Artificial Intelligence - Assignment 4

Posted Tuesday, March 23, 2010
Due Tuesday April 6, 2010

Note: This is the last assignment of the term, and it is worth 200 points (compared to 100 for previous
assignments)

1. [15 points] Expected utility and value of information

You go to the races. You can decide to:

e Not place any bets at all
e Bet on Belle. It costs $1 to place a bet and you get $6 if it wins, for a profit of $5.
e Bet on Karl. It costs $1 to place a bet and you get $11 if it wins, for a profit of $10.
e Bet on Sam. It costs $1 to place a bet and you get $3 if it wins, for a profit of $2.
You believe Belle has probability 0.5 of winning, Karl has probability 0.1 of winning and Sam has
probability 0.8 of winning.
(a) [9 points] What are the expected utilities for all the action, and what is the optimal action?

(b) [6 points] A shady character comes and tells you that he knows which horse will win, because
the race is arranged. But he wants some money for this information. You have reason to
believe that his information will be correct. How much should you be willing to pay him?

2. [30 points] Bandit problems

Suppose that you have a bandit with 2 arms; the payoff of the arms average 0.6 and 0.4, and in each
case, they are drawn from a uniform distribution in [0.5, 0.7] and [0.2, 0.6] respectively. Implement,
in a language of your choice, the bandit and e-greedy exploration. Plot the estimated values of the
two actions as a function of the number of plays, going up to 200 plays. Use 3 different values of
€: 0, 0.1 and 0.2 (so you should have 2 graphs, with 3 curves each). Briefly explain your results.

Note that you can re-use the code for the exploration algorithm in the project, if you make it
modular enough

3. [15 points] Problem formulation

You are designing a recycling robot whose job is to collect empty soda cans around the building.
The robot has a sensor to detect when a can is in front of it, and a gripper to pick up the can. It also
senses the level of its battery. The robot can navigate, as well as pick up a can and throw a can it is
holding in the trash. There is a battery charger in the building, and the robot should not run out of
battery.

(a) Describe this problem as an MDP. What are the states and actions?

(b) Suppose that you want the robot to collect as many cans as possible, while not running out of
battery. Describe what rewards would enable it to achieve this task

(c) Instead of thinking about the actions described above, one could describe the task of the robot
as choosing between larger activities: walk randomly to find cans, wait for someone to drop
a can, or go dock with battery charger. Describe the advantages and disadvantages of this
problem formulation compared to the one you gave before.
4. [15 points] Maximum likelihood estimation

For discrete random variables, another distribution of interest is the Poisson distribution:

)\k
=)
p(k) =e 7l

where \ € R is a parameter.

(a) [5 points] Suppose that X is a random variable drawn from a Poisson distribution of unknown
parameter A. You observe n i.i.d. samples 1, ...z, drawn from the distribution. Write the
likelihood of parameter A w.r.t. this sample.

(b) [5 points] Derive the maximum likelihood estimate for A. What is the sufficient statistic of
the data in this case?

(c) [5 points] Suppose you computed your MLE estimate, \,,, based on the initial sample. You
get a new sample, x,,. 1. Write a formula that updates the old value, \,,, to a new value, A, ;.
Your formula for A, ; should be in terms of A\, and 1.
5. [15 points + 5 points extra credit] Planning in MDPs

In class we defined the optimal state value function for an MDP. One can define the optimal action-
value function in a very similar way:

Q" (s,a) = Elrygr + YV (541) |50 = 5,0, = a

(a) [5 points] Express VV* as a function of ()*
(b) [5 points] Write a Bellman equation that relates ()*(s, a) to the values of successor states and
actions, Q*(s', a’)
(c) [5 points] Set up a value iteration algorithm for computing Q*
(d) [Extra credit: 5 points] Show that the maximum error of this algorithm decreases exponen-
tially at every iteration.
6. [10 points] Cross-validation
Consider a data set with 10 examples for a binary classification task. We define a majority classifier

as a classifier which returns the class occurring most in the training data.

(a) [5 points] Suppose that you have 7 positive examples and 3 negative examples in your data
set. What is the training and testing error obtained after cross-validation?

2

(b) [5 points] Explain for what mix of examples in the data set the majority classifier would be a
bad choice, from the point of view of leave-one-out cross-validation.

7. [5 points] Overfitting

You are starting a new company and you want to study the competition first. In particular, you
have gathered data about the discounts that they offer to students. Having taken Al, you know a
few learning algorithms that can help you analyze the data. You run a few of them and get the
following accuracy results:

Algorithm Training data | Test data
NeuroChamp | 70% 70%
TopRegress | 65% 75%
Brainy 90% 65% %

Which learner would you prefer for predicting future data, and why?

8. [25 points] Gradient descent for learning
(a) [5 points] Suppose you wanted to train a neuron with a single real-valued input z, which had

the following activation function:

B 1
(.I') o 1+ e—(w0+w1r+w2m2)

Give the learning rules for wy, wy, ws.

(b) [10 points] Suppose that you wanted to train a neuron with two inputs, x; and x5, whose
output had the form:

h(z1,x9) = wo + wy log z1 + wee™?*?

For what range of the input variables would this neuron work? Give the learning rules for wy,
Wy, W2, W3-

(c) [10 points] Suppose that you were now to put neurons of this type in a feed-forward network
with 2 input units, 2 hidden units, one output unit. Explain what changes (if any) would need
to be made to the backpropagation algorithm to work in this case.

9. [70 points] Learning for Philosophers’ football

In this problem, you have to implement a linear function approximator using temporal-difference
learning for the game used in the project. Note that you do not have to you this approach in your
final project submission, but you can, if you want to.

In order to do this, devise a number of features of the board (at least 4) that you will linearly
combine; the weights of this combination will be tuned by learning. Explain what your features
are. Start with all the weights at 0.

Game play goes as follows:

e you start at the current position, and look ahead at all your possible moves; evaluate each
resulting board position based on your evaluation function

e Use epsilon-greedy strategy to pick the next move; then use the random player to generate
the next opponent move

e Perform an update to your evaluation function using temporal-difference (TD) learning for
linear function approximators; note that you may need to play around with the learning rate
a bit to find a good value; the intermediate reward is 0

e At the end of the game award a +1 or -1 depending on whether your heuristic won or lost
After 1000 games of training, evaluate your heuristic by playing greedily against the random
player; report the percentage of wins and losses for your player, and comment on the results.

Also comment on any tuning you did during the learning, and overall on your experience in this
process.

Turn in your code as well as the write-up

