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Lecture 1. Introduction

Lecturer: Reńe Schoof Scribe: Anne Broadbent

“The kind of computer science we do, we like to call math.
Reńe will be showing us some real mathematics.”
— Denis Th́erien

1.1 Introduction

The topic of these lectures are applications of elliptic curves. The main applications we will see
are:

1. factoring integers

2. primality testing

3. discrete logarithm

Scribe notes: Reńe Schoof will give five morning lectures, each approximately2 hours each.
Late afternoon lectures last approximately 1.5 hours and will be given by different speakers each
day.

1.2 Factoring, primality testing and “p − 1” algorithms

Factoring is the jungle
— Reńe Schoof

TheRabin-Miller algorithm is a very efficient “probable” primality test. Applied ton ∈ Z>0 ,
it can give two answers:

1. n is not prime

2. n could be prime.

In case 1, the answer is guaranteed to be correct and so we knowthatn is not prime. Case 2,
is not so favourable, and all we can do is repeat the test to increase our confidence level (if the test
always passes, we conclude thatn is “very likely” a prime). This of course, does not give a proof
of primality.

Depending on the situation, we can ask the following questions:

1. If n is not prime, what are its factors?
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2. If n “very likely” prime, can we have a proof of primality?

Note: There exists a deterministic polynomial time primality test by Agrawal, Kayal and Sax-
ena.

Let p be prime, thenp− 1 = #(Z/pZ)∗ is theorder of Z mod p. We will also writeZ/pZ =
Fp ; it is a finite cyclic group.

Proposition 1. LetA be a finite multiplicative Abelian group of ordern (#A =n). Then:

1. ∀a ∈ A, an = 1

2. ∀a ∈ A, ord(a) dividesn.

1.2.1 p − 1 factoring

Algorithm 1 is due to Pollard and goes back to the ’70ies.

Algorithm 1 p − 1 factoring
input: n ∈ Z>0 to be factored
output: non-trivial factor ofn or⊥

1. Choose a boundB which will determine the time spent running the algorithm

2. Pick a randomx ∈ (Z/pZ)∗ with gcd(x, n) = 1 (use Euclidean algorithm to test this)

3. LetM be the product of all prime powers smaller thanB:

M =
∏

qe(q)<B

qe(q) , (1.1)

whereq is prime andqe(q) is the largest power ofq that is less thanB. By a version of the
prime number theorem,M ∼ exp(B)

4. Computegcd(xM − 1, n) = m by first computingxM (mod n) using modular exponentia-
tion

5. If m 6= 1, outputm, otherwise output⊥

The work required for the modular exponentiation is inO(B log2 n), while the rest of step 4 is
in O(log3 n). The total work of algorithm 1 is inO(B) .

We now havegcd(XM−1, n), which obviously dividesn. Let’s see under which circumstances
this algorithm gives us something useful.

If gcd(XM − 1, n) 6= 1, it is divisible by a primep|n

⇔ xM − 1 ≡ 0 (mod p) (1.2)

⇔ xM ≡ 1 (mod p) . (1.3)
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By Proposition 1,xp−1 ≡ 1 (mod p) (Fermat’s little theorem).

xM ≡ 1 (mod p) (1.4)

⇔p − 1 dividesM (1.5)

⇔p − 1 is B-smooth (1.6)

Where the before-last equivalence is “not exactly an equivalence, but true in practice”. Note that
we say thatp − 1 is B-smoothif all primes dividingp − 1 are less thanB.

Hence we have success in algorithm 1 ifn is divisible by a primep with the property thatp− 1
is B-smooth. The problem is that in practice, if you want to factor n, you do not knowp, and you
do not know for whichB, the numberp− 1 is B-smooth! The worst case arises whenn = pq with
p, q ≈ √

n, andp− 1 not smooth for anyB, i.e.p− 1 = 2r for r prime,r ≈ 1
2

√
n. The total work

in this case is inO(B) ∈ O(
√

r). The naive factoring algorithm runs in the same time, hence we
haven’t done much better.

We can formally analyze the probability that this algorithmwill work, and conclude that the
algorithm almost never works!
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1.2.2 p − 1 primality test (Pocklington 1916)

We now describe an algorithm for primality testing, it is based on a proposition:

Proposition 2. Let n − 1 = QR. If for every primeq|Q there existsa ∈ (Z/nZ)∗ with aQ ≡ 1

(mod n) andgcd(a
Q
q −1, n) = 1, then any prime divisorp ofn satisfiesp ≡ 1 (mod Q) (including

p > Q). In particular, if Q >
√

n, we have thatn is prime.

Proof. Let q be a prime divisor ofQ, with qm the exact power ofq dividing Q.

Claim: b = a
Q

qm ∈ (Z/pZ)∗ has orderqm. This is becausebqm ≡ aQ ≡ 1 (mod n), so the

order ofb dividesqm. Now, bqm−1
= a

Q
q in (Z/nZ)∗. We also know thatbqm ≡ 1 in (Z/pZ)∗, so

bam−1
= a

Q
q in (Z/pZ)∗.

Couldbqm−1
= 1? If so, we havea

Q
q ≡ 1 (mod p). Sincep|(a

Q
q − 1), p| gcd(a

Q
q − 1, n) is not

true. So the claim is true also in(Z/pZ)∗.
Hence:

qm|#(Z/pZ)∗ = p − 1 (1.7)

p ≡ 1 (mod qm)∀q (1.8)

p ≡ 1 (mod Q)

Scribe notes: in what follows, the speaker’s original presentation has been modified to highlight
the algorithm and its properties.

Algorithm 2 p − 1 primality test
input: n ∈ Z>0 (supposen passes the Miller-Rabin test)
output: “n is prime” or⊥

1. Using computational resources available, find all small prime factors ofn − 1. Let Q be the
product of these primes. Letn − 1 = QR (we callR thecofactor).

2. Now, three things can happen

(a) (almost never)Q >
√

n. For each primeq|Q (suppose we already have a proof of pri-
mality for q, if need be, call algorithm 2 recursively!), we need to find a corresponding
a as in proposition 2. Picka at random inZ/nZ. Check thataQ ≡ 1 (mod n), and

thatgcd(a
Q
q − 1, n) = 1 . If all tests succeed, output “n is prime”.

(b) (usually)R not prime but cannot factor within reasonable time. Give up and output⊥.

(c) (occasionally)n − 1 = QR, with Q <
√

n andR >
√

n passes the Miller-Rabin test.
Reverse the roles ofQ andR, at which point we fall back into case (a).

The goal of algorithm 2 is to check that the conditions of proposition 2 are satisfied, with
Q >

√
n. It is clear that this is what is accomplished and that the output of the algorithm is correct.
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What about the choice ofa in step (a)? Ifn is prime, then(Z/nZ)∗ is cyclic, suppose it is
generated byg. Takea = gR. ThenaQ = gRQ = gn−1 ≡ 1 (mod n) (Fermat’s little theorem),

andgcd(a
Q
q − 1, n) = 1 because if not,a

Q
q ≡ g

n−1
g ≡ 1 (mod n), which cannot happen. So ifn

is prime, our method of pickinga at random should give good results.
How about the complexity of the algorithm? ComputingaQ (mod n) (modular exponentia-

tion) requires work inO(log3 n). Thegcd computation is also polynomial.
But will it work? In practice, because of (a), (b) and (c), we won’t make much progress. For

instance, takingn ∼ 101000 gives a probability of success that is low.

1.3 Elliptic Curves

Elliptic curves are an “old” subject— much older than computers. Our study is motivated by
algorithmic applications. In the previous section, we saw two p − 1 algorithms:

• factoring: Success if there existsp|n such thatp − 1 is B-smooth.

• primality: Success ifp− 1 = QR where the factored partQ is >
√

n or p− 1 = QR where
the factored partQ <

√
n andR is a probable prime.

These algorithms have in common the fact that they use group-theoretic statements, but they need
to be lucky to actually work.

Now, our key idea will be to replace(Z/pZ)∗ by groups of points on elliptic curves. The
advantage here is that there are many elliptic curves to we can try, thus eliminating the need for
“luck”.

An elliptic curveover a fieldk (R, C, Fq) is given by the cubic curve:

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 , (1.9)

wherea1, a2, a3, a4, a6 ∈ k (no, it’s not a mistake thata5 is missing). Define the following:

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 .

We’re interested in nonsingular curves with discriminant∆ 6= 0. We also have the relationship

1728∆ = c3
4 − c2

6 . (1.10)
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If the characteristic of the field isn’t 2, we can divide by 2 and complete the square:

(Y +
a1X + a3

2
)2 = X3 + (a2 +

a2
1

4
)X2 + a4X + (

a2
3

4
+ a6) , (1.11)

which can be written as:
Y 2

1 = X3 + a′
2X

2 + a′
4X + a′

6 , (1.12)

with Y1 = Y + a1X/2 + a3/2. If the characteristic is also not 3, then we can letX ← X+a′

2

3
to get

the curve
Y 2 = X3 + AX + B . (1.13)

The discriminant becomes∆ = −16(4A3 +27B2), and the condition that the curve be nonsingular
is of course still verified by∆ 6= 0 .

Some notation: elliptic curves are denotedE, andE(k) denotes the set of points onE with
coordinates ink, together with a special “symbolic” point(∞,∞) called the point at infinity.

Now, we want to show our main point of this lecture, that is, that we can giveE(k) the structure
of a group in a natural way. Our approach is a practical one; more mathematical approaches would
be possible.

Figure 1.1: Elliptic curve addition (source: certicom.com)

1.3.1 Group Law on Elliptic Curves

Consider the right-hand side ofY 2 = X3 +AX +B, which is a cubic. A cubic can have either one
or two roots. When we take the square root of this cubic, we get two different families of elliptic
curves, as illustrated in figures 1.1 and 1.2 (our illustrations are done with underlying fieldk = R) .
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Figure 1.2: Elliptic curve doubling (source: certicom.com)

The addition of two distinct pointsP andQ on an elliptic curve is performed the following
way: let −R be the third intersection point of the line throughP andQ and the curve. Then
P + Q = R. See figure 1.1.

The doubling of a pointP on an elliptic curve is performed the following way: let−R be the
second intersection point of the tangent to the curve at point P and the curve. ThenP +P = 2P =
R. See figure 1.2.

Now, to compute the formulas for this operation, letP = (x1, y1), Q = (x2, y2), P + Q =
(x3, y3) and soR = (x3,−y3). In the caseP 6= Q, we wish to compute the intersection of the
line y = λx + µ throughP andQ with the curveY 2 = X3 + AX + B. If P 6= Q, this give us
λ = (y2 − y1)/(x2 − x1), while P = Q yieldsλ = (3x2

1 + A)/2y1. Substituting, we get:

(λx + µ)2 = X3 + AX + B (1.14)

0 = X3 − λ2X2 + (A − 2λµ)X + B − µ2 (1.15)

= (X − x1)(X − x2)(X − x3) (1.16)

Hence (1.17)

λ2 = x1 + x2 + x3 (1.18)

To findy3:

−(y3) − y1

x3 − x1

= λ (1.19)

⇒ y3 = −y1 − λ(x3 − x1) (1.20)
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Explicitly,

x3 = −x1 − x2 + λ2 (1.21)

y3 = −y1 − λ(x3 − x1) . (1.22)

Where eitherλ = (y2 − y1)/(x2 − x1) (if P 6= Q) or λ = (3x2
1 + A)/(2y1) (if P = Q).

We also add the rule that for any pointP = (x, y), −P = (x,−y) and theP +−P = (∞,∞).
We now have all the tools to compute on an elliptic curve, and we can indeed show that this

operation forms a commutative group (associativity is harder to prove).
We now give two examples overZ/5Z:

We cannot draw a picture anymore. A picture would be quite pointless. . . literally.
— Reńe Schoof

Example 1 (Adding points overZ/5Z). Let E : Y 2 = X3 + X + 1 overZ/5Z. First, we check
that this is an elliptic curve:

∆ = −16(4 · 13 + 27 · 12) ≡ −1(−1 + 2) 6≡ 0 (mod 5) . (1.23)

LetP = (0, 1). We want to computeP + P . Using the given formulas, we get:

λ =
3 · 02 + 1

2 · 1 ≡ 3 (mod 5) (1.24)

x3 = −0 − 0 + 32 = 9 ≡ −1 (mod 5) (1.25)

y3 = −1 − 3(−1 − 0) ≡ 2 (mod 5) . (1.26)

SoP + P = (−1, 2) and we can check that it sits on the curve.
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Example 2 (Determining all points overZ/5Z). Consider the curveE given in the previous ex-
ample. We want to list all points onE.

First, we compute the squares inZ/5Z . We get12 = 1, 22 = −1, (−2)2 = −1, (−1)2 = 1, so
1 and−1 are squares, with roots{1,−1} and{2,−2}, respectively. We proceed as in table 1.1 to
get the 8 points of the curve, to which we add the point at infinity.

X X3 X3 + X + 1 points
0 0 1 (0, 1), (0,−1)
1 1 -2 none
2 -2 1 (2, 1), (2,−1)
-2 2 1 (−2, 1), (−2,−1)
-1 -1 -1 (−1, 2), (−1,−2)

Table 1.1: Finding points on the curveY 2 = X3 + X + 1 overZ/5Z

A further question we can ask is whether the group is isomorphicto Z/9Z or Z/3Z × Z/3Z.
The answer isZ/9Z since we eliminate the possibility ofZ/3Z × Z/3Z by takingP = (0, 1), and
finding thatp + p 6= −p. (See example 1.)
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Lecture 2. Prime and Smooth Numbers in Intervals

Lecturer: Andrew Granville Scribe: Arkadev Chattopadhyay

Here we go through a quick survey of results from analytic number theory on the asymptotic
behavior of the number of primes and smooth numbers in a giveninterval.

2.1 Prime numbers

Gauss made the conjecture that the number of primes uptox, denoted byπ(x), is roughlyx/ log x.
Gauss’s guessed estimate ofπ(x), called the logarithmic integral estimate and denoted by Li(x),
is inspired by the fact that he expected (aided by his very impressive mental calculation of the first
“few” primes) the density of primes to be about1/ log n aroundn. More precisely,

Li(x) =

∫ x

2

dt

log t
.

Integrating above by parts, we get

Li(x) =
x

log x

(
1 +

∞∑

k=1

k!

(log x)k

)
.

The first big progress towards understanding the relationship of π(x) and Li(x) was made in
1896 by Hadamard and de la Vallée Poussin who proved the following:

Theorem 1(Prime Number Theorem). limx→∞
π(x)

x/ log x
→ 1.

Although the Prime Number Theorem tells us that the density of primes asymptotically agree
with Gauss’s estimate, it does not tell us much about the error functionπ(x) − Li(x).

Using Fourier Analysis, we believe that10316 is the right point where Gauss’s estimate is
inadequate. Moreover, it seems from the data that

∣∣∣∣π(x) −
∫ x

2

dt

log t

∣∣∣∣ < 2x1/2(log x)A (2.27)

It is remarkable that the correctness of the above statementis equivalent to the famous Riemann
Hypothesis.

Riemann defined a zeta function, denoted byζ, by the following series for Re(s) > 1:

ζ(s) =
∑

n≥1

1

ns
.

Although ζ(s) has a pole ats = 1, it can be analytically continued to the set of every other
complex number i.e.C − {1}. This analytic continuation is called the Riemann zeta function.
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Conjecture 1 (Riemann’s Hypothesis). If ζ(s) = 0, then Re(s) ≤ 1/2.

Riemann knew that every negative even integer is a zero of the zeta function but called them
the trivial zeroes. His hypothesis could be reformulated assaying “Every non-trivial zero of the
zeta function occurs on the Re(s) = 1/2 line”. The proof of the Prime Number Theorem followed
by establishing the following key fact:

Fact 1 (Hadamard and de la Vallée Poussin). The Prime Number Theorem is equivalent to saying
that ζ(s) 6= 0 if Re(s) ≥ 1.

It was totally surprising when in 1949 Erdös/Selberg provided an elementary proof the Prime
Number Theorem.

Riemann had showed also the following remarkable fact:

π(x) −
∫ x

2

dt

log t
≈ −

∑

ρ;ζ(ρ)=0

xρ

ρ log x
(2.28)

In (2.28)ρ in the summation on the RHS has positive real part. Assumeρ = β + iα. Note that

∣∣∣∣
xρ

ρ log x

∣∣∣∣ =
xβ

|ρ| log x
.

Hence, taking absolute values on both sides of (2.28) we get

|Error| ≤
∑

ρ=β+iα

xβ

|ρ| log x
.

Thus,

|Error| ≤ xmaxβ

log x

∑ 1

|ρ|(log x)A.

Thus, assuming the Riemann Hypothesis we see that maxβ = 1/2 and plugging this into the
above gives us the refined estimate onπ(x) provided by (2.27).

2.1.1 Consequences for primality testing

Our guess estimate for the number of primes in the interval[x, x + y] i.e. π(x + y) − π(x)
will be roughly y/ log x where2 < y < x1−ǫ. However, our estimate does not give us even an
integer for too small values ofy. May be it is true forx > y > (log x)3. It can be proved to
be true forx > y > x2/3. On the other hand, the Riemann Hypothesis implies that it holds for
x > y > x1/2 log x.

Aside Remark 1. In 1932 Cramer conjectured that there is always a prime in(x, x + (log x)2).
This conjecture is still open.
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This discussion brings us to the question on how large could the gap between consecutive
primes be? Letp1 = 2 < p2 = 3 < p3 < p4 < · · · be the sequence of consecutive prime numbers
with pi denoting theith prime. The prime number theorem tells us that on the averagepn+1 − pn is
aboutlog pn. Erdös and others proved that the gap between consecutive primescan be arbitrarily
large compared to the average. More precisely, it was shown

maxpn≤x pn+1 − pn > 2e−γ log x
(log log x) log log log log x

(log log log x)2
(2.29)

In particular, (2.29) implies that

lim
n→∞

sup
pn+1 − pn

log pn

→ ∞.

By contrast, one can ask the question how small can the gap between consecutive primes be?
In a recent breakthrough, Goldston, Pintz and Yildirim showed that the gap can be arbitrarily small
compared to the average i.e.

lim
n→∞

inf
pn+1 − pn

log pn

→ 0.

The result above constitutes important progress to the twinprime conjecture that says there are
infinitely many pairs of primes that are separated by 2 i.e.limn→∞ inf pn+1 − pn = 2.

We come back to the application to the Goldwasser-Kilian (GK) algorithm for primality testing
using elliptic curves. Recall that such a curveE is given by equations of the formy2 = x3 + ax +
b modp for some primep. In the morning lecture, we saw that the points on such a curveform an
abelian group of orderNp(E) with p − 2

√
p < Np(E) < p + 2

√
p. The idea of the GK algorithm

is to modify Pocklington’s algorithm by working with the group of points on a randomly generated
curveE instead of the fixed groupZ/nZ. What this modified algorithm requires (in practice) is
that the number of points on the curveE be either a prime or twice a prime. In other words, we
are interested in the existence of a primeq such that

x =
p − 2

√
p + 1

2
< q <

p + 2
√

p + 1

2
≈ x + 2

√
x.

What we can prove is that100% of intervals(x, x + x1/1000) i.e. “almost allx” have about
x1/1000

log x
many primes. Consequently, Goldwasser-Kilian will prove the primality of a prime number

almost all of the time. Adleman-Huang bettered GK by workingwith random hyperelliptic curves
overZp. The number of points on such a curve lies in the interval(p2 − cp3/2, p2 + cp3/2). Thus,
we need to find primes in the interval(x, x + x3/4) and with even higher probability than GK,
Adleman-Huang (AH) succeeds. Both AH and GK tests are mostly of historical importance now
as AKS provides a determinisitc poly time test for primality.
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2.2 Smooth Numbers

A numbern is calledy-smooth if every prime that dividesn is no larger thany. We denote by
Ψ(x, y) the number of integers less than or equal tox that arey-smooth. ObviouslyΨ(x, x) = x.

Let us estimateΨ(x, x) − Ψ(x, y). Assumex > y >
√

x. Then,

Ψ(x, x) − Ψ(x, y) =#{n = pm ≤ x : p > y}
=

∑

y<p≤x

#{m ≤ x

p
}

≈
∑

y<p≤x

x

p

Thus,

Ψ(x, y) ≈ x

(
1 −

∑

y<p≤x

1

p

)
.

It can be shown that ∑

p≤x

1

p
= log log x + C + O

( 1

log x

)
.

So,
∑

y<p≤x

1

p
≈ log

(
log x

log y

)
.

If x = yu and1 ≤ u ≤ 2, then

Ψ
(
x, x1/u

)
≈ x(1 − log u).

If 2 < u < 3, then following what we did before gets us

Ψ
(
x, x1/u

)
≈ x

(
1 −

∑

y<p≤x

1

p
+

∑

p,q>y;pq≤x

1

pq

)
.

2.2.1 Largeru

We will try to estimateΨ(x, y) recursively having established it for small values ofu. Noting that

Ψ(x, x) − Ψ(x, y) =
∑

y<p≤x

#{pm ≤ x : m is p-smooth}.

This immediately gives the recursive relation

Ψ(x, x) − Ψ(x, y) =
∑

y<p≤x

Ψ
(x

p
, p

)
.
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AssumingΨ(x, x1/u) ∼ xρ(u), we get

x
(
1 − ρ(u)

)
=

∑

y<p≤x

x

p
ρ

(
log(x/p)

log p

)
(2.30)

Applying the Prime Number Theorem,

RHS of (2.30)≈
∫ x

y

x

t log t
ρ

(
log(x/t)

log t

)
dt (2.31)

The RHS of (2.31) has an error term that has to be eventually taken care of. Substitutet = yw so
that log t = w log y. It is easily verified then

dt

t log t
=

dw

w
.

Plugging this substitution into the RHS of (2.31) we get

RHS of (2.31)≈ x

∫ u

w=1

ρ

(
u

w
− 1

)
dw

w
(2.32)

Substitutev = u/w, wherebydv/v = −dw/w and so we get

1 − ρ(u) =

∫ u

v=1

ρ(v − 1)
dv

v
(2.33)

To summarize, what we have proved is thatΨ(x, x1/u)/x → ρ(u) whereρ(u) is a complicated
function that is given by the integral equation (2.33). The key thing to remember is thatΨ(x, y) =
xρ(u) where,

ρ(u) ≈ 1

uu
(2.34)

andx = yu. This remains provably true for

y > e(log log x)5/3+ǫ

(2.35)

Surprisingly, the Riemann Hypothesis is equivalent to the above estimate holding fory >
(log x)2+ǫ.

16



2.2.2 Lenstra’s algorithm

Lenstra’s algorithm modifies Pollard’sp − 1 algorithm of factoring by working with the group of
points on an elliptic curve. Roughly, we estimate the time that we want the algorithm to work. Say
it is B. Then letM =

∏
qǫ<B qǫ be aB-smooth number. We choose a random elliptic curveE

(overZ/nZ) and a pointP on it. Then we computeP + · · ·+M times· · ·+P using the group law
for adding points onE. Letp be a prime factor ofn. If the curveEp (the oneE induces overZ/pZ
via reduction modp) has an order that isB-smooth and the order of all otherEq, whereq|n, are not
B-smooth then this addition process identifiesp as a factor ofn. Since the order of the group of
points onEp lies betweenp−2

√
p+1 andp+2

√
p+1, we are interested to findB-smooth numbers

in this interval1. The relationship betweenB andp is roughly given byB = O(log p)c for some
constantc if we want Lenstra’s algorithm to run in polytime w.r.t its input length (which islog n).
Moreover the running bound of Lenstra’s algorithm works if the number ofB-smooth numbers in
this interval is what we would expect it to be according to estimate (2.34) i.e.4

√
p/ρ(u)u where

y = x1/u = (log p)c = exp(c log log p). This is unfortunately smaller than the range for which
estimates provably work as given by (2.35).

1Note that corresponding to every number in this interval, wecan find an elliptic curve that has exactly that many
points on it.
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Lecture 3. Hasse’s Theorem

Lecturer: Reńe Schoof Scribe: Ĺaszĺo Egri

Part 1

Before Reńe’s lecture, Pavel shortly explained some probabilistic complexity classes. Primes is in
coRP due to Rabin and Miller. Adleman and Huang showed that Primes is in RP and therefore
Primes is in coRP∩ RP= ZPP . Finally, in 2002 it was shown by AKS that Primes is in P. Note
that the generalized Riemann hypothesis implies that primesis in P.

A problemX ∈ ZPP if there exists a randomized polynomial time algorithmA such that

A(x) = 0 → x 6∈ X, x ∈ X → P (A(x) = 1) ≥ 1

3

A(x) = 1 → x ∈ X, x 6∈ X → P (A(x) = 0) ≥ 1

3
.

More General Form

Here Reńe shortly remarked that in general, an elliptic curve has theform y2 + a1xy + a3y =
x3 + a2x

2 + a4x + a6 but usuallya1 = a2 = a3 = 0 and then we get the form which we use most
of the time.

Addition can be defined in the same way. Consider(x1, y1) + (x2, y2) = (x3, y3). The slope is

λ =

{
y2−y1

x2−x1
if the two points are different

3x2+2a2x+a4x−a1y
24+a1x+a3

if the two points are the same

x1 + x2 + x3 = λ2 + a1λ

−y3 + a1x3 + a3 = λ(x3 − x1) + y1

−(x, y) = (x,−y + a1x + a3).

Projective Coordinates

Let K be a field andE : y2 = x3 + Ax + B be an elliptic curve such thatchar(K) 6= 2, 3,
A,B ∈ K and4A3 + 27B2 6= 0.

A projective planeP2 is defined as

P2 = {(x, y, z) : (x : y : z) 6= (0, 0, 0) and(x : y : z) ≡ (x′ : y′ : z′)

if there existsc ∈ K∗ such thatcx = x′, cy = y′, cz = z′}

18



We can define a map fromA2 (affine space) intoP2 as(x, y) 7→ (x : y : 1). We can also go
back:

(x

z
,
y

z

)
← (x : y : z) ∈ P2, z 6= 0

curve projective curve

We can see that the infinity point is

(∞,∞) =





z = 0

x = 0

y 6= 0 y = 1.

Work on a Computer

Let K = Z/pZ. Then we can determine

x3 = −x1 − x2 +

(
y2 − y1

x2 − x1

)2

: y3 : 1

(here the calculation of the inverse of the denominator is expensive, it can be done using the
Euclidean algorithm) or equivalently,

(−x1 − x2)(x2 − x1)
2 + (y2 − y1)

2 : y2(y2 − x1)
2 : (x2 − x1)

2

in O(log3p) time.

Exercises

Let E be an elliptic curvey2 = x3 + Ax + B over a fieldK = K such thatchar(K) 6= 2, 3. Let’s
determine the number of points of order2 and3.

Points of order 2

Let P = (x, y). ThenP + P = 0 ↔ P = −P ↔ (x, y) = (x,−y) → y = 0 → x3 + Ax + B =
0 → there are three points of order2.

Let n ∈ N. Assume thatK is an algebraically closed field. Define the set ofn-torsion points
E[n] ⊂ E(K) to be the set of elements inE(K) which have ordern, i.e.

E[n] = {P ∈ E(K) : P + · · · + P︸ ︷︷ ︸
n

= (∞,∞)}.

ThenE[2] ∼= Z/2Z × Z/2Z.
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Points of order 3

Let P = (x, y). Assume thatP + P + P = 0. ThenP + P = −P and−P = (x,−y). So
P +P = (x3, y3). Thenx3 = −x−x+λ2, whereλ = 3x2+A

2y
. So(−2x+(3x2+A

2y
)2, y3) = (x,−y).

It follows that(3x2 + A)2 = 3x(Ay2) = 12x(x3 + Ax + B) and3x4 + 6Ax2 + 12Bx − A2 = 0.
So there are four zeroes. In fact,E[3] ∼= Z/3Z × Z/3Z.

Main Result

Let p be a prime andE be an elliptic curve overZ/pZ. The main result of today is:

1. E(Z/pZ) is almost cyclic, i.e. it can be generated by at most2 elements2;

2. p + 1 − 2
√

p < #E(Z/pZ) < p + 1 + 2
√

p.

Let K be the fieldFq whereq = pm (p is characteristic). HereE(K) = {(x, y) : x, y ∈
K, y2 = x3 +Ay +B}∪{∞,∞}. LetK denote the algebraic closure ofK. ThenE(K) ⊂ E(K)
(E(K) is an infinite group).

k(E) denotes a function field,k(E) = {f1(x)+Y f2(x)
g(x)

: f1, f2, g ∈ K[x], g(x) 6= 0}.

Morphisms

Assume thatE1 andE2 are two elliptic curves over a fieldK. Then a morphismh from E1 to
E2 maps any(x, y) ∈ E1(K) to (ϕ(x, y), ψ(x, y)) ∈ E1(K), whereϕ andψ are quotients of
polynomials with coefficients inK. Morphismh must induce a group homomorphism and must
map(∞,∞) to (∞,∞).

Examples

Let E : y2 = x3 + Ax + B. The following maps fromE to E are morphisms.

(x, y) 7→ (x,−y)

(x, y) 7→ (x, y)

(x, y) 7→ (∞,∞)

The zero morphism.
Another example is the following. Let’s define(f +g)(x, y) := f(x, y)+g(x, y). Assume that

f = g = id. Then(f +g)(P ) = f(P )+g(P ) = P +P so(x, y)+(x, y) = (−2x+(3x2+A
2y

)2 : y3)

and the function that maps(x, y) to (−2x + (3x2+A
2y

)2 : y3) is a morphism.

2By almost cyclic we mean the following. Letℓ be a prime. Then ifℓ 6 |p − 1 then theℓ-part (Sylow subgroup) of
E(Z/pZ) is cyclic. If ℓ|p − 1 then the proportion ofE over(Z/pZ) with ℓ-part not cyclic≤ 1

ℓ3
.
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The Frobenius morphism. LetK be a field of characteristicp andα, β ∈ K. Clearly,(α+β)p =
αp + βp. Let E be the elliptic curvey2 = x3 + Ax + B. Let P = (x, y).

(y2)p = (x3 + Ax + B)p

(yp)2 = (xp)3 + Apxp + Bp

Then the point(xp, yp) is on Ẽ : y2 = x3 + Apx + Bp. (∆(Ẽ) = ∆(E)p, where∆ is the
discriminant.)

Let ϕp : E → Ẽ be defined as(x, y) 7→ (xp, yp). Thenϕp is called thep-Frobenius morphism.
Now letK = Fq. Then ifx ∈ K thenxq = x. (In particular, ifx ∈ Z/pZ thenxp ≡ x mod p.)

Consider

E
ϕp→ Ẽ

ϕp→ ˜̃E
ϕp→ . . .

ϕp→

˜

...
Ẽ︸ ︷︷ ︸

m−times

.

Theq-Frobenius morphism is defined asϕq = ϕp
m. Observe that the curvey2 = x3+Aqx+Bq

is the same asy2 = x3 + Ax + B, so in factϕq is fromE to E.
Now letK = Fq ⊂ K = Fq. ThenK = {α ∈ K : αq = α}, i.e. Fq is the set of fixed points of

the mapα 7→ αq (from K to K). SoE(K) ⊂ E(K) whereE(K) = {(x, y) : ϕq(x, y) = (x, y)}.

Part 2

Recall that Reńe went over this section in finer detail in the first part of his next lecture.
Recall the following. LetK = Fq (or Z/pZ). Consider the elliptic curveE : y2 = x3 +Ay+B

whereA,B ∈ K. ThenE(K) ⊆ E(K). (E(K) is a finite field.) A morphism fromE to itself is
called an endomorphism. For example, theq-Frobeniusϕq(x, y) = (xq, yq) from E(K) to E(K)
is an endomorphism.

Let E(K) = {P ∈ E(K) : φq(P ) = P}. Now ϕq(P ) = P ↔ (ϕ − id)(P ) = 0 ↔ P ∈
ker(ϕq − id). It follows that

E(k) = ker(E(K)
ϕq−id−→ E(K)).

Question: ifE1
f→ E2 wheref is a morphism, then what isker(f)?

{f : E → E : a morphism overK} = End(E) is a ring. We can add, subtract, multiply:

(f + g)(P ) = f(P ) + g(P )

(f · g)(P ) = f(g(P ))

The identity for multiplication is the identity mapid. The identity for addition is the0-morphism
(sends everything to∞). Let’s define[n] = id + · · · + id︸ ︷︷ ︸

n−times

, wheren ∈ N. Observe that the map
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n 7→ [n] from Z to End(E) is an injective map. Also note that[n] : E(K) → E(K) defined as
P 7→ P + · · · + P︸ ︷︷ ︸

n

is never the zero map.

An isogenybetween two elliptic curvesE1 andE2 is a morphismϕ : E1 → E2 such that
ϕ(0) = 0. Two elliptic curves areisogenousif there is an isogenyϕ between them withϕ(E1) 6=
{0}.

Let E1(K) andE2(K) be elliptic curves andf : E1 → E2 be a non-constant ”rational map”
defined overK. Then composition withf induces an injection of function fields fixingK,

f ∗ : K(E1) ←֓ K(E2)

f ∗g = f ◦ g.

We definedeg(f) = deg(formulas), anddeg(f) = degsep(f) · deginsep(f) or deg(f) =
[K(E1) : f ∗K(E2)] (e.g.deg(id) = 1 anddeg(q − Frobenius) = q).

For example, lety2 = x3 + Ax + B andE
[2]→ E.

(x, y) →
(
−2x +

(3x2 + A)2

4(x3 + Ax + B)
, yK(x)

)

K(E) ←֓ K(E) = {a(x + Y b(x)} a(x) andb(x) are rational functions inx

←֓ above is a degree4 extension.

−2x +
(3x2 + A)2

4(x2 + Ax + B)
← x

yK(x) ← y

Sodeg([2])=4.
Fact:deg(fg) = deg(f)deg(g).
Let f be a morphism fromE to E. If f is ap-th power where the characteristic of the field isp

thenf is inseparable. It is a fact that iff is separable then#ker(f) = deg(f).

Let E
f→ E. ThenI = {f : E → E : inseparable} ⊂ End(E). Note thatI is a two-sided

ideal andI is a strict subset ofEnd(E). For example,φq ∈ I.
Let f = [p] wherep is the characteristic of the field. Then[p] ∈ I. The formula to express

f = (x, y) + · · · + (x, y) (p terms) is ap-th power.

Corollary 1.

p 6 |n ⇒ [n] 6∈ I

⇒ [n] is separable

#ker([n]) = deg(n)
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Notice thatφq−id 6∈ I and it follows that#ker(φq−id) = deg(φq−id). (And#ker(φq−id) =
#E(K).)

Let f : E → E. It is a fact thatdeg(f) = degnonsep(f)degsep(f) and therefore it is always the
case that#ker(f) = degsep(f)|deg(f). ⇒ deg(f) “kills” ker(f).

Let f : E → E be an isogeny. It is a fact that there exists a unique mapf v called the dual
isogeny with the propertyf vf = [deg(f)]. These maps are inEnd(E). Here are some properties
of f v:

f vv = f

(fg)v = f vgv

deg(f v) = deg(f)

(f + g)v = (f v + gv) (hardest to show)

Let’s do an example. LetFq = F2 = Z/2Z andE : y2 + xy = x3 + 1. Let’s compute the dual
of φ2(x, y) = (x2, y2), deg(φ2) = 2.

[2] : E → E:

(x, y) + (x, y) =

(
x2 +

1

x2
, (y2 + 1)(1 +

1

x4
) +

1

x2

)

=
(
V (x)2,W (x, y)2

)

Therefore

(V (x),W (x, y)) =

(
x +

1

x
, (y + 1)(1 +

1

x2
) +

1

x

)
.

(x, y)
g7→ (V (x),W (x, y)).

Observe thatφ2 ◦ g = [2] so the dual ofφ2 is g.
Observe that multiplication is self-dual:

[n]v = [id + . . . + id]v = id + . . . id = [n].

Then[deg([n])] = [n]v[n] = [n]2 = [n2] and it follows thatdeg([n]) = n2. It follows that for every
n if p 6 |n then#ker([n]) = #E(K)[n] = n2. Then

⇒ E(K)[n] = {P ∈ E(K) : P + . . . + P︸ ︷︷ ︸
n

= ∞} ∼= Z/n × Z/n

⇒ E(K) ⊂ E(K)

⇒ E(K) can be generated by at most2 points.

Recall that

#E(K) = #ker(φq − id)

= deg(φq − id).
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We define the tracet of a functionf ∈ End(E) as follows.t = trace = f + f v. Then

f + f v = (f + [1])(f v + [1]) − ff v − [1]

= [deg(f + 1)] − [deg(f)] − [1]

Therefore[f + f v] is in [Z] ⊂ End(E). For anyf we can write that

f 2 − (f + f v)f + f vf = 0 (in End(E))

f 2 − [t]f − [deg(f)] = 0

t anddeg(f) are integers so the maps∈ End(E).

Proposition 3 (Analogue of Riemann Hypothesis, 1933, Hasse). t2 ≤ 4deg(f).

Let m,n ∈ Z.

0 ≤ [deg([m] + [n]f)] = ([m] + [n]f)([m]v + [n]vf v)

= ([m] + [n]f)([m] + [n]f v)

= ([m]2 + [m][n](f + f v) + [n]2ff v)

= [n]2(

(
[m]

[n]

)2

+
[m]

[n]
t + deg(f))

It follows thatx2 − tx + deg(f) ∈ Z[x] has only≥ 0 values. Thereforet2 ≤ 4deg(f).

Corollary 2. #E(K) = q + 1 − t with |t| ≤ 2
√

q.

Proof. We have

#E(K) = deg(φq − id)

= (φq − id)(φv
q − id)

= q + 1 − t

andt2 ≤ 4deg(φq) = 4q as required.
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Lecture 4. Constructing Elliptic Curves of Prescribed Order

Lecturer: Eyal Goren Scribe: Anil Ada

4.1 Introduction

Consider an elliptic curveE overFp given by the equationy2 = x3 + Ax + B. The number of
points on this elliptic curve is equal top + 1 − t where|t| ≤ 2

√
p (Hasse bound). Letϕ denote

thep-th Frobenious function:ϕ(x, y) = (xp, yp). Then we know[t] = ϕ + ϕ∨ andϕ satisfies the
quadratic equationx2 − tx + p = 0.

We have seen the ring End(E) containsZ. In fact it contains the subring containingZ andϕ,
i.e. it containsZ[ϕ]. The ringZ[ϕ] looks like a subring ofC since

ϕ =
t ±

√
t2 − 4p

2
∈ C.

(There is an ambiguity because of “±”.) This subring is not contained inR becauset2 − 4p < 0.
In this lecture we will be interested in the following three questions.

1. Given a permissiblet, does there exist an elliptic curve overFp with p + 1 − t points?

2. If so, how many are there?

3. If so, how do you write them down?

The quick answers to these questions are as follows.

1. Yes.

2. A certain “class number”. (This can be calculated rapidlyfor eachp andt.)

3. The method is to construct elliptic curves over a number field H that is a finite extension
of Q and a subset ofC. Then reduce these elliptic curvesmod p. One looks for elliptic
curvesE overC such that End(E) also containsZ[ϕ].

For this lecture, we assume that End(E) is imaginary quadratic, i.e.E is ordinary. This is
equivalent to sayingt 6= 0.
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4.2 Thej-invariant

Let EA,B be an elliptic curve over the fieldk with points satisfying the equationy2 = x3 +Ax+B.
We can associate thej-invariant ofEA,B:

j(EA,B) := 1728
4A3

4A3 + 27B2

Now we state two facts about thej-invariant.

• If k is an algebraically closed field thenEA,B
∼= EA′,B′ if and only if j(EA,B) = j(EA′,B′).

• In general, any elliptic curvẽE over k with j(Ẽ) = j(EA,B) is isomorphic to the elliptic
curveEd given by the equationdy2 = x3 + Ax + B, d 6= 0. Note that this equation can be
written in standard form via simple manupilations.Ed is isomorphic toEd′ overk if and only
if d/d′ is a square ink×. Therefore one can deduce that for anyj ∈ Fp, there exists precisely
two elliptic curves up to isomorphism overFp with a givenj-invariant (unlessj = 0 or
j = 1728).

Given somej ∈ k, the elliptic curveEj given byy2 = x3 + A(x + 1) whereA = 27j
4(1728−j)

is
such that thej-invariant ofEj is j. Givent, to find all the elliptic curves overFp that havep+1− t
points, we will find all thej-invariants of the elliptic curves overFp with p + 1 − t points. Then
given thesej’s, we can construct the corresponding elliptic curves. Here we have to be careful
because the curve we constructed might actually havep + 1 + t points. If Ej(Fp) hasp + 1 + t
points than the elliptic curve given bydy2 = x3 + A(x + 1) whered is a non-square inFp (i.e. the
quadratic twist) will havep + 1 − t points.

We will be interested in elliptic curves over the complex numbers and thej-invariants of these
elliptic curves. This is because:

Fact 2. Thej-invariants ofE(C) with End(E) ⊇ Z
[−t+

√
t2−4p

2

]
reduce mod p bijectively to

j-invariants of those elliptic curves overFp with p + 1 − t points.

4.3 Endomorphisms of Elliptic Curves OverC

Let E be an elliptic curver overC given by the equationy2 = x3 +Ax+B whereA,B ∈ C. Then
the endomorphism ring End(E) = {f : E → E | morphism} containsZ. Here eachf is of the
form f(x, y) = (ϕ(x, y), ψ(x, y)) for someϕ andψ.

An elliptic curverE over C is a torus and every torus is isomorphic toC/Λ whereΛ is a
lattice. GivenE, there exists a latticeZ + Zτ , Im(τ) > 0 and a surjective group homomorphism
w : C → E such that Ker(w) = {z ∈ C | w(z) = 0E} = Λ. Thus the first isomorphism theorem
gives usC/Λ ∼= E.

Consider two elliptic curvesE1 = C/Λ1 andE2 = C/Λ2. Suppose there existsλ ∈ C such
thatλΛ1 ⊆ Λ2. Then we have the following diagram.
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C C

C/Λ1 C/Λ2

λ

fλ

Herefλ(z mod Λ1) = λz mod Λ2. In fact, any morphism fromE1 to E2 is of this form so
Hom(E1, E2) = {λ ∈ C | λΛ1 ⊆ Λ2}. Similarly we have End(E) = {λ ∈ C | λΛ ⊆ Λ}. If we
write λ using basis1 andτ : λ = λ1 = a + bτ , λτ = c + dτ , then we see thatλ is actually of the
form (

a c
b d

)

mappingα + βτ to (aα + cβ) + (bα + dβ)τ . So End(E) ⊆ M2(Z).
One can conclude that

End(E) =

{
Z
O

HereO is anorder in a quadratic fieldK = Q(
√

d), whered is a square-free integer. The integral
closure ofZ in K is called thering of integersof K and is denotedOK . We haveOK = Z[δ] =
Z · 1 + Z · δ with integral basis1, δ where

δ =

{ √
d if d ≡ 2, 3 mod 4

1+
√

d
2

if d ≡ 1 mod 4

An orderO 6= Z is a subring contained inOK . The discriminant ofOK is denoteddK and

dK =

{
4d if d ≡ 2, 3 mod 4
d if d ≡ 1 mod 4

Any order has the shapeZ[mδ] for a unique positive integerm with discrimimantm2dK .
Suppose End(E) = O. We haveλ · 1 = a + bτ and soτ = λ−a

b
∈ K. This impliesΛ ⊆ K is a

rank 2 free abelian group andOΛ ⊆ Λ, i.e. Λ is an ideal ofO.

Fact 3. Elliptic curvesE over C with End(E) = O is in bijection with ideals ofO up to the
equivalenceΛ ∼ αΛ, α ∈ K×. The latter is the class group ofO and is denoted by cl(O).

LetOo = Z
[−t+

√
t2−4p

2

]
. Recalling Fact 2 we conclude:

Theorem 2. The number of elliptic curves overFp with p + 1 − t points is equal to the number of
elliptic curvesE overC with OK ⊇ End(E) ⊇ Oo, and this is equal to

∑

K⊇O⊇Oo

#cl(O),

whereK = Q(
√

t2 − 4p).
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There is an explicit formula for#cl(O) and therefore the number of elliptic curves overFp

with p + 1 − t points can be calculated rapidly for eachp andt.
Our next goal is to find thej-invariants of the elliptic curvesE overFp with p + 1 − t points.

Consider the polynomial
fO =

∏

E/C:
End(E)=O

(x − j(E))

whereO is an order with discriminantD.

Fact 4. Let E/C be an elliptic curve with End(E) ∼= O. Thenj(E) is an algebraic integer, i.e.
fO ∈ Z[X].

The roots offO in Fp[X] are thej-invariants of the elliptic curves overFp with endomorphism
ring O. Given a rootj ∈ Fp of fO whereO has discriminantD = t2 − 4p, the corresponding
elliptic curve (or the twist) overFp hasp + 1 − t points.

The rest of the lecture is devoted to showing how one can compute fO. ViewingO as a lattice
in C, the elliptic curveC/O has endomorphism ringO. Furthermore, every idealΛ ⊆ O is a
lattice inC and the curveC/Λ has endomorphism ringO if Λ is invertibleO−ideal. We will be
interested in the bijection between ideal classes ofO (i.e. cl(O)) and binary quadratic forms.

SupposeΛ is anO-ideal whereΛ = Zα + Zβ, α, β ∈ K = Q(
√

d). Without loss of generality
(βᾱ − αβ̄)/

√
d > 0. Associate toΛ the quadratic form

Nm(xα − yβ)

NmΛ
= ax2 + bxy + cy2

wherea = αᾱ, −b = αβ̄ + βᾱ, c = ββ̄ and we assume NmΛ = 1. This produces positive
definite primitive binary quadratic form with discriminantD = disc(O). We write〈a, b, c〉 for the

form ax2 + bxy + cy2. A matrix A =

(
i j
k ℓ

)
∈ SL2(Z) acts on these forms viaf(x, y)A =

f(ix + jy, kx + ℓy). Since−1 ∈ SL2(Z) acts trivially, we get an action of PSL2(Z). Each
equivalence class under this action can be represented witha unique form〈a, b, c〉 with a > 0,
|b| ≤ a ≤ c, b2 − 4ac = D and if either|b| = a or a = c thenb ≥ 0. LetFD denote these quadratic
forms.

Fact 5. The ideal classes ofO, cl(O), is in bijection withFD:

〈a, b, c〉 7→ aZ +
−b +

√
D

2
Z

Now we can computefO as ∏

〈a,b,c〉∈FD

(x − ja,b,c)

whereja,b,c = j(Eτ ). Hereτ = −b+
√

D
2a

andEτ = C/(Z + Zτ).
It is a classical result that the Fourier expansion ofj(Eτ ) has integral coefficients; it is a power

series ine2πiτ that we can calculate to any amount of precision. We know thatfO has integer
coefficients, we only have to approximate thej-values in the product with high enough precision.
The running time to calculatefO is O(|D|(log |D|)3(log log |D|)3).
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Lecture 5. Schoof’s Algorithm

Lecturer: Reńe Schoof Scribe: Mark Mercer

5.1 Review

Since many people had questions about the material in the Tuesday morning lecture, we will spend
the first hour going over this material in finer detail. Following that, we will continue with the
schedule topics, which is Schoof’s algorithm for computing#E(Fq).

The material regarding basic properties of endomorphisms on elliptic curves and their relation
to the problem of counting the number of points on a curve can be found in Chapters 3 and 5 of
the Silverman text. The applications can be found in the textby Lawrence C. Washington.

Recall that in the Tuesday morning lecture we showed that#E(Z/pZ) satisfies:

p + 1 − 2
√

p ≤ #E(Z/pZ) ≤ p + 1 + 2
√

p.

Note in particular that the value of#E(Z/pZ) is centered aroundp + 1. There is an intuitive
reason for this. Let us take for example a curveY 2 = X3 + AX + B, and we will try to count
the points directly. First of all, there is always one point at infinity. There arep possible values for
X, each of which contribute either two, one, or zero points to the curve. A given valuex for X
contributes two points ifx3 + Ax + B is a nonzero square, or one point in the case that this value
is zero. Otherwise, this value is a nonzero nonsquare and contributes no points to the curve.

Let us defineχ : Z/pZ → {−1, 0, +1} by:

χ(a) =





1 a is nonzero square,

0 a = 0,

−1 otherwise.

You may note that this corresponds to the values of the Legendre symbol. We can rewrite the
equation for#E(Z/pZ) as:

#E(Z/pZ) = 1 +
∑

x∈Z/pZ

(1 + χ(X3 + AX + B))

= 1 + p +
∑

x∈Z/pZ

χ(X3 + AX + B).

We will now proceed to give some background on endomorphismsof elliptic curves. Let us
fix the field to beFq, and let us denote byEnd(E) the set of endomorphism overFq. This forms
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a ring with function addition(φ + ψ)(P ) = φ(P ) + ψ(P ) as the additive operator and function
composition as the multiplicative operator. The identity of the ring is the identity mappingid, and
the zero is the morphism mapping all points to zero. Iff ∈ End(E) then the morphismf can be
expressed as a mapping(x, y) → (φ(x, y), ψ(x, y)), whereφ andψ are polynomials.

An important class of endomorphisms on curves are what we call themult-by-n mappings. For
n ∈ Z we define[n] to be the sum ofn identity mappings. Thenn 7→ [n] is a morphism fromZ to
End(E). Another important example is theFrobenius morphism, defined asϕq(x, y) = (xq, yq).

For f ∈ End(E), the degree off or deg(f) is defined as[K(E) : f ∗K(E)]. Informally,
we can think ofdeg(f) to be the degree of the formulas forf . We can factor this quantity as
deg(f) = deg(f)sep ·deg(f)insep, theseparableandinseparabledegrees off . It can be shown that
#ker(f) = deg(f)sep. We will use this fact in several counting arguments in the sequel.

For f ∈ End(E), we definef v to be the (provably unique) endomorphism such thatf v ◦ f =
[degf ]. Them mappingf 7→ f v is an involution, i.e. it satisfies:

(f v)v = f,

(f + g)v = f v + gv, and

(fg)v = gvf v.

Here are a few easy-to-prove identities that we will use:

idv = id,

[n]v = [n] ,

f vf = [deg f ],

deg(f v) = deg(f).

This implies, for example, thatdeg([n]) = n2. This can be used to prove thatE(Z/pZ) can be
generated using at most two elements. The idea here is to decompose the abelian groupE(Z/pZ)
as a direct product of cyclic groups, and analyzeE(Z/pZ)[ℓ] whereℓ is the order of the group.

For some curves, the mult-by-n and Frobenius mappings are sufficient to generateEnd(E).
This is not always the case, however. We will now introduce some more endomorphisms which
we haven’t seen before. Consider the curveY 2 = X3 − X over fieldZ/pZ with p ≡ 1 mod 4.
The discriminant of this curve is−64. Let us denote by[j] the endomorphism defined by(x, y) 7→
(−x, iy) (note that we usej here as a symbol to suggest the action of a complex number; is not
meant to represent a positive integer). Then[j] [j] = (x,−y) = −(x, y).

(X,Y )
[j]
- (−X, iY )

(X,−Y )

[j]

?[j]2 -
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Note that[j]2 = [−1], so in particular this map cannot be equivalent to any of the mult-by-n
maps. It can be shown thatEnd(E) is in fact generated by the mult-by-n maps and the[j] map.

The properties of the involutionf 7→ f v are similar in some sense to complex conjugation. An
arbitraryf ∈ End(E) will, for example, satisfy:

f + f v = (f + id)(f v + id) − ff v − id

= (f + id)(f + id)v − ff v − id

= [deg(f + id)] − [degf ] − [1]

= [t] for some integert.

We callt thetraceof f . The endomorphismsf and[t] satisfyf 2 − [t] f + [deg f ] = 0, in other
wordsf is a zero ofX2 − [t]X + [degf ]. We call this the characteristic polynomial off .

In general, it is not always clear how to computef v. However, if the coefficients of the char-
acteristic polynomial are known, then we can immediately plug t into the equationf v = [t] − f .

Here is another example. Consider the curveY 2 = X3 −X overFp2, wherep ≡ 3 mod 4. In
this caseFp = Fp(i). In this case, theEnd(E) ring is generated by the[n] mappings, the[j] map,
and the Frobenius mapϕp, defined as usual:

(X,Y )
[j]
- (−X, iY )

(X,Y )
ϕp
- (Xp, Y p)

Then:

(X,Y )
[j]
- (−X, iY )

ϕp
- (−Xp, ipY p) = (−Xp,−Y p)

(Xp, Y p)
[j]

-

ϕp

-

(−Xp, iY p)

We observe quaternion-like behavior with respect to these morphisms:

ϕq [j] = − [j] ϕq,

[j]2 = −1,

ϕ2
q = − [p] ,

It can be shown thatEnd(E) is generated by the mult-by-n mappings, the[j] mapping, and
theϕq mapping. Curves having this property are calledsupersingular(although this is a bit of a
misnomer). They have a number of equivalent characterizations.
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5.2 Hasse’s Theorem

We now give a sketch of the following result:

Theorem 3. (Hasse) For any curveE over finite fieldFq, we have

#E(Fq) = q + 1 − t,

with |t| ≤ 2
√

q.

Let ϕq theq-Frobenius morphism. It can be shown that all of the points inE(Fq) are fixed by
ϕq. Therefore,E(K) = ker(ϕq − id). In particular,

#E(K) = # ker(ϕq − id) = deg(ϕq − id)sep.

It can be shown thatϕq − id is itself separable, so#E(Fq) = deg(ϕq − id). Now:

[deg(ϕq − id)] = (ϕq − id)(ϕq − id)v

= ϕqϕ
v
q + id − ϕq − ϕv

q

= [q] + [1] + [t] .

5.3 Riemann-type theorems

In the last section, we showed that the number of points on an elliptic curve overFq is q + 1 − t,
with |t| ≤ 2

√
q. Results such as these are often referred to as being analogous to the Riemann

hypothesis. In this section we will give some explanation asto why this terminology is used. First,
we need to understand this we will first describe two ways in which the Riemann Zeta function has
been generalized. Recall that this function is defined to be the analytic continuation of the function
defined by:

ζ(s) =
∞∑

n=1

1

ns

on alls ∈ C such thatRe(s) > 1. Euler showed that this function can also be formulated as:

ζ(s) =
∏

p prime

1

1 − p−s
.

Furthermore, the function can be reexpressed as a sum over the set of idealsI of Z as follows:

ζ(s) =
∑

I⊆Z

1

[Z : I]s
.
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This type of expression is a special case of what is called aDedekind Zeta Function. The
Dedekind Zeta function over fieldF is defined by:

ζF(s) =
∑

I⊆OF

1

[OF : I]s
,

whereOF is the ring of integers, and the sum is again taken over the setof ideals. We obtain
the Riemann zeta function whenF = Q. We can also write:

ζF(s) =
∏

P⊆OF

1

1 − [OF : P ]−s
.

Another type of generalization of the Riemann zeta function was introducted by Artin. He
defined:

ζFq(X)(s) =
∑

I

1

[Fq[X] : I]s
,

whereFq[X] be the set of polynomial with coefficients inFq. Each ideal is generated by a unique
monic polynomial, so to evaluate this sum we count, for each degreei, the number of monic
polynomials of degreei is qi. Thus,

ζFq(X) = 1 +
q

qs
+

q2

q2s
+

q3

q3s
· · ·

=
1

1 − q · q−s
.

We want to define a zeta-type function for elliptic curvesE, combining the two generalizations
above. We define:

ζE(s) =
∏ 1

1 − [R : P ]s
.

There exists a bijection of the prime ideals ofR not equal to 0 and the pointsP of E overFq.
So we can rewrite this function as:

ζE(s) =
∏

P∈E(Fq)

1

1 − #Fq(P )−s
.

This function can be evaluated to:

ζE(s) =
1 − tq−s + q · q−2s

(1 − q · q−s)
.

Supposes is a zero ofζE. Thenqs is a zero ofX2+tX+q. This is the characteristic poly ofϕq,
so we know that the discriminant is≤ 0 so there are two roots of equal magnitude. In particular,
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|qs| =
√

q, and thusqRe(s) = q
1
2 andRe(s) = 1

2
. All of the zeroes lie on the critical line where the

points have real part equal to1/2, so we say that the Riemann hypothesis forζFq(X) is true. Unlike
the Riemann Zeta function however, this function is periodicmodulo 2πi

log q
.

5.4 Computing#E(Fq)

In this last section we address the following computationalproblem:

Input: Y 2 = AX + B + X2 overFq,
Problem: compute#E(Fq).

We focus on the particular case whereFq = Z/pZ, for p ≫ 0. In this we are helped in this case
by Hasse’s Theorem, and also the fact thatE(Fq) is either cyclic or almost cyclic, in the sense that
it is generated by at most two elements.

We will consider two techniques. The first technique is to directly evaluate the formula:

#E(Z/pZ) = p + 1 −
∑

X∈Z/pZ

(
X3 + AX + B

p

)
.

Roughly, this is a feasible algorithm forp < 100.

For larger primes, we can use the following algorithm. This is a randomized algorithm which
will be feasible for primes of size up to1020 (roughly).

This algorithm uses a time-space tradeoff technique calledthebaby step, giant steptechnique.
Let a =

√
4
√

p ≈ p1/4. The first step is to choose a random pointP = (x, y). We can do this
by picking a randomx in Fq and then solve fory. Our next objective then is to compute the order
of this point. To do this we compute all the points in the sequenceP, 2P, 3P, . . . , aP . Since we
can compute the inverse of each of these points by negating the Y component, we have actually
computed2a points. We call these points thebaby steps. We store these points in a hash table and
from here on we assume that we can check in constant time whether a given point is a baby step.

We also compute the point(2a + 1)P and the point(p + 1)P . From this we compute, for
all j, Qj = (p + 1)P ± j(2a + 1)P . We check each pointQj in turn to see if it is one of the
baby steps. Indeed by the choice ofa we will find for somei, j with −a ≤ i, j ≤ a such that
Qj = iP . It follows then thatmP = 0 for m = p + 1 + (2s + 1)i − j. If there is exactly one
(i, j) such thatQj = iP , then we will have thatm is the order of the groupE(Fq), and so in this
case#E(Fq) = m. This will be the case for most curves. The running time for this algorithm is
O(p

1
4 log2 p).

In rare cases there will be two(i, j) pairs for whichQj = iP . In this case, it is a fact that there
are exactly two solutions. We can handle this exceptional case using some additional machinery
by J.-F. Mestre.
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Lecture 6. Hyperelliptic Curves Point Counting by p-adic Methods

Lecturer: Kiran Sridhara Kedlaya Scribe: Nitin Saxena

6.1 Introduction

The finite field in this lecture isFq whereq = pN andp is a prime. Think ofp as a fixed or at
least a small prime. In this lecture we will see Kedlaya’s algorithm to compute the number ofFq-
points on a given curveE(Fq) of genusg usingp-adic methods. The complexity of the algorithm
is Õ(g4N3). Elliptic curves are of genus1 and this algorithm is better than Schoof’s algorithm
(rememberp is fixed). For higher genus this algorithm is exponentially better than Schoof’s! A
hyperellipticcurve of genusg is given by the equation:y2 = f(x) wheref(x) is of degree(2g+1).
In this lecture we will see only a sketch of Kedlaya’s algorithm in the special case of elliptic curves.

Our problem : Given an elliptic curveE(Fq): y2 = x3 +Ax+B. Find the numbert for which
#E(Fq) = q + 1 − t and|t| ≤ 2

√
q.

There are currently four ways to do this:

1. Enumerate all theFq points onE. Deterministic and time taken:̃O(q).

2. SinceE(Fq) is a group of which we have a size estimate and anoracleaccess. We can use
generic group algorithms (eg. baby-step giant-step). Randomized and time taken:̃O(q

1
4 ).

3. Schoof’s algorithm. Deterministic and time taken:Õ(log5 q).

4. p-adic methods. Deterministic and time taken:poly(pN).

We will look at the fourth method here. But before that let us see two special instances when
#E(Fq) is easy to compute.

When the given equation of the elliptic curve has coefficientsin Fp then it is easy to compute
#E(Fq). This is because we can trivially compute#E(Fp) and then using the following lemma
compute#E(Fq).

Lemma 1. LetE be an elliptic curve with coefficients inFp. If #E(Fp) = p + 1− t0 andα, β are
the roots of(x2 − t0x + p) then#E(Fq) = q + 1 − αN − βN .

Proof Sketch.We have from the theory of elliptic curves that#E(Fp) = p + 1 − tr(φp) and the
Frobenius mapφp satisfies the (endomorphism) equation:φ2

p − tr(φp) · φp + p = 0. Similarly,
#E(Fq) = q + 1 − tr(φN

p ) where we can now expresstr(φN
p ) in terms of the eigen values of

φp.
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An elliptic curveE(Fq) is calledsupersingularif t = 0 (modp). There is a way to check
whether an elliptic curve is supersingular and if it is then there is an explicit expression for#E(Fq).
Thus, we can assume that our given elliptic curve is not supersingular.

Rough Idea: In p-adic methods we computet (modpm) for large enoughm’s. Since we have
a bound fort it will be enough to go uptom ∼ N .

6.2 p-adic Numbers: Preliminaries

Definition 1. p-adic numbers: Informally, for a primep, Zp are base-p expansions that are infinite
on the left of the “decimal” unlike the natural integers. AndQp are base-p expansions that are
infinite on both sides of the “decimal” unlike the rationals.

Note that a typical elementa in Zp looks like:a = a0 +a1p+a2p
2 + · · · where0 ≤ ai < p and

there maybe infinitely manyai’s in the expansion. Thea0, (a0 + a1p), (a0 + a1p + a2p
2), . . . can

be seen as the values ofa(modp), a(modp2), a(modp3), . . . respectively. This fact can be used to
define the addition and multiplication operations in the setZp.

Problem 1. Zp is a principal ideal domain andQp is a field. Both are of characteristic0.

A useful result about thep-adic numbers isHensel’s lemma. It says that iff(x) is a polynomial
with coefficients inZp then a rootα of f(x) (modp) can be lifted to a root̂α in Zp.

Problem 2. Let p be an odd prime. Ifx ∈ Zp such thatx is a square modulop then
√

x ∈ Zp.
(Hint: Use Newton’s iteration.)

Quadratic extensions ofQp: If x ∈ Zp is not a square modulop then the extension ring
Qp[T ]/(T 2 − x) is infact a field. It is a field of dimension2 aboveQp.

Higher extensions ofQp: In general, ifFq = Fp[T ]/(P (T )) is a finite field whereP (T ) is
an irreducible polynomial with coefficients inFp. Then we can embedP (T ) in Zp[T ] and call it
P (T ). This gives us an extension ring ofZp:

Zq := Zp[T ]/(P (T ))

and a corresponding extension field ofQp:

Qq := Qp[T ]/(P (T ))

For example, the finite fieldF9 = F3[T ]/(T 2 + 1) of characteristic3 has the corresponding
infinite fieldQ9 = Q3[T ]/(T 2 + 1) of characteristic0.
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6.3 p-adic Cohomology Framework

The framework of cohomology has its roots in the theory of curves over characteristic zero. We
know, for instance, that a circle inR2 locally looks like a line and we know that there are ‘objects’
calleddifferentialsthat can beintegratedon a part of the circle. Thus, the differentialr · dθ, where
(r, θ) are the polar coordinates, when integrated on the whole circle gives its circumference. The
general philosophy is to associate linear data to nonlineargeometric objects. This associated linear
data is calledcohomology.

We want to bring these notions of locality and differentialsto curves over characteristicp > 0.
This is what thep-adic cohomology framework achieves and gives us a strong tool to study and
to do computations in general curves over finite fields. We sketch here the main ideas of this
framework in the case of elliptic curves.

Definition 2. Let Fq(E) = fraction field of Fq[x, y]/(y2 − x3 − Ax − B), be the set of ratio-
nal functions defined (almost everywhere) on the elliptic curveE. There is a naturalderivation
operator d defined onFq(E). For anyf, g ∈ Fq(E), d satisfies:

• df = 0 if f ∈ Fq.

• d(f + g) = df + dg.

• d(f · g) = f · dg + g · df .

For example,d(x2) = 2xdx andd(yp) = pyp−1dy = 0. But what aredx anddy? To give them
meaning we define the following module.

Definition 3. The setΩ of differential forms of an elliptic curveE(Fq) is the formalFq-linear
combinations off · dg, wheref, g are in the function fieldFq(E) of the elliptic curve.

Almost by the above two definitions we have the following properties ofΩ:

• d is aFq-module homomorphism fromFq(E) → Ω.

• Ω is a module overFq(E) and is generated bydx, dy modulo(2ydy − (3x2 + A)dx).

It turns out that there is a unique1-dimensional subspace ofΩ with no singularitiesanywhere
onE. It is generated by:

dx

y
=

2dy

3x2 + A

Note thatdx
y

has a singularity only aty = 0 but at that point3x2 +A 6= 0 (asE is nonsingular) and

hence aty = 0 we can use 2dy
3x2+A

which is well defined.
How does an endomorphismψ of E acts ondx

y
? Usingψ, anf ∈ Fq(E) can bepulled-backto

another functionψ∗(f) := f ◦ ψ ∈ Fq(E). Similarly, a differentialf · dg ∈ Ω can be pulled-back
to another differentialψ∗(f · dg) = ψ∗(f) · d(ψ∗(g)). Thus, an endomorphismψ of E extends to:

• an algebra homomorphismψ∗ : Fq(E) → Fq(E) by f 7→ f ◦ ψ, and
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• aFq-module homomorphismψ∗ : Ω → Ω by f · dg 7→ (f ◦ ψ) · d(g ◦ ψ).

Now any endomorphismψ of E when applied todx
y

gives d(x◦ψ)
y◦ψ which is again nonsingular

everywhere onE. By the uniqueness of the nonsingular subspace generated bydx
y

we get that:

Lemma 2. For any endomorphismψ of E(Fq) there exists acψ ∈ Fq such that

ψ∗
(

dx

y

)
= cψ · dx

y
(6.36)

The above lemma shows the “usefulness” of working with the differential forms: some of these
are the eigen-vectors of the endomorphisms ofE.

What do these differential forms tell us about the Frobenius endomorphismφq? We could apply
φq on dx

y
and getcφq such that:

φ∗
q

(
dx

y

)
= cφq ·

dx

y
(6.37)

But thencφq is an eigenvalue ofφq and will satisfy the endomorphism equation of the elliptic curve:

c2
φq

− t · cφq + q = 0 (6.38)

and hence it seems that we can recovert from the valuecφq and hence compute#E(Fq). Except
that there is a problem: clearlyq = 0 (modp), also if you do the derivation in Equation (6.37) then
cφq comes out to0 (modp), thus, Equation (6.38) is actually a triviality. This disaster happened be-
cause the field over which the differential forms are defined has a nonzero characteristicp. Can we
generalize these ideas to a field of zero characteristic thatstill has a Frobenius-like endomorphism
whose eigenvalues are related to#E(Fq)?

The idea of Satoh [Sat00] was to lift a given elliptic curveE(Fq) together with its Frobenius
endomorphismφq to aq-adic elliptic curveE(Qq) and a Frobenius endomorphism̃φ : E(Qq) →
E(Qq). Then he computed̃φ(dx/y) to getcφ̃. Finally, approximatedt from the (now nontrivial)
equation:c2

φ̃
− t · cφ̃ + q = 0 overQq. Assuming a fixedp andq = pN Satoh’s algorithm runs in

timeO(N2).

6.4 p-adic de Rham Cohomology

Satoh’s algorithm is a fastp-adic algorithm for elliptic curves. Kedlaya [Ked01] used amore
general cohomology and gave ap-adic algorithm that is efficient for hyperelliptic curves and po-
tentially works for higher dimensional varieties as well.

In classical analysis de Rham cohomology is the way to associate differentials to curves (in gen-
eral, manifolds) over characteristic zero (motivating case isR). The cohomology used in Kedlaya’s
algorithm is a version of de Rham cohomology for curves over nonzero characteristic developed
by Dwork and Monsky-Washnitzer (1960s).
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Given an elliptic curveE(Fq) it is again lifted toE(Qq). But now the Frobenius mapφq is
lifted to a ‘strange’ morphism̃φ (which isφq when restricted toFq[x, y]) that satisfies:

φ̃∗(x) = xq

φ̃∗(x) = yq ·
√

x3q + Axq + B

(x3 + Ax + B)q
written as a power series.

Now the differentialdx/y is no more an eigen vector of̃φ but still the action of̃φ on the differential
gives some information aboutt. If Ω′ is the module of differential forms associated toE(Qq) then
Ω′/Im(d) (recall thatd is the derivative operator) is generated bydx

y
andx·dx

y
overQq. Thus,φ̃ acts

on Ω′/Im(d) as a2 × 2 matrix which we can compute. This2 × 2 matrix of φ̃ still satisfies the
endomorphism equatioñφ2 − t · φ̃ + q = 0. Thus, we can again approximatet in Qq.

39



Lecture 7. Schoof’s algorithm and some improvements

Lecturer: Reńe Schoof Scribe: Valentina Settimi

7.1 Schoof’s algorithm

In this section we presentSchoof’s algorithmwhich is a deterministic polynomial time algorithm
to determine the number of rational points of an elliptic curveE over a finite fieldFq.

We assumechar(Fq) = p 6= 2, 3 (the algorithm actually works, with slight modifications, even
whenp = 2 or 3). Let

Y 2 = X3 + AX + B with A,B ∈ Fq

be theWeierstraß equationof E and let

ϕq : E(Fq) −→ E(Fq)

(x, y) 7−→ (xq, yq)

be theq-Frobenius. We have#E(Fq) = q + 1 − t, with t = trace(ϕq) and|t| ≤ 2
√

q (Hasse’s
Theorem).

The main idea of Schoof’s algorithm is:

• computet (mod l), for the first few small primesl;

• computet (mod
∏

l l), usingChinese Remainder Theorem;

• if
∏

l l > 4
√

q, thent (mod
∏

l l) = t, by Hasse’s Theorem.

The question is: how can we control
∏

l l? As consequence of theWeak Prime Number Theo-
rem, we have

∏
l≤x,l prime l ∼ ex. We want

ex ∼
∏

l≤x,l prime

l > 4
√

q i.e. x > ln (4
√

q).

Sinceq is large, it is enough to setx ≈ log q which means to take all the primesl ≤ log q. The
number of such primes is clearly less thanlog q.

Now we show how to compute#E(Fq) (mod l). Below is anexample:

l = 2 Compute#E(Fq) (mod 2).

#E(Fq) ≡ 0 (mod 2) ⇐⇒ #E(Fq) even

⇐⇒ ∃P ∈ E(Fq) of order2.

So we want to check the existence of a pointP = (x, y) ∈ E(Fq) which satisfies the
following two requirements:
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1. P ∈ E(Fq) ⇔ ϕq(P ) = P ⇔ (xq, yq) = (x, y).

2. P of order2 ⇔ P +P = 0 ⇔ P = −P ⇔ (x, y) = (x,−y) ⇔ y = 0 = x3 +Ax+B.

Thus

#E(Fq) ≡ 0 (mod 2) ⇐⇒ ∃x ∈ Fq s.t.

{
xq = x
x3 + Ax + B = 0

⇐⇒ gcd (Xq − X,X3 + AX + B) 6= 1 in Fq[X].

We cannot compute suchgcd directly, becauseXq is too large; but we can compute it in the
following way:

• computeh(X) ≡ Xq (mod X3 + AX + B) in Fq[X]/(X3 + AX + B);

• computegcd (h(X) − X,X3 + AX + B) in Fq[X].

Xq (mod X3 + AX + B) can be computed efficiently using the binary expansion ofq and
repeated squarings. Moreover#Fq[X]/(X3 + AX + B) = q3, so any element of the ring
Fq[X]/(X3 + AX + B) has size3 log q. Therefore the amount of work is:O(log q1+µ) with
1 ≤ µ ≤ 2 (in particularµ = 2 if we use standard multiplications andµ = 1 if we use fast
multiplications).

l > 2 We know that theq-Frobenius verifies

ϕ2
q − [t]ϕq + [q] = 0 in End(E).

That is,∀P ∈ E(Fq) (and in particular∀P ∈ E[l]):

[t]ϕq(P ) = ϕ2
q(P ) + [q](P ) in E.

Let q0 = q (mod l). Since for everyP ∈ E[l], [n]P = [n (mod l)]P , we can findt
(mod l) by checking whether

[i]ϕq = ϕ2
q + [q0] onE[l]

for i = 0, . . . , l − 1. This can be done efficiently using polynomials, but to do it we need a
polynomial which characterizes thel-torsion points ofE(Fq). We have

E[l] = {P ∈ E(Fq) : P + . . . + P︸ ︷︷ ︸
l times

= 0} ∼= Z/lZ × Z/lZ.

There exists polynomials, calleddivision polynomials, Ψl(X) ∈ Fq[X] such that∀x ∈ Fq:

Ψl(x) = 0 ⇐⇒ ∃y ∈ Fq s.t. (x, y) ∈ E[l].
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Since#E[l] = l2, there existl2 − 1 non-zero points inE[l]; moreover

(x, y) ∈ E[l] ⇒ (x,−y) ∈ E[l]

so there existl
2−1
2

x ∈ Fq such that(x, y) ∈ E[l] for somey ∈ Fq. Thusdeg Ψl(X) = l2−1
2

.

We can computeΨl(X) using recursively the formulas to add points onE(Fq). For instance,
let l = 3 and letP = (x, y) ∈ E(Fq):

P ∈ E[3] ⇐⇒ P + P + P = 0

⇐⇒ P + P = −P

⇐⇒ (x, y) + (x, y) = (x,−y)

⇐⇒
(
−2x +

(
3x2 + A

2y

)2

, . . .

)
= (x, . . .)

(we can neglect theY -coordinate, since eachX-coordinate identifies

a unique point ”modulo the opposite”)

⇐⇒ x = −2x +

(
3x2 + A

2y

)2

⇐⇒ 12xy2 = (3x2 + A)2

(y2 = x3 + Ax + B, becauseP ∈ E(Fq))

⇐⇒ 3x4 + 6Ax2 + 12Bx − A2 = 0

that isΨ3(X) = 3X4 + 6AX2 + 12BX − A2.

So we have, fori = 0, . . . , l − 1:

[i]ϕq = ϕ2
q + [q0] in E[l]

m
[i](Xq, Y q) ≡ (Xq2

, Y q2

) + [q0](X,Y ) in R := Fq[X]/(Ψl(X), Y 2 − X3 − AX − B)

(with + the addition onE).

Since the elements ofR have sizel2 log q, the amount of work to check whether[i]ϕq =
ϕ2

q + [q0] in E[l] is:

• to compute[i](Xq, Y q): O(l(l2 log q)µ);

• to compute(Xq2
, Y q2

) + [q0](X,Y ): O(log q(l2 log q)µ + l(l2 log q)µ).

But l ≤ log q, so the total amount of work to compute#E(Fq) (mod l) is O(log q1+3µ).

We have to do it for every primel ≤ log q, thus the amount of work involved in Schoof’s algorithm
is

O(log q2+3µ),

with 1 ≤ µ ≤ 2 (in particular it isO(log q8) if we use standard multiplications andO(log q5)
if we use fast multiplications). Schoof’s algorithm is therefore a deterministic polynomial time
algorithm, but in practice its behavior is not so good because the size of the elements ofR is too
large. We conclude presenting briefly two practical improvements of the Schoof’s algorithm.
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7.2 Atkin’s algorithms

As before, letE/Fq be an elliptic curve. For every primel 6= p = char(Fq), there exists a universal
polynomial, calledmodular polynomial, Φl(S, T ) ∈ Z[S, T ] such that for every morphism of
elliptic curvesf : E1 → E2 of degreel

Φl(j(E1), j(E2)) = 0.

Foe everyl, we have:

• Φl(S, T ) is symmetric:Φl(S, T ) = Φl(T, S);

• degS Φl(S, T ) = l + 1.

Naively, Atkin’s idea is to reduceΦl(j(E), T ) ∈ Fq[T ] as product of irreducible polynomials and,
from their degrees, deduce partial information ont (mod l).

7.3 Elkies’s algorithm

Elkies’s idea is to use a divisorF (X) of Ψl(X) of small degree, instead ofΨl(X) itself.
Suppose thatϕq acts onE[l] in such a way that it fixes a subgroupC of orderl. Then∃λ ∈

{1, . . . , l − 1} such that:
ϕq(P ) = [λ]P ∀P ∈ C.

As E[l] is defined by the polynomialΨl(X) (i.e. the zeros ofΨl(X) are theX-coordinates of the
points inE[l]), such eigenspaceC can be defined by a polynomialF (X) ∈ Fq[X] which is such
that:

• the zeros ofF (X) are theX-coordinates of the points inC;

• F (X)|Ψl(X), sinceC ⊆ E[l];

• deg F (X) = l−1
2

, since inC there arel − 1 non-zero points and eachX-coordinate corre-
sponds to two points.

The characteristic polynomial ofϕq is X2 − tX + q, so the product of its eigenvalues is equal
to q and the sum is equal tot. It implies

t ≡ λ + q/λ (mod l).

Thus, to computet (mod l), it is enough to find the eigenvalueλ of ϕq corresponding to the
eigenspaceC. This can be easily done by checking whether fori = 1, . . . , l − 1

ϕq(P ) = [i]P ∀P = (x, y) ∈ C

m
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(Xq, Y q) = [i](X,Y ) in R′ := Fq[X]/(F (X), Y 2 − X3 − AX − B).

SinceF (X) has degreel−1
2

(while Ψl(X) has degreel
2−1
2

), the element ofR′ have sizel log q.
So the amount of work to compute(Xq, Y q) in R′ is O(l(l log q)µ) = O(log q1+2µ).

To conclude, we remark that Elkies’s idea only works for primesl for which theq-Frobenius
acting onE[l] has its eigenvalues inZ/lZ, which are about50%.
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Lecture 9. The Algorithms of Lenstra and Goldwasser-Kilian-Atkin

Lecturer: Reńe Schoof Scribe: John Voight

Today we will talk about two algorithms. The first is Lenstra’s elliptic curve factoring method
(ECM), and the second is the primality testing algorithm of Goldwasser-Kilian-Atkin.

9.1 Lenstra’s algorithm

Recall the oldp − 1 factoring method due to Pollard. Letn ∈ Z>0 be the integer to be factored.
First we choose a boundB ∈ Z>0 and precompute

M =
∏

qe<B
qprime

qe ≈ exp(B).

Next, we pickx ∈ (Z/nZ)∗ at random. Then we computexM (mod n), and letd = gcd(xM −
1, n).

Thend | n, and one hopes thatd > 1, i.e., there exists a primep dividing d, which holds if and
only if xM ≡ 1 (mod p). In practice, one succeeds with this approach whenp− 1 | M , i.e.,p− 1
is B-smooth, so that all primesq which dividesp − 1 are≤ B. (Usually,xM 6≡ 1 (mod p), so
whend 6= 1 we almost never haved = n.)

Here, we havep − 1 = #(Z/pZ)∗, andxM = 1 in (Z/pZ)∗. The computation is essentially a
group-theoretic one, so it makes sense to look for other groups where this general approach may
work. We replace the multiplicative group by an elliptic curve. We chooseB and computeM as
before.

Next, we pick an elliptic curve overZ/nZ. Note thatZ/nZ is not a field, so we have not
even defined what this means! We take the lazy way out and definean elliptic curve overZ/nZ
to be defined by a Weierstrass equationY 2 = X3 + AX + B with A,B ∈ Z/nZ with ∆ =
−16(4A3 + 27B2) is invertible inZ/nZ, i.e.,gcd(4A3 + 27B2, n) = 1. In particular, ifp | n is a
prime divisor, thenY 2 = X3 + AX + B considered modulop is a genuine elliptic curve, so this
is a natural generalization. The same formulas for additionon an elliptic curve hold (the subtleties
here exactly lead to the factoring algorithm!); the zero element is again the point(0 : 1 : 0).

[For any ringR, one can make sense of an elliptic curve overR. In particular, an elliptic
curve overZ/nZ with n = pq may be thought of as a product of elliptic curves overZ/pZ and
over Z/qZ. One can also work with projective coordinates overZ/nZ; and then we define the
projective plane overZ/nZ to be the set of triples(x : y : z), up to rescaling by elements of
(Z/nZ)∗, satisfyinggcd(x, y, z, n) = 1.]

Now, pick an elliptic curveE : Y 2 = X3 + AX + B, pick P ∈ E(Z/nZ), and compute
MP = P + · · · + P︸ ︷︷ ︸

M

in E(Z/nZ). Now we have to check whether for some primep, we have the
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analogue ofxM ≡ 1 (mod p), that is,MP is the neutral element modulop, so thatp | n, and then
usuallyMP is not the neutral element modulo the other primes dividingp. In this situation, we
can also factor.

To show how this works, we will do a “Mickey mouse” example. Wewill factor 35. Let
E : Y 2 = X3 −X −2. We have∆ = −16(4(−1)+27(4)) which hasgcd(∆, 35) = 1. We choose
P = (2, 2) a ‘random’ point, and chooseM = 3. We computeMP = 3P . We first compute

2P = P + P = (x3, y3) = (−2 − 2 + (3 · 22 − 1)2/(2 · 2)2, y3) = (−4 + (11/4)2, y3) = (−3, 3).

And then
3P = 2P + P = (−3, 3) + (2, 2) = (3 − 2 + (2 − 3)2/(2 + 3)2, ...)

which causes a disaster, since5 is not invertible modulo35; and computinggcd(5, 35) = 5 | 35,
and thus we have factored35! The ‘problem’ is that(−3, 3) ≡ (2,−2) = −(2, 2) (mod 5), so our
formulas do not apply, and by using the inappropriate formulas, we discover a factor.

To pick a point onE, if we were working over a field we would pick a randomx until x3 +
Ax+B is a square, and then we compute a square root. But computing a square root is notoriously
difficult modulo a nonsquare (given an oracle that computes square roots, one can factorn), so
we reverse the steps; first we pick a random(x, y) and a randomA, then take the curveY 2 =
X3 + AX + B with B = y2 − x3 − Ax. (In fact, it is enough to choose random(0, y).)

In the classical case, we had success if#(Z/pZ)∗ = p− 1 is B-smooth. Now we have success
if #E(Z/pZ) is B-smooth for some primep | n (and notB-smooth for other primesq | n). Then,
MP ≡ ∞ (mod p) andMP 6≡ ∞ (mod q) for p 6= q | n. If m = #E(Z/pZ), then by group
theory,mP = ∞, and indeedMP = ∞ (almost in practice) if and only ifm | M =

∏
qe<B qe if

and only ifM is B-smooth.
Note that if we do not succeed, we can simply throw awayE and choose another curve! (In the

classical case, the game was over.) So we wait for a “good” curve, i.e., a curve with#E(Z/pZ)
B-smooth for somep | n. [One desperately hopes that#E(Z/pZ) is B-smooth for some choice
of E; it will almost never happen in practice that#E(Z/qZ) will be B-smooth for other primes
q | n.]

To reiterate, the algorithm runs as follows. The input is theintegern ∈ Z>0 to be factored. We
chooseB and precomputeM =

∏
qe<B qe. We repeat: pick a randomP on a randomE(Z/nZ),

and computeMP until one cannot invert a denominator, and then stop with thedivisor produced
by this failed inversion.

Now the question is: How many times do we repeat in the loop? ChooseA,B ∈ Z/nZ at
random givingE : Y 2 = X3 + AX + B, and usuallygcd(∆, n) = 1 (otherwise we are happy
anyway). Letp be (the smallest) prime divisor ofn. We analyze how much work it takes to findp,
i.e., when doesE(Z/pZ) haveB-smooth order? What is essential for the success of this method
is that when the elliptic curves vary, so do the group orders.Picking objects at random modulon
gives objects which are random modulop, so we do the analysis there.

There arep2 ‘choices’ for an elliptic curveE modulop, and so we ask, how are they distributed
with respect to#E(Z/pZ)? Well, this order lies in the interval(p + 1 − 2

√
p, p + 1 + 2

√
p), and

very roughly,

#{(a, b) : E : Y 2 = X3 + AX + B hasp + 1 − t points} =
p

2
H(t2 − 4p) ≈ p

2π

√
4p − t2.
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whereH(d) is the class number of the order of discriminantd < 0. This approximation is very
rough, and gives roughly ‘an ellipse’: there are approximately an even number around the middle,
with fewer at the ends, subject to very chaotic behavior.

If we pretend that the values are equidistributed in the interval, then picking a random curve
corresponds to picking a random integer in the range(p + 1 − 2

√
p, p + 1 + 2

√
p). So the key

question is: what is the probability that such a random integer isB-smooth? Defineu ∈ R>2 as
B = p1/u. Then the probability is1/uu, so we need to tryuu curves, and the work for each curve
is to computeMP whereM ≈ exp(B) soO(B) = O(p1/u), so the total work isO(uup1/u). To
optimize, if B is very big one does a huge amount of work to computeMP ; if B is very small,
then by smoothness one must repeat many, many curves. Using calculus, we find the optimum at

u ≈
√

2 log p

log log p

so we must do the work
O

(
exp(

√
2 log p log log p)

)
.

Lenstra’s algorithmprobably finds small prime factorsp first, which is a unique feature of
this algorithm. This is good for factoring numbers that you find ‘in the street’; but the worst
case is for RSA numbers which aren = pq the product of two primesp, q; then the time is
O(exp(

√
log n log log n)).

9.2 Goldwasser-Kilian-Atkin’s algorithm

Recall Pocklington’s criterion. Letn be an integer which is to be proved prime. Writen−1 = QR
with Q,R ∈ Z>0. Suppose that for all primesq | Q, there existsa ∈ (Z/nZ)∗ satisfying

aQ ≡ 1 (mod n) and gcd(aQ/q − 1, n) = 1.

Thena has orderqm ‖ n − 1 modulo everyp | n, so for allp | n we havep ≡ 1 (mod Q), so in
particularp > Q, so if Q >

√
n, thenn is prime.

Note that one doesnot needQ | (n− 1); in practice, one needs this, but the statement does not
depend on it. We do, however, need thatQ is completely factored.

We now replace this by the ‘elliptic version’. We look at elliptic curves modulon; recall that
after running many compositeness tests we can be almost certain thatn is prime, but we would like
a proof.

The translation of Pocklington’s criterion reads as follows. Choose an elliptic curveE over
Z/nZ. Suppose we have an integerQ ∈ Z>0. If for all q | Q there existsP ∈ E(Z/nZ) such that

QP = ∞ (mod n) and(Q/q)P 6≡ ∞ (mod p)for anyp | n.

[One can check the latter condition by using homogeneous coordinates and computing(Q/q)P =
(x : y : z) and then check ifgcd(z, n) = 1.] Then P has orderqm in E(Z/pZ), and taking
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the product we find thatQ | #E(Z/pZ) for all p | n, so Q < (
√

p + 1)2 ≈ p. Therefore, if
Q > ( 4

√
n + 1)2, then we can conclude thatn is prime.

We use in practice that#E(Z/nZ) = QR; what one needs in practice the complete factoriza-
tion of Q. Morally, #E(Z/nZ) ≈ p, so one will almost succeed in finding such a sufficiently large
factoredQ.

The idea of Goldwasser-Kilian: sometimes it will happen that R will be a probable prime.
Then switch the roles ofQ,R, exactly as we did with the Pocklington test. We have then proven
that “if R is prime, thenQ is prime”. The profit is that again we can vary the curve and throw away
a curve that does not work; so by the prime number theorem, we need to try approximatelylog n
curves to haveR to be a probable prime (with alsoQ ≥ 2; in practice,Q may be much larger).

To summarize: Letn be the integer which is to be proved prime. First try to factorn−1 = QR
for Q small andR a probable prime. (This will almost never happen; so make only a small effort.)
Now repeat the following loop: pick an elliptic curveE at random, compute#E(Z/nZ), and hope
that#E(Z/nZ) = QR with Q completely factored andR a probable prime; if not, throw awayE
and return. If success, then start over withR in place ofn.

The important issue to discuss is computing the order#E(Z/nZ). In the asymptotic analysis,
Goldwasser-Kilian use Schoof’s algorithm; in practice, this is too slow. Atkin uses CM elliptic
curves and reduces them modulon: if E has CM byZ[

√
d] with d < 0, then one can reduce

over Z/nZ with n = x2 − dy2 (which can be done very quickly using lattice reduction), then
#E(Z/nZ) = (x ± 1)2 − dy2. The analysis here is shaky, but in practice it works very well.

This algorithm holds world records for primality proving (for numbers without a special form):
in July 2007,(242737 + 1)/3 was proved prime.
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Lecture 10. Elliptic Curves overQ

Lecturer: Henri Darmon Scribe: Matei David

10.1 Introduction

In our lectures so far, we have considered elliptic curves over finite fieldsFpm and their applications
to computing. Today, we consider elliptic curves over the field of rational numbersQ and the
applications of computing to answering questions about such curves.

In general, an elliptic curveE over a fieldk is given by the Weierstrass equation

E : y2 = x3 + A · x + B,

with A,B ∈ k (when6 6= 0 in k.) The discriminant of this curve is∆ = 4A3 + 27B2 6= 0. As
before, we denote byE(k) the set of points with coordinates ink that are on the curveE, i.e.,
that satisfy the equation definingE, plus the point “at infinity”,(∞,∞). We have seen before that
there exists an addition operation on this set making it a group.

We will be concerned with the following two problems.

A Make a list of all elliptic curves overQ.

B Given a fixed elliptic curveE (by its Weierstrass equation), computeE(Q).

10.2 Basic Remarks

10.2.1 On problem A

When it comes to listing all elliptic curves overQ, we have previously seen in lecture 4 that
the notion ofj-invariant gives a bijection between the set of all ellipticcurves overQ (up to
isomorphism) and the underlying fieldQ. It turns out, thej-invariant is not a good measure of the
“arithmetic complexity” of an elliptic curve. Instead, we could try to use its discriminant∆.

We can assume WLOG that the coefficientsA,B defining the curve are integers, otherwise we
can change the equation obtaining the same curve. Then, the discriminant∆ is also an integer.
(Note, if p is a prime andp ∤ ∆, thenE mod p is still an elliptic curve.) To make a list of all
elliptic curves, we can ask questions of the form: are there elliptic curves with discriminant∆ = 1?
That is, are there integersA,B such that4A3 +27B2 = 1? In this particular case, the answer is no.
Continuing in this way, we would hope to list all elliptic curves by listing all curves with a given
discriminant.

However, we will work with the notion ofconductorinstead, which is a better measure of the
arithmetic complexity ofE.
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Definition 4. The conductorNE of an elliptic curveE overQ is defined to be

NE =
∏

p prime

pδp ,

whereδp is a function ofp andE, andδp ∈ {0, 1, 2} for p > 3.

Whenp ∤ ∆, δp = 0, soNE is divisible by the same primes as∆. Whenp | ∆, δp ∈ {1, 2}
depending on whether the equation definingE has a triple or a double root. Forp = 2, 3, δp is
computed using another recipee (Tate’s algorithm), which we omit.

Thus, we can rephrase problem A as follows: givenN , list all elliptic curves (up to isomor-
phism) with conductorN . Let e(N) denote the number of such curves. We know thate(N) = 0
for N < 11, e(11) = 3, e(12) = e(13) = 0, e(14) = 6 and so on. There exist tables computing
e(N) for N up to 130000. In this lecture, we will touch upon the math involved in building these
tables.

10.2.2 On problem B

Given an elliptic curveE, we want to computeE(Q), the group of rational points onE. Unlike the
case for finite fields, there is no reason forE(Q) to be finite. However, one of the most important
theorems in the study of elliptic curves over the rationals states that this group is finitely generated.

Theorem 4 (Mordell, 1923). E(Q) is a finitely generated abelian group. That is, there existr
pointsP1, . . . , Pr with rational coordinates such that every element inE(Q) can be written as
n1P1 + · · · + nrPr with n1, . . . , nr ∈ Z.

Definition 5. The valuer in the Theorem above is calledthe rank ofE overQ.

Thus, problem B reduces to the following subproblems. Givenan elliptic curveE,

1. find the rankr of E overQ; and

2. findP1 = (x1, y1), . . . , Pr = (xr, yr) that generateE(Q).

Even for simple curves, the generatorsP can be very large in terms of space, so the naive
approach of ranging overx while looking for points onE is not adequate.

10.3 Modularity

In what follows, we investigate the connection between elliptic curves over the rationals andmod-
ular forms.

Given an elliptic curveE over Q and a primep not dividing NE, E is still an elliptic curve
overFp. Let Np = #E(Fp) be the number of points onE over the finite fieldFp. Furthermore,
defineap = p + 1 − Np. This way, we associated with the curveE a sequence(ap) for primesp
not dividingNE. In what follows, we will be interested in the structure of this sequence. As a first
step in our analysis, we will extend the sequencep → ap to a sequence over all positive integers
n → an.
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step 1. for primesp dividingNE, we defineap as one of{0, 1,−1} according to the nodal singularity
of p.

step 2. for all primesp, defineapn = apapn−1 − papn−1 whenp ∤ NE, andapn = an
p whenp | NE.

step 3. in general, defineamn = aman whengcd(m,n) = 1.

Thus, givenE, we can construct the sequence(a1, a2, . . . ). A natural question to ask is, how
much information aboutE is lost in this mapping. That is, given(an)n≥1, can one retrieveE? The
following result answers this question.

Theorem 5. Two curvesE1, E2 generate the same sequence(an)n≥1 iff there exists a morphism
φ : E1 → E2 with finite kernel.

Proof sketch.For the “⇐” direction, fix a morphismφ betweenE1 andE2. If φ has finite kernel,
φ is, in general, neither injective nor surjective. To show they generate the same sequence(ap)p≥1,
we must show that for all primesp, we have#E1(Fp) = #E2(Fp). Then, the extended sequences
will be the same.

Let l be a prime not dividing#Ker(φ), and consider the induced mappingφ : E1[l](Fp) →
E2[l](Fp). It can be shown that the Frobenius map on the left is mapped tothe Frobenius map on
the right, and therefore, that#E1(Fp) = #E2(Fp) mod l. Since this holds for alll not dividing
#Ker(φ) (which is a finite number), the equality holds for infinitely many l, thus we must have
#E1(Fp) = #E2(Fp).

Note: if φ is a mapE1 → E2, thenφ∨ is a mapE2 → E1.
The “⇐” direction is much harder. Faltings in 1985 showed how to constructφ when two

elliptic curves generate the same sequence(ap)p≥1.

Note: In the PARI programming language, the functionanell can be used to compute the
first values of thea-sequence associated with a given elliptic curve.

We have seen how to associate to each elliptic curveE an a-sequence(an)n≥1. We can use
Theorem 5 above to list all curves with the samea-sequence. Thus, to solve problem A (listing all
elliptic curves over the rationals), it is enough to classify whicha-sequences can be obtained from
such curves. To this end, we consider several ways of packingan a-sequence into a generating
series.

Definition 6. Given an elliptic curveE over Q, let (an)n≥1 be its associateda-sequence. The
Taylor series ofE is defined to be

fE(q) =
∞∑

n=1

an · qn,

and the Dirichelet series ofE is defined to be

LE(s) =
∞∑

n=1

an

ns
.
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We also define the shifted Taylor series ofE to be

f̃E(τ) = fE(e2πiτ ).

One can show that the Taylor series converges on the open unitdisk, the shifted Taylor series
converges on the open halfplane defined by Im(τ) > 0, and the Dirichelet series converges on the
open half-plane defined by Re(s) > 3

2
(for the latter, we need to use bounds onap).

Consider the special linear group of2 × 2 integer matrices with determinant equal to 1

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z anda · d − b · c = 1

}
.

This group acts on the set of complex numbersH = {z : Im(z) > 0} by
(

a b
c d

)
τ → a · τ + b

c · τ + d
.

Let us define

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : N | c

}

The following theorem was the last piece in the proof of Fermat’s Last Theorem.

Theorem 6 (Wiles, 1994). Take an elliptic curveE over Q, with conductorNE. The Taylor
generating series̃fE(τ) is a modular form of weight 2 on the groupΓ0(NE), satisfying

(a) f̃E

(
aτ+b
cτ+d

)
= (cτ + d)fE(τ) for all

(
a b
c d

)
∈ Γ0(NE); and

(b) a certain behaviour at the boundary, which we omit.

Note that

(
1 1
0 1

)
∈ Γ0(NE), but the fact that̃fE(τ + 1) = f̃E(τ) is not deep because of the

periodicity of f̃E. However, also note that

(
1 0

NE 1

)
∈ Γ0(NE). The proof thatf̃E( τ

NEτ+1
) =

(NEτ + 1)f̃E(τ) is over 200 pages long.
The reason we have chosen to introduce modular forms is because problems A and B are hard

when dealing with elliptic curves directly, but they becomemuch easier in the world of modular
forms.

10.3.1 On problem A

By Theorems 5 and 6, the problem of listing all elliptic curvesover the rationals reduces to the
problem of listing alla-sequences coming from modular forms of weight 2 onΓ0(N), for increas-
ing conductorN .

Let MN be the set of all modular forms of weight 2. Then,
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(a) MN is a vector space overC;

(b) MN is finite dimensional (from the analogue of the Riemann Hypothesis).

(c) MN is equipped with a natural collection of operators, called Hecke operators, indexed by
integers. Initially, they are defined only on primes, but they can be extended to all integers
as in the case ofa-sequences. We only give two equivalent definitions for the case whenp
does not divideN :

1 Tpf̃ = (Tp(f̃))(τ) = pf(pτ) + 1
p

∑p−1
i=0 f

(
τ+i
p

)
; or

2 Tpf = (Tp(f))(q) =
∑

p|n anq
n/p + p

∑
anq

pn.

It can be shown thatTp preserves the space of modular forms, and that the two definitions
above are equivalent.

(d) MN has a basis consisting of eigenvectors for all the operatorsTN .

It turns out that̃fE, the Taylor series associated with the elliptic curveE is in fact an eigenvector
for TN (normalized, so thata1 = 1). This allows us to give a linear algebra characterization of
sequences(ap). Thus, computingMN is equivalent to computing its eigenvectors. Moreover, if
f =

∑
anq

n is an eigenfunction inMN , thenTN(f) = aNf (seen using definitions 1 or 2 ofTN ).
Therefore, it is enough to compute the eigenvalues ofTN .

Theorem 7. There exists a vector spaceVN of modular symbolssuch that

(a) VN can be described in an explicit combinatorial way and it is equipped with an action of
linear operatorsTn that are described by rational matrices; and

(b) there exists an isomorphism betweenVN andMN that respects Hecke operators.

The reason for introducingVN is that it is hard to use restrictions on infinite series fromMN ,
while all treatment ofVN involves finite linear algebra operations, plus the isomorphism between
these vector spaces preserves Hecke operators.

The list of all elliptic curves for conductors up toN ≤ 200 was given by Antwerp in 1972.
Today, there exist lists of all curves with conductor up to 130000.

This completes our treatment of problem A.

10.3.2 On problem B

We now turn to problem B, which is, to computeE(Q). As we have seen before, this group is
finitely generated byr independent points, wherer is the rank ofE over Q. Thus, our task is,
givenE, to findr and a set ofr generators.

The work of Birch and Swinnerton-Dyer in the 60s was based on the idea that the rankr of
E(Q) should be related to the behaviour of the quantitiesNp (the cardinality ofE(Fp)) asp → ∞.
Numerical experiments led to the following conjecture.
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Conjecture 2 (BSD).
∏

p<x
Np

p
→ CE · (log x)r asx → ∞, whereCE is a constant depending

only on the curveE.

An interpretation of this conjecture is that, as we fixE and varyp, the distribution of cardinal-
itiesNp “knows about” the rankr of E overQ.

We can rephrase this conjecture in terms of theL-function ofE. Let N be the conductor ofE
and recall thatap = p + 1 − Np. We can write

LE(s) =
∏

p∤N

(1 − app
−s + p1−2s)−1

∏

p∤N

(1 − app
−s)−1

Note,LE can be rewritten as the Dirichelet series seen before
∑

n≥1 an/n
s. In fact, this equivalence

provides thedefinitionfor an whenn is not a prime.
Evaluating the seriesformally at s = 1 (note that it only converges for Re(s) > 3/2), we get

LE(1)‘ = ‘
∏

p
p

Np
, which is the quantity in the BSD Conjecture 2. The existence ofan analytic

continuation ofLE(s) was a long-standing open problem, but the following Theoremfollows from
the work of Wiles.

Theorem 8 (Hecke). If fE is a modular form (and by Wiles’s Theorem, it is), thenLE(s) has an
analytic continuation to alls ∈ C, and it satisfies a functional equation of the formΛE(s) =
±ΛE(2 − s), whereΛE(s) = (2π)−sN s/2Γ(s)LE(s).

In light of this Theorem, the modern reformulation of the BSD Conjecture 2 is

Conjecture 3 (BSD, modern reformulation). The order of vanishing ofLE(s) at s = 1 equals the
rank r of the elliptic curveE overQ.

This is Conjecture is a Clay Institute Millenium Prize problem. The work of Gross-Zagier
and Kolyvagin establishes thatif the order of vanishing ofLE(s) at s = 1 is at most 1,then
Conjecture 3 is true, and there exists an efficient method for calculatingE(Q).

Another Conjecture about the rank of elliptic curves is

Conjecture 4. The sequence{rE}E, whererE is the rank of the curveE overQ, is unbounded.

Currently, we know of curves with rank up to 28.

10.4 The Fun Stuff

Last but not least, we touch upon the proof of the famous Theorem:

Theorem 9(Fermat’s Last Theorem). The equationxn+yn = zn has no non-zero integer solutions
whenn > 2.
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As a basic observation, one can easily show that it is enough to prove the Theorem whenn is a
prime, henceforth calledl. We assume that there exista, b, c a nontrivial solution to the equation,
so thatal + bl = cl. Frey had the idea to associate with this solution the elliptic curve

E : Y 2 = X(X − al)(X + bl).

It can be verified that the discriminant of this curve is∆ = 212(abc)2l, and that the equation
defining the curve might have a double root, but never a tripleroot. As a consequence, we have
thatN =

∏
p|∆ p, that is, the conductor of the elliptic curve above is square-free. We see thatN is

very small relative to∆.
From this point on, the idea is to look at the groupE[l] of torsion points. Thea-sequence

associated toE[l] is simply thea-sequence of the curveE, modulol. That is, if (an)n≥1 is the
a-sequence of the curveE, then(an mod l)n≥1 is thea-sequence of the curveE[l]. Furthermore,
the conductor of the curveE[l], NE[l] = 2.

Theorem 10(Ribet). If the a-sequence attached toE is modular of levelN , then thea-sequence
attached toE[l] corresponds to the reduction(mod l) of an a-sequence of an elementg in the
space of modular formsM2 of levelNE[l] = 2 and weight 2.

The punchline is that it is trivial to show that there are no modular forms of weight 2 and level
2, which in turn provides the contradiction to the assumption that a non-trivial solution exists to
Fermat’s equation.
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