Lecture 5: Genetic algorithms. Constraint Satisfaction

e Global search algorithms

— Genetic algorithms

e What is a constraint satisfaction problem (CSP)
e Applying search to CSP

e Applying iterative improvement to CSP

COMP-424, Lecture 5 - January 21, 2013 1

Recall from last time: Optimization problems

There is a cost function we are trying to optimize (e.g. travelling
salesman problem)

There may be constraints that need to be satisfied

The state space is the set of all possible solutions, which is usually
combinatorial

Local search methods start with some initial solution and try to improve
it iteratively by moving to “neighbouring” solutions.

— Hill-climbing (aka gradient descent)
— Simulated annealing

Today: global search

— Can jump around arbitrarily between possible solutions
— Example: genetic algorithms, ant colony optimization etc.

COMP-424, Lecture 5 - January 21, 2013 2

Evolutionary computation

Refers generally to computational procedures patterned after biological
evolution

Nature looks for the best individual (i.e. fittest)

Many solutions (individuals) exist in parallel

Evolutionary search procedures are also parallel, perturbing at random
several potential solutions.

COMP-424, Lecture 5 - January 21, 2013 3

Genetic algorithms

A candidate solution is called an individual
— In a traveling salesman problem, an individual is a tour

e Each individual has a fitness: numerical value proportional to the
evaluation function

e A set of individuals is called a population

e Populations change over generations, by applying operations to
individuals: selection, mutation, crossover

e Individuals with higher fitness are more likely to survive, as well as to
reproduce

e Individuals are typically represented by binary strings, to allow the
evolutionary operations to be carried out easily

COMP-424, Lecture 5 - January 21, 2013 4

Mutation

e Mutation is a way of generating desirable features that are not present
in the original population, by injecting random changes

e Typically mutation just means changing a 0 to a 1 (and vice versa)

[1[0]o[1]ofoo] [1]1]1]t][1]o[o] [1[1[o]1[1]0]o]

la[111[1]1]o]o]

Select a Select a Change
random random that entry
individual entry

e The mutation rate p gives the probability that a mutation will occur in
an individual

e We can allow mutation in all individuals, or just in “offspring”

COMP-424, Lecture 5 - January 21, 2013 5

Crossover

e Consists of combining parts of individuals to create new individuals
e Single-point crossover: choose a crossover point, cut the individuals
there, swap the pieces. E.g.:

1011100 011]1110
=—> crossover =—>
011]0101 1010101

e Implementation: use a crossover mask, m, which is a binary string. In
our example, m = 111000.
Given two parents i and j, the offspring are generated by: (i Am)V (j A
—m), and (i A—=m)V (j Am)

e Multi-point crossover can simply be implemented using arbitrary (possibly
random) masks

e In some applications, crossover has to be restricted, in order to produce
“viable" offspring

COMP-424, Lecture 5 - January 21, 2013 6

Genetic algorithm generic code

GA(Fitness, threshold, p, u,)
1. Initialize population P with p random individuals

2. Repeat

(a) For each X; € P, compute Fitness(X;)
(b) If max; Fitness(X;) > threshold return the fittest individual;
(c) Else generate a new generation Ps through the following operations:
i. Selection: Probabilistically select (1 — r) * p members of P to
“survive” and copy them to P;
ii. Crossover: Probabilistically select r * p/2 pairs of individuals from
P. For each pair, produce two offspring by applying the crossover
operator (see next slides). Include all offspring in Ps.
ii. Mutation: Randomly select u * p individuals and flip one randomly
selected bit in each individual
iv. P+« P;

COMP-424, Lecture 5 - January 21, 2013 7

Selection: Survival of the fittest

e Like in natural evolution, we would like the fittest individual to be more
likely to survive
e Several possible ways to implement this idea:
— Fitness proportionate selection: Pr(i) = Fitness(i)/zg?:1 Fitness(j)
(assuming fitness is positive)
— Tournament selection: pick 7, 7 at random with uniform probability,
then with probability p, select the fitter one
Only requires comparing two individuals, which may be easier in some
applications (e.g. games) than computing a fitness measure
— Rank selection: sort all hypotheses by fitness; then probability of
selection is proportional to rank
— Softmax (Boltzman) selection:

exp(Fitness(i)/T)
(1 exp(Fitness(j)/T))

Pr(i) =

COMP-424, Lecture 5 - January 21, 2013 8

Elitism

e The best solution can "die" during evolution

e In order to prevent this, the best solution ever encountered can always
be " preserved” on the side

o If the "genes” from the best solution should always be present in the
population, it can also be copied in the next generation automatically,
bypassing the selection process.

e Note that the best solution ever encountered is typically saved in hill
climbing and simulated annealing as well

COMP-424, Lecture 5 - January 21, 2013 9

Genetic algorithms as search

e States: possible solutions
e Search operators: mutation, crossover, selection
e Parallel search, since several solutions are maintained in parallel

e An attempt at hill-climbing on the fitness function, but without following
the gradient

e Mutation and crossover should allow getting out of local minima

e Very related to simulated annealing, but this is a global (not local) search
method

COMP-424, Lecture 5 - January 21, 2013 10

TSP: Encoding as a GA

e Each individual is a tour (permutation of vertices)

e Mutation swaps a pair of edges (many other operations are possible, and
have been tried in the literature)

e Crossover cuts the parents in two and swaps them if this does not create
an invalid offspring

e Fitness is the length of the tour

e Note that the GA operations (crossover and mutation) are a lot fancier
for this realistic problem than for simple binary examples!

COMP-424, Lecture 5 - January 21, 2013 11

TSP example

Average cost in population

N=13 w6l

P =100 elements in | Minimum cost
population ‘

5 10 15 20 25 - 35 40 45 5
. Generation
p = 4% mutation rate

= 50° : Optimal solution reached
r . 50% reproduction e
rate

COMP-424, Lecture 5 - January 21, 2013 12

TSP example: Initial generation

SINTTlr TSI T e
S BOBICDOHE, !

LB BRDBEE |
ww%@%@@%@%ﬁ'

@%@@%@@%@%
SRR DAL AR
SRR R SR A B
R SRR DHLTD
BROFLROTER

TSP example: Generation 15

PAPALADADADDDD
DDA DADAD
(AR
@@@@@@{Z}@@@

(DA T TS T T M

BOBBTTTO00

@@@@@@@ﬁ
KOG ORI e TR

TSP example: Generation 30

IO H IO H O
CHOCHOIOCH OO
$.0.0.¢.0.6.0.0.6.¢
OOOQ@OOQOO
OQOUUUUQ@O
O H O H Y 2
SHPOMDADIS RIS
(SN ITHD
oONZSSSBsSES

COMP-424, Lecture 5 - January 21, 2013 15

The good and bad of GAs

e Good things:

— Aesthetically pleasing, due to evolution analogy

— If tuned right, can be very effective (good solutions found with fewer
calls to the evaluation function than for simulated annealing)

e Not-so-good things:

— Performance depends crucially on the encoding of the problem for the
GA, and good encodings are difficult to find

— Many parameters to tweak! Bad parameter settings can result in
very slow progress, or the algorithm becoming stuck

— Some quirky phenomena, e.g overcrowding: too many individuals with
the same genes are in the population, so genetic diversity is lost
Overcrowding occurs especially if the mutation rate p is too low,
or if multiple copies of the same individual can be kept in the next
generation

COMP-424, Lecture 5 - January 21, 2013 16

Constraint satisfaction problems

We want to find a solution that satisfies a set of constraints

Eg. Sudoku, crossword puzzles

Typically, very few “legal” solutions exist

One can think of this problem as a cost function with minimum value at
the solution, maximum value elsewhere

e Hence, optimization algorithms may not be easy to apply directly

COMP-424, Lecture 5 - January 21, 2013 17

Canonical example: Graph coloring

c, |G,

Cs

Ce Cs

Color the nodes such that two adjacent vertices are not the same color
Variables: V;

Domains: Red, Blue, Green

Constraints: If there is an edge between V; and Vj, their value (color)
must be different)

COMP-424, Lecture 5 - January 21, 2013 18

Constraint satisfaction problems (CSPs)

e A CSP is defined defined by:

— A set of variables V; that can take values from domain D;
— A set of constraints specifying what combinations of values are allowed
(for subsets of the variables)
— Constraints can be represented:
« Explicitly, as a list of allowable values (e.g., C1 =red)
x Implicitly, as a function testing for the satisfaction of the constraint
(e.g. Cl 75 CQ)
e A CSP solution is an assignment of values to variables such that all the
constraints are true.

e We typically want to find any solution or find that there is no solution

COMP-424, Lecture 5 - January 21, 2013 19

Example: 4-Queens as a CSP

Put one queen in each column. In which row does each one go?

Variables Q1, Q2, Q3, Q4

Domains D; = {1,2,3,4}

Constraints: L

Qi # Q; (cannot be in same row) _ ZY _
Qi — ij| # |i — j| (or same diagonal) Ql 1 Q2 3

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1,Q2) are (1,3) (1,4) (2,4) (3,1) (4,1) (4,2)

COMP-424, Lecture 5 - January 21, 2013 20

Constraint graph

e Binary CSP: each constraint relates at most two variables

e Constraint graph: nodes are variables, arcs show constraints

E—
oo

e The structure of the graph can be exploited to provide problem solutions

COMP-424, Lecture 5 - January 21, 2013 21

Varieties of variables

Boolean variables (e.g. satisfiability)
Finite domain, discrete variables (e.g. colouring)

Infinite domain, discrete variables (e.g. start/end of operation in
scheduling)

Continuous variables

Problems range from solvable in poly-time using linear programming to
NP-complete to undecidable.

COMP-424, Lecture 5 - January 21, 2013 22

Varieties of constraints

e Unary: involve one variable and one value

Binary

Higher-order (involve 3 or more variables)

to constrained optimization problems

COMP-424, Lecture 5 - January 21, 2013

Preferences (soft contraints): can be represented using costs, and lead

23

Real-world CSPs

Assignment problems (E.g., who teaches what class)

Timetabling problems (E.g., which class is offered when and where?)

Hardware configuration

Transportation scheduling

Factory scheduling

Floor planning

Puzzle solving (E.g. crosswords, Sudoku)

COMP-424, Lecture 5 - January 21, 2013

24

Applying standard search

e Assume a constructive approach:

— States are defined by the values assigned so far

— Initial state: all variables unassigned

— Operators: assign a value to an unassigned variable

— Goal test: all variables assigned, no constraints violated

e This is a general purpose algorithm, which works for all CSPs!

COMP-424, Lecture 5 - January 21, 2013 25

Example: Map coloring

Color a map so that no adjacent countries have the same color

Variables: Countries C; [C—ﬂ

Domains: {Red, Blue, Green} N r»
Constraints: Cy # Cs, C1 # Cs, etc. =

Constraint graph:

Cs Cs

COMP-424, Lecture 5 - January 21, 2013 26

Standard search applied to map coloring

UNASSIGNED
ASSIGNED

[l e o)

e D

UNASSIGNED
ASSIGNED

23
CI = RED

UMASSIGNED [ar iy ek)
ASSIGNED C2 = BLUFE

UNASSIGNED ¢ ¢2
ASSIGNED CF = GREEN

I

I

P

Is this a practical approach? What is the complexity?

COMP-424, Lecture 5 - January 21, 2013

Analysis of the simple approach

Maximum search depth = number of variables

— All variables have to get some value

Search algorithm to use: depth-first search
— DFS is complete in this case because we know the maximum depth

Branching factor =). |D;| (at the top of the tree, at least)

— This can be a big search!

But: this can be improved dramatically by noting the following:

The order in which variables are assigned is irrelevant, so many paths are

equivalent

Adding assignments cannot correct a violated constraint

COMP-424, Lecture 5 - January 21, 2013

Backtracking search

e Like depth-first search but:
— Fix the order of assignment (branching factor becomes |D;|)
e Algorithm:

— Select the next unassigned variable X
— For each value z; € Dx
x If the value satisfies the constraint, assign X = x; and exit the loop
— If an assignment was found, continue with the next variable
— If no assignment was found, go back to the preceding variable and try
a different value for it.

e This is the basic uninformed algorithm for CSPs

Can solve n-queens for n ~ 25

COMP-424, Lecture 5 - January 21, 2013 29

Forward checking
Main idea: Keep track of legal values for unassigned variables
e When assigning a value for variable X
— Look at each unassigned variable Y connected to X by a constraint

— Delete from Y's domain any value that is inconsistent with X's
assignment

Can solve n-queens up to n =~ 30

COMP-424, Lecture 5 - January 21, 2013 30

Heuristics for CSPs

More intelligent decisions on:

e which value to choose for each variable

e which variable to assign next

Given C'7 = red, C5 = green, choose C's
Choose ('35 = green

least-constraining-value
Now what variable next? Choose C': Cs
most-constrained-variable Cs Cs

For ties: most constraining variable

COMP-424, Lecture 5 - January 21, 2013 31

Taking advantage of problem structure

e Worst-case complexity is d" (where d is the number of possible values
and n is the number of variables)

e But a lot of problems are much easier!
e Disjoint components - can be solved independently
e Tree-structured constraint graphs - O(nd?)

o Nearly-tree structured graphs - Complexity O(d°(n — ¢)d?): Use cutset
conditioning

— Find a set of variables S which, when removed, turn the graph into a
tree

— Instantiate them all possible ways

— Good if ¢, the size of the cutset S, is small

COMP-424, Lecture 5 - January 21, 2013 32

Iterative improvement algorithm for CSPs

Start with a “broken” but complete assignment of values to variables

— Allow states to have variable assignments that do not satisfy the
constraints

Randomly select conflicted variables

Operators re-assign variable values

This can be viewed as a relaxation of the cost function, which looks at
the number of violated constraints as a cost to be minimized

— Min-conflicts heuristic: ~ choose value that violates the fewest
constraints

— l.e., approximate gradient descent on the total number of violated
constraints

Simulated annealing, genetic algorithms can be used here too.

COMP-424, Lecture 5 - January 21, 2013 33

Example: 4-Queens

States: 4 queens in 4 columns (4% = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation function: number of attacks

= g
-

COMP-424, Lecture 5 - January 21, 2013 34

Performance of min-conflicts

e Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n= 107)

e The same appears to be true for any randomly-generated CSP except in
a narrow range of the ratio

o number of constraints

number of variables

number of constraints
number of variables

COMP-424, Lecture 5 - January 21, 2013 35

Summary

CSPs are everywhere!

Can be cast as search problems

e We can use either constructive methods or iterative improvement
methods

Iterative improvement methods using min-conflicts heuristic are very
general, and often work better

COMP-424, Lecture 5 - January 21, 2013 36

