
Lecture 2: Uninformed search methods

• Search problems

• Generic search algorithms

• Criteria for evaluating search algorithms

• Uninformed Search

– Breadth-First Search
– Depth-First Search
– Iterative Deepening

• Heuristics
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Search in AI

• One of the first and major topics:

Newell & Simon (1972). Human Problem Solving

• Central component to many AI systems:

– Automated reasoning
– Theorem proving
– Game playing
– Navigation
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Example: Eight-Puzzle

Example: Eight-Puzzle
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Example: Protein creation

2

Example Solution: Brushfire…

X

x

START

GOAL

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t necessarily know explicitly the 
structure of a search problem

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t have a clue when you’re doing well 
versus poorly!

10cm resolution
4km2 = 4 108 states

What we are not addressing (yet)
• Uncertainty/Chance ! State and transitions are known and deterministic
• Game against adversary
• Multiple agents/Cooperation
• Continuous state space ! For now, the set of states is discrete

Overview
• Definition and formulation
• Optimality, Completeness, and Complexity
• Uninformed Search

– Breadth First Search
– Search Trees
– Depth First Search
– Iterative Deepening

• Informed Search
– Best First Greedy Search
– Heuristic Search, A*
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Example: Robot navigation

4
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Example: Eight-Puzzle

What are the:

•States?

•Start state?

•Goals?

•Operators?

•Path cost?
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Example: Robot path planning

• State space:  robot’s position

• Operators: go-north, go-south, go-east, go-west

• Goal:  target location

• Path cost:  path length
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Defining a Search Problem

• State space S: all possible configurations of the domain of interest

• An initial (start) state s0 ∈ S

• Goal states G ⊂ S: the set of end states

– Often defined by a goal test rather than enumerating a set of states

• Operators A: the actions available

– Often defined in terms of a mapping from a state to its successor
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Defining a search problem (2)

• Path: a sequence of states and operators

• Path cost: a number associated with any path

– Measures the quality of the path
– Usually the smaller, the better

• Solution of a search problem is a path from s0 to some sg ∈ G

• Optimal solution: any path with minimum cost.
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Example: Eight-Puzzle

Example: Eight-Puzzle
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• States: configurations of the puzzle

• Goals: target configuration

• Operators: swap the blank with an adjacent tile

• Path cost: number of moves
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Example: Robot navigation

4
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Example: Eight-Puzzle

What are the:

•States?

•Start state?

•Goals?

•Operators?

•Path cost?
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Example: Robot path planning

• State space:  robot’s position

• Operators: go-north, go-south, go-east, go-west

• Goal:  target location

• Path cost:  path length

• States: position, velocity, map, obstacles, ...

• Goals: get to target position without crashing

• Operators: usually small steps in several directions

• Path cost: length of path, energy consumption, cost, ...
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Assumptions

• Static (vs dynamic) environment

• Observable (vs unobservable) environment

• Discrete (vs continuous) state space

• Deterministic (vs stochastic) environment

The general search problem formulation does not make these assumptions,
but we will make them when discussing search algorithms
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Coding a Generic Search Problem in Java

public abstract class Operator {}

public abstract class State {

abstract void print(); }

public abstract class Problem{

State startState;

abstract boolean isGoal (State crtState);

abstract boolean isLegal (State s, Operator op);

abstract Vector getLegalOps (State s);

abstract State nextState (State crtState, Operator op);

abstract float cost(State s, Operator op);

public State getStartState() { return startState; }

}
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Coding an Actual Search Problem

public class EightPuzzleState extends State {

int tilePosition[9];

public void print() {//

}

}

public class EightPuzzleProblem extends Problem{

boolean isLegal (EightPuzzleState s,

EightPuzzleOperator op){

// check if blank can be moved in the desired direction

}}

Specialize the abstract classes, and add the code that does the work
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Coding a Generic Search Problem in C

• Write code for the different problems in separate files

• Be disciplined about the way in which functions are called (basically do
the checks of an object-oriented parser)

• Write different search algorithms in different files

• Link together files as appropriate.

COMP-424, Lecture 2 - January 9, 2013 13

Representing Search: Graphs and Trees

• Visualize a state space search in terms of a graph

– Vertices correspond to states
– Edges correspond to operators

• We search for a solution by building a search tree and traversing it to
find a goal state
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Example
Searching for a solution

A

B

C

F

D
3

3

9

2

2

start state

goal state

Search tree
state = A, 

cost = 0

state = B, 

cost = 3

state = D, 

cost = 3

state = C, 

cost = 5

state = F, 

cost = 12

state = A, 

cost = 7

goal state!

search tree nodes and states are not the same thing!Search tree nodes are not the same as the graph nodes!

COMP-424, Lecture 2 - January 9, 2013 15

Data Structures for Search

• Defining a search node:

– Each node contains a state
– Node also contains additional information, e.g.:
∗ The parent state and the operator used to generate it
∗ Cost of the path so far
∗ Depth of the node

• Expanding a node:

– Applying all legal operators to the state contained in the node
– Generating nodes for all the corresponding successor states.
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Generic Search Algorithm

1. Initialize the search tree using the initial state of the problem

2. Repeat

(a) If no candidate nodes can be expanded, return failure
(b) Choose a leaf node for expansion, according to some search strategy
(c) If the node contains a goal state, return the corresponding path
(d) Otherwise expand the node by:

• Applying each operator
• Generating the successor state
• Adding the resulting nodes to the tree

COMP-424, Lecture 2 - January 9, 2013 17

Problem: Search trees can get very big!
Full search tree

state = A, 

cost = 0

state = B, 

cost = 3

state = D, 

cost = 3

state = C, 

cost = 5

state = F, 

cost = 12

state = A, 

cost = 7

goal state!

state = E, 

cost = 7

state = F, 

cost = 11

goal state!

state = B, 

cost = 10

state = D, 

cost = 10...
...
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Implementation Details

• We need to keep track only of the nodes that need to be expanded -
frontier or open list

• This can be implemented using a (prioritized) queue:

1. Initialize the queue by inserting the node for the initial state
2. Repeat
(a) If the queue is empty, return failure
(b) Dequeue a node
(c) If the node contains a goal state, return the path
(d) Otherwise expand the node, inserting the resulting nodes into queue

• Search algorithms differ in their queuing function!
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Uninformed (blind) search

• If a state is not a goal, we cannot tell how close to the goal it might be

• Hence, all we can do is move systematically between states until we
stumble on a goal

• In contrast, informed (heuristic) search uses a guess on how close to the
goal a state might be
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Breadth-First Search (BFS)

• Enqueues nodes at the end of the queue

• All nodes at level i get expanded before all nodes at level i+1
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Example

!"

Label all start states as set V0
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Example

!"

Label all successors of states in V0 that have not yet been labelled as set V1
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Example

!"

Label all successors of states in V1 that have not yet been labelled as set V2
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Example

!"

Label all successors of states in V2 that have not yet been labelled as set V3
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Example

!"

Label all successors of states in V3 that have not yet been labelled as set V4
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Example: Recovering the path

!"#$%&'(")*$+,-$).$'/01#/#2)

34

Follow pointers back to the parent node to find the path
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Key Properties of Search Algorithms

• Completeness: are we assured to find a solution, if one exists?

• Space complexity: how much storage is needed?

• Time complexity: how many operations are needed?

• Solution quality: how good is the solution?

Other desirable properties:

• Can the algorithm provide an intermediate solution?

• Can an inadequate solution be refined or improved?

• Can the work done on one search be re-used for a different set of
start/goal states?
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Search Performance

It is evaluated in terms of two characteristics of the problem:

• Branching factor of the search space (b): how many operators (at most)
can be applied at any time?

E.g. For the eight-puzzle problem, the branching factor is considered 4,
although most of the time we can apply only 2 or 3 operators.

• Solution depth (d): how long is the path to the closest (shallowest)
solution?
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Analyzing BFS

• Good news:

– Complete
– Guaranteed to find the shallowest path to the goal

This is not necessarily the best path! But we can “fix” the algorithm
to get the best path.

– Different start-goal combinations can be explored at the same time
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Analyzing BFS

• Good news:

– Complete
– Guaranteed to find the shallowest path to the goal

This is not necessarily the best path! But we can “fix” the algorithm
to get the best path.

– Different start-goal combinations can be explored at the same time

• Bad news:

– Exponential time complexity: O(bd) (why?)
This is the same for all uninformed search methods

– Exponential memory requirements! O(bd) (why?)
This is not good...
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Fixing BFS To Get An Optimal Path

• Use a priority queue instead of a simple queue

• Insert nodes in the increasing order of the cost of the path so far

• Guaranteed to find an optimal solution!

• This algorithm is called uniform-cost search
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Example

!"
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Example

!"
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Example

!""#$%&'#()%*#+#'%#,#'%#'-.#/012.#%(#+

34
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Example

!"#$%&'(#$)*+$,-#.$#$"&/$0##1$(23&-#3$)+*.$4$-*$56$$!",/$,/$7#1#+&''8$1*-$/(22*+-#3$

94

08$&$:;<$0(-$-"#+#$&+#$=&8/$-*$)&>#$,-6
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Example

!"
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Example

!"
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Example

!"
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Example

!!
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Example

!"
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Example

!"#$ %& '()#%'#)*+#,-+-+ .-)#/%&%)+01#2+#345+306#/%&%)+0#%)7

89

:!"#;(&)&#35+'<)#'+=3)%/+#(5#>1#)*%&#2(5?&7##!'#"3;)#)*%&#%&#2*6#%)#2('<)#2(5?#%"#;(&)&#35+#

'+=3)%/+ (5#>@##A()+#?++$#%'#B+B(56#+/+56)*%'=#2+</+#&++'7
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Example

!"
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Example

!"
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Example

!"
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Example

!"
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Depth-First Search (DFS)

• Enqueues nodes at the front of the queue.

• Nodes at the deepest levels get expanded before shallower ones.

COMP-424, Lecture 2 - January 9, 2013 47

Example

!"
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Example

!"
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Example

!"
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Example

!"
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Example

!"
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Example

!"

COMP-424, Lecture 2 - January 9, 2013 53

Example

!"
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Example

!"
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Example

!"
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Example

!"
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Analyzing DFS

• Good news:

– Space complexity O(bd) (why?)
– It is easy to implement recursively (do not even need a queue data

structure)
– More efficient than BFS if there are many paths leading to a solution.
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Analyzing DFS

• Good news:

– Space complexity O(bd) (why?)
– It is easy to implement recursively (do not even need a queue data

structure)
– More efficient than BFS if there are many paths leading to a solution.

• Bad news:

– Exponential time complexity: O(bd)
This is the same for all uninformed search methods

– Not optimal
– DFS may not complete! (why?)
– NEVER use DFS if you suspect a big tree depth
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Depth-Limited Search

• Algorithm: Search depth-first, but terminate a path either if a goal state
is found, or if the maximum depth allowed is reached.

• Unlike DFS, this algorithm always terminates

– Avoids the problem of search never terminating by imposing a hard
limit on the depth of any search path

• However, it is still not complete (the goal depth may be greater than the
limit allowed.
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Iterative Deepening

• Algorithm: do depth-limited search, but with increasing depth

• Expands nodes multiple times, but time complexity is the same
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Analysis of Iterative Deepening Search

• Complete (like BFS)

• Has linear memory requirements (like DFS)

• Classical time-space tradeoff!

• This is the preferred method for large state space, where the maximum
depth of a solution path is unknown
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Revisiting states

• What if we revisit a state that was already expanded?

• We already saw an example of re-visiting a state that is already in the
queue...

!

"

#

$

%

&
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Revisiting states (2)

• Maintain a closed list to store every expanded node

– Works best for problems with many repeated states
– Worst-case time and space requirements are O(|S|) where |S| is the

number of states

• Allowing states to be re-expanded could produce a better solution

– When a repeated state is detected, compare the old and new path and
keep best one
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Uninformed Search Summary

• Assumes no knowledge about the problem

• Main difference between the methods is in the order in which they
consider the states

• Very general, can be applied to any problem but very expensive, since
we assume no knowledge about the problem

• Some algorithms are complete, i.e. they will find a solution if one exists

ALL uninformed search methods have exponential worst-case complexity
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Informed Search

• Uninformed search methods expand nodes based on the distance from
the start node d(s0, s)

Obviously, we always know that!

• But what about expanding based on distance to the goal d(s, sg)?

• If we knew d(s, sg) exactly, it would be easy!

Just expand the nodes needed to find a solution.

• Even if we do not know d(s, sg) exactly, we often have some intuition
about this distance!

• We will call this intuition a heuristic h(s).
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Example Heuristic: Path Planning

• Consider a path along a road system

• What is a reasonable heuristic?
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Example Heuristic: Path Planning

• Consider a path along a road system

• What is a reasonable heuristic?

– The straight-line distance from one place to another

• Is it always right?

– Certainly not - roads are rarely straight!
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Example Heuristics: 8-puzzle
Example: Eight-Puzzle
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What would be good heuristics for this problem?
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Example Heuristics: 8-puzzle
Example: Eight-Puzzle
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• h1 = number of misplaced tiles (=7 in example)

• h2 = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

• Which one is better?
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Example Heuristics: 8-puzzle
Example: Eight-Puzzle

Start State Goal State
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• h1 = number of misplaced tiles (=7 in example)

• h2 = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

• Which one is better?

• Intuitively, h2 seems better: it varies more across the state space, and
its estimate is closer to the true cost.
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Where Do Heuristics Come From?

• Prior knowledge about the problem

• Exact solution cost of a relaxed version of the problem

– E.g. If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1 gives the shortest solution

– If the rules are relaxed so that a tile can move to any adjacent square,
then h2 gives the shortest solution

• Learning from prior experience - we will study such algorithms later.
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