by noting the following:

• The order in which variables are assigned is irrelevant, so many paths are
equivalent

• Adding assignments cannot correct a violated constraint

COMP-424, Lecture 5 - January 21, 2013 28

Backtracking search

• Like depth-first search but:

– Fix the order of assignment (branching factor becomes |Di|)
• Algorithm:

– Select the next unassigned variable X

– For each value xi ∈ DX

∗ If the value satisfies the constraint, assign X = xi and exit the loop
– If an assignment was found, continue with the next variable
– If no assignment was found, go back to the preceding variable and try

a different value for it.

• This is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

COMP-424, Lecture 5 - January 21, 2013 29

Forward checking

Main idea: Keep track of legal values for unassigned variables

• When assigning a value for variable X

– Look at each unassigned variable Y connected to X by a constraint
– Delete from Y ’s domain any value that is inconsistent with X’s

assignment

Can solve n-queens up to n ≈ 30

COMP-424, Lecture 5 - January 21, 2013 30

Heuristics for CSPs

More intelligent decisions on:

• which value to choose for each variable

• which variable to assign next

Given C1 = red, C2 = green, choose C3

Choose C3 = green
least-constraining-value
Now what variable next? Choose C5:
most-constrained-variable
For ties: most constraining variable

6

COMP-424: Artificial intelligence Joelle Pineau11

Example: map coloring

• Color a map so that no adjacent countries have the same color.

– Variables: Countries Ci

– Domains: {Red, Blue, Green}

– Constraints: {C1!C2, C1!C5, …}

• Constraint graph: C1 C2

C3

C6

C5

C5

C1 C2

C3

C5

C6

C4

COMP-424: Artificial intelligence Joelle Pineau12

Standard search applied to map coloring

• Is this a practical approach? What is the complexity?

COMP-424, Lecture 5 - January 21, 2013 31

Taking advantage of problem structure

• Worst-case complexity is dn (where d is the number of possible values
and n is the number of variables)

• But a lot of problems are much easier!

• Disjoint components - can be solved independently

• Tree-structured constraint graphs - O(nd2)

• Nearly-tree structured graphs - Complexity O(dc(n − c)d2): Use cutset
conditioning

– Find a set of variables S which, when removed, turn the graph into a
tree

– Instantiate them all possible ways
– Good if c, the size of the cutset S, is small

COMP-424, Lecture 5 - January 21, 2013 32

Iterative improvement algorithm for CSPs

• Start with a “broken” but complete assignment of values to variables

– Allow states to have variable assignments that do not satisfy the
constraints

• Randomly select conflicted variables

• Operators re-assign variable values

• This can be viewed as a relaxation of the cost function, which looks at
the number of violated constraints as a cost to be minimized

– Min-conflicts heuristic: choose value that violates the fewest
constraints

– I.e., approximate gradient descent on the total number of violated
constraints

• Simulated annealing, genetic algorithms can be used here too.

COMP-424, Lecture 5 - January 21, 2013 33

Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)

• Operators: move queen in column

• Goal test: no attacks

• Evaluation function: number of attacks

11

COMP-424: Artificial intelligence Joelle Pineau21

Iterative improvement algorithm for CSPs

• Start with a broken but complete assignment of values to

variables.

– Allow states to have variable assignments that don’t satisfy

constraints.

• Randomly select any conflicted variables.

• Operators reassign variable values.

– How? Min-conflicts heuristic chooses value that violates the fewest

constraints.

COMP-424: Artificial intelligence Joelle Pineau22

Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)

• Operators: move queen in column

• Goal test: no attacks

• Evaluation function: number of attacks

COMP-424, Lecture 5 - January 21, 2013 34

Performance of min-conflicts

• Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n= 107)

• The same appears to be true for any randomly-generated CSP except in
a narrow range of the ratio

R =
number of constraints

number of variables

12

COMP-424: Artificial intelligence Joelle Pineau23

Performance of min-conflicts heuristic

• Given random initial state, can solve n-queens in almost

constant time for arbitrary n with high probability (e.g. n=107).

• The same appears to be true for any randomly-generated CSP

except in a narrow range of the ratio:

COMP-424: Artificial intelligence Joelle Pineau24

Summary

• CSPs are everywhere!

• Can be cast as search problems.

• We can use either constructive methods or iterative

improvement methods to solve CSPs.

• Iterative improvement methods with min-conflicts heuristic are

very general, and often work best.

COMP-424, Lecture 5 - January 21, 2013 35

Summary

• CSPs are everywhere!

• Can be cast as search problems

• We can use either constructive methods or iterative improvement
methods

• Iterative improvement methods using min-conflicts heuristic are very
general, and often work better

COMP-424, Lecture 5 - January 21, 2013 36

