
Lecture 2: Uninformed search methods

• Search problems

• Generic search algorithms

• Criteria for evaluating search algorithms

• Uninformed Search

– Breadth-First Search
– Depth-First Search
– Iterative Deepening

• Heuristics

COMP-424, Lecture 2 - January 9, 2013 1

Search in AI

• One of the first and major topics:

Newell & Simon (1972). Human Problem Solving

• Central component to many AI systems:

– Automated reasoning
– Theorem proving
– Game playing
– Navigation

COMP-424, Lecture 2 - January 9, 2013 2

Example: Eight-Puzzle

Example: Eight-Puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

September 7, 2006 3 COMP-424 Lecture 2

COMP-424, Lecture 2 - January 9, 2013 3

Example: Protein creation

2

Example Solution: Brushfire…

X

x

START

GOAL

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t necessarily know explicitly the
structure of a search problem

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t have a clue when you’re doing well
versus poorly!

10cm resolution
4km2 = 4 108 states

What we are not addressing (yet)
• Uncertainty/Chance ! State and transitions are known and deterministic
• Game against adversary
• Multiple agents/Cooperation
• Continuous state space ! For now, the set of states is discrete

Overview
• Definition and formulation
• Optimality, Completeness, and Complexity
• Uninformed Search

– Breadth First Search
– Search Trees
– Depth First Search
– Iterative Deepening

• Informed Search
– Best First Greedy Search
– Heuristic Search, A*

COMP-424, Lecture 2 - January 9, 2013 4

Example: Robot navigation

4

COMP-424: Artificial intelligence Joelle Pineau7

Example: Eight-Puzzle

What are the:

•States?

•Start state?

•Goals?

•Operators?

•Path cost?

COMP-424: Artificial intelligence Joelle Pineau8

Example: Robot path planning

• State space: robot’s position

• Operators: go-north, go-south, go-east, go-west

• Goal: target location

• Path cost: path length

COMP-424, Lecture 2 - January 9, 2013 5

Defining a Search Problem

• State space S: all possible configurations of the domain of interest

• An initial (start) state s0 ∈ S

• Goal states G ⊂ S: the set of end states

– Often defined by a goal test rather than enumerating a set of states

• Operators A: the actions available

– Often defined in terms of a mapping from a state to its successor

COMP-424, Lecture 2 - January 9, 2013 6

Defining a search problem (2)

• Path: a sequence of states and operators

• Path cost: a number associated with any path

– Measures the quality of the path
– Usually the smaller, the better

• Solution of a search problem is a path from s0 to some sg ∈ G

• Optimal solution: any path with minimum cost.

COMP-424, Lecture 2 - January 9, 2013 7

Example: Eight-Puzzle

Example: Eight-Puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

September 7, 2006 3 COMP-424 Lecture 2

• States: configurations of the puzzle

• Goals: target configuration

• Operators: swap the blank with an adjacent tile

• Path cost: number of moves

COMP-424, Lecture 2 - January 9, 2013 8

Example: Robot navigation

4

COMP-424: Artificial intelligence Joelle Pineau7

Example: Eight-Puzzle

What are the:

•States?

•Start state?

•Goals?

•Operators?

•Path cost?

COMP-424: Artificial intelligence Joelle Pineau8

Example: Robot path planning

• State space: robot’s position

• Operators: go-north, go-south, go-east, go-west

• Goal: target location

• Path cost: path length

• States: position, velocity, map, obstacles, ...

• Goals: get to target position without crashing

• Operators: usually small steps in several directions

• Path cost: length of path, energy consumption, cost, ...

COMP-424, Lecture 2 - January 9, 2013 9

Assumptions

• Static (vs dynamic) environment

• Observable (vs unobservable) environment

• Discrete (vs continuous) state space

• Deterministic (vs stochastic) environment

The general search problem formulation does not make these assumptions,
but we will make them when discussing search algorithms

COMP-424, Lecture 2 - January 9, 2013 10

Coding a Generic Search Problem in Java

public abstract class Operator {}

public abstract class State {

abstract void print(); }

public abstract class Problem{

State startState;

abstract boolean isGoal (State crtState);

abstract boolean isLegal (State s, Operator op);

abstract Vector getLegalOps (State s);

abstract State nextState (State crtState, Operator op);

abstract float cost(State s, Operator op);

public State getStartState() { return startState; }

}

COMP-424, Lecture 2 - January 9, 2013 11

Coding an Actual Search Problem

public class EightPuzzleState extends State {

int tilePosition[9];

public void print() {//

}

}

public class EightPuzzleProblem extends Problem{

boolean isLegal (EightPuzzleState s,

EightPuzzleOperator op){

// check if blank can be moved in the desired direction

}}

Specialize the abstract classes, and add the code that does the work

COMP-424, Lecture 2 - January 9, 2013 12

Coding a Generic Search Problem in C

• Write code for the different problems in separate files

• Be disciplined about the way in which functions are called (basically do
the checks of an object-oriented parser)

• Write different search algorithms in different files

• Link together files as appropriate.

COMP-424, Lecture 2 - January 9, 2013 13

Representing Search: Graphs and Trees

• Visualize a state space search in terms of a graph

– Vertices correspond to states
– Edges correspond to operators

• We search for a solution by building a search tree and traversing it to
find a goal state

COMP-424, Lecture 2 - January 9, 2013 14

Example
Searching for a solution

A

B

C

F

D
3

3

9

2

2

start state

goal state

Search tree
state = A,

cost = 0

state = B,

cost = 3

state = D,

cost = 3

state = C,

cost = 5

state = F,

cost = 12

state = A,

cost = 7

goal state!

search tree nodes and states are not the same thing!Search tree nodes are not the same as the graph nodes!

COMP-424, Lecture 2 - January 9, 2013 15

Data Structures for Search

• Defining a search node:

– Each node contains a state
– Node also contains additional information, e.g.:
∗ The parent state and the operator used to generate it
∗ Cost of the path so far
∗ Depth of the node

• Expanding a node:

– Applying all legal operators to the state contained in the node
– Generating nodes for all the corresponding successor states.

COMP-424, Lecture 2 - January 9, 2013 16

Generic Search Algorithm

1. Initialize the search tree using the initial state of the problem

2. Repeat

(a) If no candidate nodes can be expanded, return failure
(b) Choose a leaf node for expansion, according to some search strategy
(c) If the node contains a goal state, return the corresponding path
(d) Otherwise expand the node by:

• Applying each operator
• Generating the successor state
• Adding the resulting nodes to the tree

COMP-424, Lecture 2 - January 9, 2013 17

Problem: Search trees can get very big!
Full search tree

state = A,

cost = 0

state = B,

cost = 3

state = D,

cost = 3

state = C,

cost = 5

state = F,

cost = 12

state = A,

cost = 7

goal state!

state = E,

cost = 7

state = F,

cost = 11

goal state!

state = B,

cost = 10

state = D,

cost = 10...
...

COMP-424, Lecture 2 - January 9, 2013 18

Implementation Details

• We need to keep track only of the nodes that need to be expanded -
frontier or open list

• This can be implemented using a (prioritized) queue:

1. Initialize the queue by inserting the node for the initial state
2. Repeat
(a) If the queue is empty, return failure
(b) Dequeue a node
(c) If the node contains a goal state, return the path
(d) Otherwise expand the node, inserting the resulting nodes into queue

• Search algorithms differ in their queuing function!

COMP-424, Lecture 2 - January 9, 2013 19

Uninformed (blind) search

• If a state is not a goal, we cannot tell how close to the goal it might be

• Hence, all we can do is move systematically between states until we
stumble on a goal

• In contrast, informed (heuristic) search uses a guess on how close to the
goal a state might be

COMP-424, Lecture 2 - January 9, 2013 20

Breadth-First Search (BFS)

• Enqueues nodes at the end of the queue

• All nodes at level i get expanded before all nodes at level i+1

COMP-424, Lecture 2 - January 9, 2013 21

Example

!"

Label all start states as set V0

COMP-424, Lecture 2 - January 9, 2013 22

Example

!"

Label all successors of states in V0 that have not yet been labelled as set V1

COMP-424, Lecture 2 - January 9, 2013 23

Example

!"

Label all successors of states in V1 that have not yet been labelled as set V2

COMP-424, Lecture 2 - January 9, 2013 24

Example

!"

Label all successors of states in V2 that have not yet been labelled as set V3

COMP-424, Lecture 2 - January 9, 2013 25

Example

!"

Label all successors of states in V3 that have not yet been labelled as set V4

COMP-424, Lecture 2 - January 9, 2013 26

Example: Recovering the path

!"#$%&'(")*$+,-$).$'/01#/#2)

34

Follow pointers back to the parent node to find the path

COMP-424, Lecture 2 - January 9, 2013 27

Key Properties of Search Algorithms

• Completeness: are we assured to find a solution, if one exists?

• Space complexity: how much storage is needed?

• Time complexity: how many operations are needed?

• Solution quality: how good is the solution?

Other desirable properties:

• Can the algorithm provide an intermediate solution?

• Can an inadequate solution be refined or improved?

• Can the work done on one search be re-used for a different set of
start/goal states?

COMP-424, Lecture 2 - January 9, 2013 28

Search Performance

It is evaluated in terms of two characteristics of the problem:

• Branching factor of the search space (b): how many operators (at most)
can be applied at any time?

E.g. For the eight-puzzle problem, the branching factor is considered 4,
although most of the time we can apply only 2 or 3 operators.

• Solution depth (d): how long is the path to the closest (shallowest)
solution?

COMP-424, Lecture 2 - January 9, 2013 29

Analyzing BFS

• Good news:

– Complete
– Guaranteed to find the shallowest path to the goal

This is not necessarily the best path! But we can “fix” the algorithm
to get the best path.

– Different start-goal combinations can be explored at the same time

COMP-424, Lecture 2 - January 9, 2013 30

Analyzing BFS

• Good news:

– Complete
– Guaranteed to find the shallowest path to the goal

This is not necessarily the best path! But we can “fix” the algorithm
to get the best path.

– Different start-goal combinations can be explored at the same time

• Bad news:

– Exponential time complexity: O(bd) (why?)
This is the same for all uninformed search methods

– Exponential memory requirements! O(bd) (why?)
This is not good...

COMP-424, Lecture 2 - January 9, 2013 31

Fixing BFS To Get An Optimal Path

• Use a priority queue instead of a simple queue

• Insert nodes in the increasing order of the cost of the path so far

• Guaranteed to find an optimal solution!

• This algorithm is called uniform-cost search

COMP-424, Lecture 2 - January 9, 2013 32

Example

!"

COMP-424, Lecture 2 - January 9, 2013 33

Example

!"

COMP-424, Lecture 2 - January 9, 2013 34

Example

!""#$%&'#()%*#+#'%#,#'%#'-.#/012.#%(#+

34

COMP-424, Lecture 2 - January 9, 2013 35

Example

!"#$%&'(#$)*+$,-#.$#$"&/$0##1$(23&-#3$)+*.4-*$56$$!",/$,/$7#1#+&''8$1*-$/(22*+-#3$

94

08$&$:;<$0(-$-"#+#$&+#$=&8/$-*$)&>#$,-6

COMP-424, Lecture 2 - January 9, 2013 36

Example

!"

COMP-424, Lecture 2 - January 9, 2013 37

Example

!"

COMP-424, Lecture 2 - January 9, 2013 38

Example

!"

COMP-424, Lecture 2 - January 9, 2013 39

Example

!!

COMP-424, Lecture 2 - January 9, 2013 40

Example

!"

COMP-424, Lecture 2 - January 9, 2013 41

Example

!"#$ %& '()#%'#)*+#,-+-+ .-)#/%&%)+01#2+#345+306#/%&%)+0#%)7

89

:!"#;(&)#+'<)#'+=3)%/+#(5#>1#)*%(5?&7##!'#"3;)#)*%&#%*6#%)#2('<)#2(5?#%"#;(&)#+#

'+=3)%/+ (5#>@##A()+#?++$#%'#B+B(56#+/+56)*%'=#2+</+#&++'7
COMP-424, Lecture 2 - January 9, 2013 42

Example

!"

COMP-424, Lecture 2 - January 9, 2013 43

Example

!"

COMP-424, Lecture 2 - January 9, 2013 44

Example

!"

COMP-424, Lecture 2 - January 9, 2013 45

Example

!"

COMP-424, Lecture 2 - January 9, 2013 46

Depth-First Search (DFS)

• Enqueues nodes at the front of the queue.

• Nodes at the deepest levels get expanded before shallower ones.

COMP-424, Lecture 2 - January 9, 2013 47

Example

!"

COMP-424, Lecture 2 - January 9, 2013 48

Example

!"

COMP-424, Lecture 2 - January 9, 2013 49

Example

!"

COMP-424, Lecture 2 - January 9, 2013 50

Example

!"

COMP-424, Lecture 2 - January 9, 2013 51

Example

!"

COMP-424, Lecture 2 - January 9, 2013 52

Example

!"

COMP-424, Lecture 2 - January 9, 2013 53

Example

!"

COMP-424, Lecture 2 - January 9, 2013 54

Example

!"

COMP-424, Lecture 2 - January 9, 2013 55

Example

!"

COMP-424, Lecture 2 - January 9, 2013 56

Example

!"

COMP-424, Lecture 2 - January 9, 2013 57

Analyzing DFS

• Good news:

– Space complexity O(bd) (why?)
– It is easy to implement recursively (do not even need a queue data

structure)
– More efficient than BFS if there are many paths leading to a solution.

COMP-424, Lecture 2 - January 9, 2013 58

Analyzing DFS

• Good news:

– Space complexity O(bd) (why?)
– It is easy to implement recursively (do not even need a queue data

structure)
– More efficient than BFS if there are many paths leading to a solution.

• Bad news:

– Exponential time complexity: O(bd)
This is the same for all uninformed search methods

– Not optimal
– DFS may not complete! (why?)
– NEVER use DFS if you suspect a big tree depth

COMP-424, Lecture 2 - January 9, 2013 59

Depth-Limited Search

• Algorithm: Search depth-first, but terminate a path either if a goal state
is found, or if the maximum depth allowed is reached.

• Unlike DFS, this algorithm always terminates

– Avoids the problem of search never terminating by imposing a hard
limit on the depth of any search path

• However, it is still not complete (the goal depth may be greater than the
limit allowed.

COMP-424, Lecture 2 - January 9, 2013 60

Iterative Deepening

• Algorithm: do depth-limited search, but with increasing depth

• Expands nodes multiple times, but time complexity is the same

COMP-424, Lecture 2 - January 9, 2013 61

Analysis of Iterative Deepening Search

• Complete (like BFS)

• Has linear memory requirements (like DFS)

• Classical time-space tradeoff!

• This is the preferred method for large state space, where the maximum
depth of a solution path is unknown

COMP-424, Lecture 2 - January 9, 2013 62

Revisiting states

• What if we revisit a state that was already expanded?

• We already saw an example of re-visiting a state that is already in the
queue...

!

"

#

$

%

&

COMP-424, Lecture 2 - January 9, 2013 63

Revisiting states (2)

• Maintain a closed list to store every expanded node

– Works best for problems with many repeated states
– Worst-case time and space requirements are O(|S|) where |S| is the

number of states

• Allowing states to be re-expanded could produce a better solution

– When a repeated state is detected, compare the old and new path and
keep best one

COMP-424, Lecture 2 - January 9, 2013 64

Uninformed Search Summary

• Assumes no knowledge about the problem

• Main difference between the methods is in the order in which they
consider the states

• Very general, can be applied to any problem but very expensive, since
we assume no knowledge about the problem

• Some algorithms are complete, i.e. they will find a solution if one exists

ALL uninformed search methods have exponential worst-case complexity

COMP-424, Lecture 2 - January 9, 2013 65

Informed Search

• Uninformed search methods expand nodes based on the distance from
the start node d(s0, s)

Obviously, we always know that!

• But what about expanding based on distance to the goal d(s, sg)?

• If we knew d(s, sg) exactly, it would be easy!

Just expand the nodes needed to find a solution.

• Even if we do not know d(s, sg) exactly, we often have some intuition
about this distance!

• We will call this intuition a heuristic h(s).

COMP-424, Lecture 2 - January 9, 2013 66

Example Heuristic: Path Planning

• Consider a path along a road system

• What is a reasonable heuristic?

COMP-424, Lecture 2 - January 9, 2013 67

Example Heuristic: Path Planning

• Consider a path along a road system

• What is a reasonable heuristic?

– The straight-line distance from one place to another

• Is it always right?

– Certainly not - roads are rarely straight!

COMP-424, Lecture 2 - January 9, 2013 68

Example Heuristics: 8-puzzle
Example: Eight-Puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

September 7, 2006 3 COMP-424 Lecture 2

What would be good heuristics for this problem?

COMP-424, Lecture 2 - January 9, 2013 69

Example Heuristics: 8-puzzle
Example: Eight-Puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

September 7, 2006 3 COMP-424 Lecture 2Consider the following heuristics:

• h1 = number of misplaced tiles (=7 in example)

• h2 = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

• Which one is better?

COMP-424, Lecture 2 - January 9, 2013 70

Example Heuristics: 8-puzzle
Example: Eight-Puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

September 7, 2006 3 COMP-424 Lecture 2Consider the following heuristics:

• h1 = number of misplaced tiles (=7 in example)

• h2 = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

• Which one is better?

• Intuitively, h2 seems better: it varies more across the state space, and
its estimate is closer to the true cost.

COMP-424, Lecture 2 - January 9, 2013 71

Where Do Heuristics Come From?

• Prior knowledge about the problem

• Exact solution cost of a relaxed version of the problem

– E.g. If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1 gives the shortest solution

– If the rules are relaxed so that a tile can move to any adjacent square,
then h2 gives the shortest solution

• Learning from prior experience - we will study such algorithms later.

COMP-424, Lecture 2 - January 9, 2013 72

