80-110 Nature of Mathematical Reasoning

Spring 2002 Henrik Forssell & Dirk Schlimm

Homework 9 (B)

Wednesday, March 20 Due Monday, March 25

- 1. Read FOL, pages
 - 44-46 (Section 3.5),
 - 51-64 (Sections 3.7-3.8),
 - and 88–90 (3.12).

2. (2 points) Give a semantic proof, using truth tables, for the validity of the inference of *dilemma*:

- Premises: $P \lor Q, P \to R, Q \to S$
- Conclusion: $R \lor S$

3. (1 point) Prove that if Γ is consistent, then every finite $\psi \subseteq \Gamma$ is consistent.

4. (7 points) A partially ordered set A is *well-ordered* if every nonempty subset B has a least element:

$$\exists y \in B \ \forall x \in B \ (y \le x).$$

Suppose a set Γ of sentences axiomatizes well-orderings, that is to say, the models of Γ are just the well-orderings. Now add sentences $\{c_{i+1} < c_i | i \in \mathbb{N}\}$.

- 1. Show that $\Gamma \cup \{c_{i+1} < c_i | i \in \mathbb{N}\}$ has a model.
- 2. Conclude that that model is not well-ordered.