
LECTURE NOTES FOR THE 26TH
MCGILL INVITATIONAL WORKSHOP ON

COMPUTATIONAL COMPLEXITY

Bellairs Institute
Holetown, Barbados

Primary Lecturer:
Salil Vadhan

Guest Lecturer:Kunal Talwar

1



Contents

1 Introduction 5
1.1 Differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Remarks on the definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Interpretations of DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Variants of definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Plan for this week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Composition 10
2.1 Composition theorems for differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Group privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Answering many queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Alternatives to Global Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Smooth Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Propose-Test-Release (PTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 A generalization of PTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Counting Queries 16
3.1 Counting queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Private multiplicative weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Lower Bounds for Counting Queries 20
4.1 Counting queries: Basic lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 General sets of counting queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Lower bounds for (�, 0)-differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Pirates of the Caribbean I 25
5.1 Two lower bounds via cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Fingerprinting codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Traitor-tracing schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Pirates of the Caribbean II 30
6.1 Cryptographic lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Known results for interval queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Computational lower bounds for t-way marginals . . . . . . . . . . . . . . . . . . . . . . . 31

7 2-way and t-way Marginals Using Geometric Algorithms 33

2



8 Large Conjunctions 38
8.1 Computational complexity of t-way conjunctions . . . . . . . . . . . . . . . . . . . . . . . 38
8.2 Private PAC learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Private Learning 41
9.1 A computationally efficient private mechanism for learning parity . . . . . . . . . . . . . . 41
9.2 Private PAC learning and communication complexity . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3



Foreword

These notes reflect a series of lectures given by Salil Vadhan and Kunal Talwar at the 26th McGill Invitational
Workshop on Computational Complexity. The workshop was held at the Bellairs Research Institute in
Holetown, Barbados in February, 2014.
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LECTURE 1
Introduction

Lecturer: Salil Vadhan Scribe: Antonina Kolokolova

The basic setting: A trusted curator holds a dataset x about n individuals. How can the curator permit
others to analyse the dataset without compromising the privacy of subjects?

The traditional approach to this problem is to anonymize the dataset by removing identifiers such as names
and month/day of birth. The problem with this approach is that the rest of information may uniquely specify
individuals and be used to “re-identify” them. There have been a number of such instances with real-life
datasets, such as identifying Netflix subscribers in the anonymized “Netflix Challenge” dataset by matching
reviews posted on the Internet Movie Database with times when movies were watched [32]. Alternatively, if
somebody already knows a lot about an individual and the person is unique based on the known data, they
can learn everything else about that individual. So people can often be re-identified; and it is a difficult game
to play to figure out how much information to remove.

Another approach is to only release “aggregate” statistics, which is in fact the approach we will study (but
as we will see it is more subtle than it seems). We abstract this task by defining a particular “interface” to
the dataset, called mechanism. We issue a query of the dataset and the mechanism—if the query is safe to
answer—will provide a result.

x1 Salil 5/9/73 M 0 1 0 1
x2 Denis Therien
x3
⋮
xn

∈ Xn ⇆ M ⇆q
q(x) Data Analyst/

Adversary

As the US census does, a mechanism might effectively determine what kind of statistics to release, and
only permit release of a bounded number of aggregate statistics on a dataset. An example of an aggregate
statistics is a counting query q∶ X → {0, 1}: given a predicate on the rows identifying which people have a
certain property, return

q(x) = 1
n
Σni=1q(xi) ,

the fraction of people satisfying q.
However, it is not hard to design queries focused on a specific person: “how many males of age 40 have

a childhood fear of sharks”—if there is only one person in the database satisfying this property, you know
who that is. Thus, even counting queries can target a specific individual. A common remedy to this is to only
release statistics where the answer is large enough. But then there is a problem that you can do several queries
where each has a large answer. Take a query which focuses on an individual “or” with a query that has many
rows satisfying it, then take the difference.
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Even given approximate answers to many random queries, it may be possible compromise privacy
(“reconstruction attacks”). In fact, an adversary may be able to reconstruct almost an entire database given
many different random queries. Again, a question is “how much is too much?” NIH took down genomics
dataset posted online after an attack of this flavour. Tomorrow, we will discuss a paper by Dinur and Nissim
[11]. (Reconstruction from pairwise correlations will come up in a different way.)

1.1 Differential privacy
Differential privacy is a quantitative theory of privacy protection that enables us to reason about how much
statistical information is safe to reveal in general, without knowing specifics of the data.

It emerged through a series of papers following the aforementioned reconstruction attacks of Dinur and
Nissim [11]: Dwork and Nissim [13], Blum et al. [3], and Dwork et al. [15]; the last paper crystallized the
definition of differential privacy.

The basic idea is to require that no individual’s data has much effect on what an adversary sees. We give
the precise definition below.
Definition 1.1.1. We say that a randomized mechanismM∶ Xn → Y is differentially private if for any two
neighboring datasets ∀x ∼ x′ ∈ Xn (x and x′ differ in one row), ∀q ∈ Q, the distribution of M(x, q) ≈�
distribution ofM(x′, q): ∀T ⊆ Y,

Pr[M(x, q) ∈ T ] ≤ (1 + �) ⋅ Pr[M(x, q) ∈ T ] .

Here we typically take � is small, but non-negligible (not cryptographically small); for example, a small
constant, such as � = 0.1. Smaller � provides better privacy, but the definition is no longer useful when
� < 1∕n.

We will think of the query as fixed, and remove q from notation. In this lecture, we consider answering
only one query; the major focus later will be many queries.

In our treatment, it will be convenient to think of n as known and public information, and we will study
asymptotic behavior as n→∞.1

It is technically convenient to have e� rather than 1 + � (makes squaring easier) so we will actually work
with the definition

Pr[M(x) ∈ T ] ≤ e� Pr[M(x′) ∈ T ] .

Equivalently, ∀y ∈ Y,
Pr[M(x) = y] ≤ e� Pr[M(x′) = y] .

Example 1.1.2 (Randomized response [40]). Let X = {0, 1} (one bit per person). For each xi, define

x′i =

{

xi with prob. (1 + �)∕2 ,
¬xi with prob. (1 − �)∕2 .

and
M(x1,… , xn) = (x′1,… , x′n) .

1Cynthia’s comment: considering a definition where n is not fixed, and we consider datasets x and x′ that differ in addition or
removal of one row, is a good idea. This allows us to interpret the definition as hiding my presence in the database (as you can remove
me, and the adversary’s view remains similar).
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Here, xi only affects x′i:
Pr[x′i = xi]
Pr[x′i = ¬xi]

= 1 + �
1 − �

= eO(�) .

This is an example of a mechanism in the “local model”: no trusted, centralized curator is needed for the data.
Note that E[x′i] = �xi + (1 − �)∕2. By the Chernoff bound,

1
n
∑

i

1
�
⋅
(

x′i −
(1 − �)
2

)

−

(

1
n
∑

i
xi

)

≤ O

(

1
√

n ⋅ �

)

.

As n→∞, difference→ 0.
This idea was introduced by Warner in the 60’s for getting people to answer sensitive survey questions

truthfully: make people flip coin. If heads, answer truthfully. If tails, flip again, and answer truthfully if
heads, falsely if tails.
Example 1.1.3 (Laplace mechanism [15]). Let q be a counting query; we defineM(x) = q(x) + noise. Note
that if x ∼ x′, |q(x) − q(x′)| ≤ 1∕n. This suggests “noise” of the magnitude 1∕(�n). Which distribution will
satisfy this? Density should be the same up to e�. Density of M(x) at q(x′) + z is the density of noise at
z + 1∕n; density ofM(x′) at q(x) is density of noise at z. Thus we wish

(density at z + 1∕n) ∈ [e±�] ⋅ (density at z) .
The Laplace distribution Lap(�) has density �e−|z|∕� . (The Gaussian distribution does not quite work:
multiplicative factor does not work in the tail.)

Discrete version: Place probability mass at each integer mutiple of 1∕n proportional to density.
For z > 0, � = 1∕�n; then,

density at z + 1∕n
density at z = e1∕(n�) = e−� .

and
Pr[|Lap(�)| > �t] ≤ e−Ω(t) .

Proposition 1.1.4. For every q∶ Xn → ℝ, M(x) = q(x) + Lap(GSq ∕�) is �-DP.

Here, GSq is a global sensitivity =maxx∼x′ |q(x) − q(x′)|. For example,
1. Counting queries, GSq ≤ 1∕n.
2. q(x) = max q1(x), q2(x),… , qt(x), where qi are counting queries. GSq ≤ maxiGSqi .
3. q(x) = d(x,H), the Hamming distance, for H ⊆ Xn. (“is my data set close to one that satisfies my

hypothesis?”). There, GSq ≤ 1.
4. Linear queries: given a bounded function q∶ X → [0, 1] on rows, we define:

q(x) = 1
n

n
∑

i=1
q(x) .

Then GSq ≤ 1∕n.
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1.2 Remarks on the definition
1. Why not require

SD(M(x),M(x′)) ≜ max
T⊆Y

|

|

|

Pr[(x) ∈ T ] − Pr[M(x′) ∈ T ]||
|

≤ � ?

What can � be?
(a) � ≤ 1∕2n. Then ∀x, x′ ∈ Xn (even x, x′ that are not neighbours), we have SD(M(x),M(x′)) ≤

n� ≤ 1∕2. Then with probability 1∕2 get an answer independent of data. So in this case there is
effectively no utility: this mechanism is useless.

(b) � ≥ 1∕2n. In this case, “M(x)= with probability 1∕2, output a random row of the database”
satisfies the definition.

However, we will work with the following relaxation of differential privacy that incorporates a �
statistical distance term in addition to the the multiplicative �:

Pr[M(x) ∈ T ] ≤ e� Pr[M(x′) ∈ T ] + � .

Here, we will insist that � is cryptographically negligible; in particular, � ≤ n−!(1). This setting is often
called (�, �)-differential privacy.

2. Why a multiplicative definition? This has an immediate Bayesian interpretation. Suppose the adversary
has prior Xi on data of a person. Fix the rest of database x−i ∈ Xn−1, which models that either
adversary knows the rest of database, or the rest of database is independent from xi. If the adversary sees
y← M(X, x−i), then its posterior belief about itℎ row is the conditional distribution Xi|M(Xi,x−i) = y.
Comparing the prior Xi and posterior we have:

Pr[posterior = xi] = Pr[Xi = xi ∣M(Xi, x−i) = y]

=Bayes
Pr[M(Xi, x−i) = y ∣ Xi = xi]

Pr[M(Xi, x−i) = y]
⋅ Pr[Xi = xi]

∈ [e±�] ⋅ Pr[prior = xi] .

In particular, SD(prior, posterior) ≤ O(�).
Conversely, if for every prior Xi, output y, we have SD(prior, posterior) ≤ �, then M is O(�)-DP.

Proof. Let x ∼ x′, so x = (xi, x−i), x′i = (x′i, x−i). A natural prior would be

Xi =

{

xi with prob. 1∕2
x′i , with prob. 1/2 .

Then
Pr[M(xi, x−i) = y]
Pr[M(Xi, x−i)]

=
Pr[posterior = xi]
Pr[prior = xi] = 1 ± O(�) .
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1.2.1 Interpretations of DP

• Whatever the adversary learns about me he could have learned from the rest of the database (if
an adversary knows smoking correlates with lung cancer, and knows that you smoke, can derive
high chance of lung cancer).

• Mechanism would not leak significant amount of information specific to an individual or a small
group (not large groups). Thus it is not useful to take action against a specific individual (e.g.,
NSA looking for a terrorist). (Cynthia: DP can be used to figure out “what is normal,” to detect
“abnormal” people).

• What data sets may adversary use? DP does not need to model that: arbitrary prior is captured.

1.2.2 Variants of definitions and notation

So far, data set is ordered. x ∈ Xn: n is known/public. Alternative: x is a multiset of elements of X.
Can represent x as a histogram of x ∈ ℕX. Here, mostly interested in symmetric queries. In multiset
definition, distance is symmetric difference |xΔx′|, which is the same as l1 distance in histogram
notation. The two notions may differ by a factor of 2 in distance (of two datasets of the same size n),
and hence in the privacy parameter �.

1.2.3 Plan for this week

Given that this is a complexity workshop, we will focus on complexity aspects of differential privacy,
and connections to other topics in theoretical computer science. More on the algorithmic aspects of
differential privacy can be found in the new monograph of Dwork and Roth [14].
Tentatively, we will cover the following topics, with some of the connections to other TCS/Math topics
mentioned in parentheses.

• Composition theorems, answering many queries independently.
• Alternatives to worst-case global sensitivity GS.
• Answering many queries in a correlated fashion to protect privacy (learning theory).
• Information-theoretic limitations of DP (geometric, discrepancy ideas).
• Computational lower bounds (crypto, PCPs).
• Geometric algorithms (convex geometry, SDP).
• Multiparty DP (communication complexity, extractors).
• Differentially private PAC learning

9



LECTURE 2
Composition

Lecturer: Salil Vadhan Scribe: Eric Allender and Shubhangi Saraf

2.1 Composition theorems for differential privacy

2.1.1 Group privacy
∀x, x′ ∈ Xn, let d(x, x′) denotes the Hamming distance between x and x′, or in other words the number of
rows that need to be changed to go from x to x′. We say x ∼ x′ if d(x, x′) ≤ 1.
Theorem 2.1.1. If M is an (�, �)-differentially private mechanism, then ∀x, x′ ∈ Xn, if k = d(x, x′), M(x)
and M(x′) are (k�, ek� ⋅ �)-indistinguishable.

Proof. Let x0, x1, x2,… , xk be such that x0 = x and xk = x′ and for each i such that 0 ≤ i ≤ k − 1, xi+1 is
obtained from xi by changing at most one row. Then, for all T ⊆ Y, since M is (�, �)-differentially private,

Pr[M(x0) ∈ T ] ≤ e� Pr[M(x1) ∈ T ] + �
≤ e�

(

e� Pr[M(x2) ∈ T ] + �
)

+ �
...

≤ ek� ⋅ Pr[M(xk) ∈ T ] + ek� ⋅ �.

2.1.2 Answering many queries
Let M1,M2,… ,Mk be (�, �)-differentially private mechanisms. Let M(x) = (M1(x),M2(x),… ,Mk(x)).
This is the mechanism answering a k-tuple of queries using the mechanismsM1,M2,… ,Mk, where each
Mi is run with independent coin tosses.
Theorem 2.1.2. M is (k�, k�)-differentially private.

Theorem 2.1.3. ∀�′ > 0, M is
(

O(
√

k log(1∕�′)) ⋅ �, k� + �′
)

-differentially private, as long as k < 1∕�2.

Theorem 2.1.3 is from Dwork et al. [18].
We now prove the above theorems starting with Theorem 2.1.2.

Proof of Theorem 2.1.2. Let us focus on the case � = 0. Fix databases x, x′ such that x ∼ x′. For an output
y ∈ Y, define the privacy loss to be

Lx→x
′

M
(y) = ln

(

Pr[M(x) = y]
Pr[M(x′) = y]

)

.
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Notice that �-differential privacy ofM is equivalent to the statement that ∀x ∼ x′ and ∀y,
Lx→x

′

M
(y) ≤ �,

and
Lx

′→x
M

(y) ≤ �.

Also when � ≠ 0, (�, �)-differential privacy ofM is essentially equivalent to the statement that ∀x ∼ x′,
with probability ≥ (1 − �) over the choice of y sampled fromM(x),

Lx→x
′

M
(y) ≤ �,

and
Lx

′→x
M

(y) ≤ �.

Now, M = (M1,M2,… ,Mk), and y = (y1, y2,… , yk). Then

Lx→x
′

M
(y) = ln

(

Pr[M1(x) = y1 ∧M2(x) = y2 ∧⋯ ∧Mk(x) = yk]
Pr[M1(x′) = y1 ∧M2(x′) = y2 ∧⋯ ∧Mk(x′) = yk]

)

.

By the independence of the coin tosses of the various Mi, the probabilities of the ∧ of the various events
break into a product of probabilities of individual events, and thus we get that

Lx→x
′

M
(y) =

k
∑

i=1
Lx→x

′

Mi
(yi).

By the union bound, with probability 1 − k�, y1, y2,… , yk all are such for all i ∈ [k], the privacy loss
Lx→x

′

Mi
(yi) ≤ �.

Thus the proof of the theorem immediately follows.
We now prove Theorem 2.1.3.

Proof of Theorem 2.1.3. Consider
E

yi←Mi(x)
[Lx→x′

Mi
(yi)].

By definition, this is the KL divergence
D(Mi(x) ‖Mi(x′)).

We first prove the following claim which shows that the expected privacy loss of a differentially private
mechanism is quite a bit smaller than the upper bound on the privacy loss we showed earlier.
Claim 2.1.4. IfMi is �-differentially private, where � ≤ 1, then

E
yi←Mi(x)

[Lx→x′
Mi

(yi)] ≤ O(�2).
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Proof. We will show that
D(Mi(x)‖Mi(x′)) +D(Mi(x′)‖Mi(x)) ≤ O(�2),

and then the result will follow by the non-negativity of divergence. Now,
D(Mi(x)‖Mi(x′)) +D(Mi(x′)‖Mi(x)) = E

yi←Mi(x)
[Lx→x′

Mi
(yi)] − E

yi←Mi(x′)
[Lx→x′

Mi
(yi)]

and using the upper bound of � on privacy loss we get that
E

yi←Mi(x)
[Lx→x′

Mi
(yi)] − E

yi←Mi(x′)
[Lx→x′

Mi
(yi)] ≤ 2� ⋅ Statistical distance(Mi(x),Mi(x′)).

Since �-differential privacy implies that the statistical distance is at most O(�), the proof of the claim
follows.

Thus by linearity of expectation,
E

y←M(x)
[Lx→x′

M
(y)] = k ⋅ O(�2).

Applying the Hoeffding bounds we get that the probability that Lx→x′
M

(y) deviates from its expected value by
a factor of more than

O
(

√

k log(1∕�′)
)

⋅ �

is at most 1∕�′. This combined with the union bound gives the final bound on the parameters of differential
privacy.

This completes the proofs of both composition theorems.
It should be noted that, although Theorem 2.1.3 is stated in terms of queries being asked simultaneously

(that is: nonadaptively), a nearly-identical proof (appealing to Azuma’s Inequality, instead of Hoeffding)
shows that the same conclusion holds even when the queries are asked adaptively.

Observe that if we have k counting queries and we wish to obtain a final privacy of (�, �′), then we can
achieve this by first adding Laplace noise to achieve an initial privacy and then use the composition theorems.
If we get an initial �0 differential privacy for each query, then to use the composition theorem, we would have
to set

�0 =
�

c ⋅
√

k log(1∕�′)
.

Thus the noise to be added per query is

O
(

1
�0n

)

= O

(
√

k log(1∕�′)
�n

)

.

Actually, if we want a bound on the maximum noise added to any of the queries, we should do a union bound
over the k queries. Since the Laplace distribution has exponentially vanishing tails, this costs an additional
factor of log k, so with high probability, our maximum error over the k queries is:

O

(
√

k log(1∕�′) ⋅ log k
�n

)

.

Thus if we want noise o(1∕√n), we can take k to be close to n (which we will see is essentially optimal for
any notion of privacy). If we want noise o(1), we can achieve this by taking k close to n2 (which is known to
be optimal if the answers are not coordinated or if the queries are completely unrelated.)
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2.2 Alternatives to Global Sensitivity
In this section, we consider the question of whether we can do better than adding noise Lap(GSq ∕�), where
GSq denotes the Global Sensitivity of query q (as discussed in an earlier lecture).

As a first attempt, let us define a notion of “Local Sensitivity” at x:
LSq(x) = max{|q(x) − q(x′)| ∶ x′ ∼ x}.

The problem with trying to use local sensitivity instead of global sensitivity is that we don’t want the
amount of allowable noise to itself distinguish between neighboring x and x′. For instance, let x be such that
q(x) = q(x′) = 0 for all x′ ∼ x, but where there is one such neighbor x1 ∼ x where x1 has a neighbor x2 such
that q(x2) = 109. LSq(x) = 0, but LSq(x1) is large, and answering queries noisily based on LSq could violate
privacy because it distinguishes between x ∼ x1. To avoid this problem, we would have to add noise roughly
to the average of LSq(x) and LSq(x′) for every pair x ∼ x′.

Still, perhaps one could hope to provide only a small amount of noise if LSq is small everywhere “near”
x.

For example, consider the query that asks for the median of n points {x1, x2,… xn} ⊆ [0, 1]. The Global
Sensitivity for this query is high. (Consider the instance x where (n+ 1)∕2 entries are 1 and (n− 1)∕2 entries
are 0 (and thus the median is 1), as compared to the instance x′ ∼ x where one entry is changed from 1 to 0
(and thus the median is 0).

On the other hand, if there are many data points near the median, then it would follow that LSq is small,
even in a large neighborhood of x. For such instances x, we could indeed get away with adding only a small
amount of noise, while maintaining privacy. This is the type of situation that we will investigate.

There are three related approaches that have been taken, in formulating alternatives to Global Sensitivity.
1. Smooth Sensitivity [34].
2. Propose-Test-Release (PTR) [12].
3. A generalization of PTR [27].
Below, we discuss each of these approaches in turn.

2.2.1 Smooth Sensitivity
Define Smooth Sensitivity (at x) as follows:

SS(x) = max{LSq(x′)e−�d(x,x
′) ∶ x′ ∈ Xn}.

Here, � is a parameter.
The main facts that were presented about Smooth Sensitivity are:
• Adding noise O(SSq(x)∕�) (according to a Cauchy distribution) is sufficient for �-differential privacy.
• SSq can be computed efficiently when q is the Median query (and thus this leads to an efficient

mechanism).
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2.2.2 Propose-Test-Release (PTR)
A different way to provide less noise, is to simply not allow certain queries. That is: rather than using Laplace
noise at a level that is high enough no matter what possible database might be queried, an alternative is to
initially propose an amount of noise that seems tolerable (or, more precisely, a bound on the local sensitivity
of the current database), and then test whether answering a query with this amount of noise would violate
privacy. If the test passes, then everything’s fine. But perhaps you detect that adding this (small) amount of
noise would violate privacy. In that case, you simply refuse to answer.

More precisely: PTR consists of the following three steps (parameterized by � and �), yielding amechanism
M:

1. Propose a target bound � on local sensitivity.
2. Let d̂ = d(x, {x′ ∶ LSq(x′) > �}) + Lap(1∕�).
3. If d̂ ≤ log(1∕�)∕�, output ⟂.
4. If d > log(1∕�)∕�, output q(x) + Lap(�∕�).

Claim 2.2.1. This scheme is (2�, �)-differentially private.

Proof. Consider some fixed x and x′ with x ∼ x′.
Because of the Laplacian noise in the definition of d̂, it follows that

Pr[M(x) =⟂] ∈ [e±�] Pr[M(x′) =⟂].

Also, for those outputs that are not ⟂, we have two cases:

Case 1: LSq(x) > �. In this case, Pr[M(x) ≠⟂] ≤ � and Pr[M(x′) ≠⟂] ≤ �.

Case 2: LSq(x) ≤ �. In this case, |q(x) − q(x′)| ≤ �, which in turn implies the �-indistinguishability of
q(x) + Lap(�∕�) and q(x′) + Lap(�∕�).

2.2.3 A generalization of PTR
Rather than proposing (arbitrarily) a threshold �, might it not be possible to (occasionally) compute a suitable
�? This is the approach which we now consider. That is, we will investigate whether it is possible to compute
a differential privacy estimate �̂ = �̂(x), such that, with probability 1 − �, LSq(x) ≤ �̂, in which case we will
output q(x) + Lap(�̂∕�).

The setting in which we will explore this possibility is where we are querying a graph, to find out the
number of triangles in the graph.

There are (at least) two notions of privacy that one might wish to consider:
• Edge-level Privacy. In this setting, we say that G ∼ G′ if the graphs G and G′ differ on one edge.
• Node-level Privacy. In this setting, we say that G ∼ G′ if the graphs G and G′ differ only on edges that

are adjacent to one vertex.
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Here, we will consider only edge-level privacy. Let qΔ(G) be the number of triangles in G. One can easily
verify that

LSqΔ(G) = max{j ∶ ∃u∃v u and v have j common neighbors}.
This, in turn, is no more than the maximum degree of G. In contrast, GSqΔ = n−2. Observe that GSLSqΔ = 1.Consider the following mechanism M(G):

• Compute �̂ = LSqΔ(G) + Lap(1∕�) + log(1∕�)∕�.
• Output qΔ(G) + Lap(�̂∕�).
This mechanism is (�, �)-differentially private, and the total noise is

O
(LSqΔ(G) + (1 + log(1∕�))∕�

�

)

.

Also, it turns out that—for this particular query—all of the computations can in fact be done efficiently.
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LECTURE 3
Counting Queries

Lecturer: Salil Vadhan Scribe: Anne-Sophie Charest

3.1 Counting queries
We have seen the following results:

• Answering one query: For q ∶ X → {0, 1},M(x) = q(x) + Lap(1∕�n) is �-differentially private.
• Answering k counting queries: with high probability error

� ≤ O

(
√

k log(1∕�) log(k)
�n

)

for all k queries.
We now consider a way to answer≫ n2 queries with differential privacy due to Blum et al. [4].
Theorem 3.1.1 ([4]). For every set Q of counting queries on a data universe X, ∀� > 0, there exists an
�-differentially private mechanismM such that ∀x ∈ Xn with high probabilityM(x) answers all queries in
Q to with error

� = O
(

log |Q| log |X|

�n

)1∕3

.

Moreover,M(x) outputs “synthetic data” y ∈ Xm with m = O(log |Q|∕�2) such that with high probability
∀q ∈ Q, |q(y) − q(x)| ≤ �, i.e., we can calculate all the answers on a (smaller) synthetic dataset.

Example 3.1.2. Let X = {0, 1}d andQ be the set of conjunctions, e.g., q(x) = X1 ∧X2…∧X7 ∧X10. Then
|X| = 2d and |Q| = 3d ; if n = !(d2∕�),

� = O

(

(

d2

�n

)1∕3
)

→ 0 .

Remark 3.1.3. There does not exists any polynomial time algorithm to do this yet. In general, constructing
this dataset will be easier to do for structured sets of queries.
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Proof of Theorem 3.1.1. We begin by establishing the existence of an accurate m-row synthetic dataset y∗:
Let y∗ be a random sample of m rows from X, say with replacement for simplicity. By the Chernoff bound,

Pr[ ∃q ∈ Q s.t. |q(y∗) − q(x)| > � )] ≤ 2−Ω(m�2)|Q| < 1 .

Note that this argument is inspired by “Occam’s Razor”-type argument from Learning Theory.
In order to guarantee privacy, we use the exponential mechanism of McSherry and Talwar [29], i.e.,

output y ∈ Xm with probability ∝ e
−�n max

q∈Q
|q(y)−q(x)|

,

where � is the usual privacy parameter. We refer to the right-hand size as expression as weightx(y). More
generally, the exponential mechanism can be used to design differentially private mechanisms for sampling
“good” outputs from any output space Y, replacing the expression

max
q∈Q

|q(y) − q(x)|

with an arbitrary “score function” score(x, y) indicating how good y is as an output on database x, and
replacing the factor of n in the exponent with

1∕max
y
GSscore(⋅,y) .

So to get good performance from the exponential mechanism, score should have low sensitivity as a function
of its first argument — as that will mean we put higher relative weight on good outputs than bad outputs.

Privacy proof: Fix x ∼ x′ ∈ Xn, y ∈ Xm. Then,
Pr[M(x) = y] =

weightx(y)
∑

y′ weightx(y′)
≤

e� weightx′(y)
∑

y′ e−� weightx′(y′)
≤ e2� Pr[M(x′) = y].

Thus, we have 2�-differential privacy.

Accuracy: We will show 2� accuracy.
Pr[M is not 2� accurate] = Pr[∃ q such that |q(M(x)) − q(x)| > 2�]

≤ 1
weightx(y∗)

⋅
∑

y∈Xm,
y not 2�-accurate

weightx(y)

(We are lower-bounding the sum of all weights by the weight of the single y∗ we showed to exist by the
Occam argument above.)

≤ |X|

me−�n(2�)

e−�n
≪ 1 if ��n > 2m log |X| .

Recall that m = O(log |Q|∕�2). Solve for � to obtain the desired result.
Remark 3.1.4. The computational time is roughly

|X|m = exp
(

log |Q| log |X|
�2

)

,

so it is really expensive. For example, we get exp(d2∕�2) for the conjunctions.
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3.2 Private multiplicative weights
We now present the state of the art for general queries due to Hardt and Rothblum [23].
Comparison with the small databases method (Blum et al. [4], just discussed):

• error
� = O

(
√

log |X| log(1∕�)(log |Q|)
�n

)1∕2

,

i.e., 1/2 instead of 1/3 and log |X| is in a square root;
• queries can arrive on-line, and the algorithm is adaptive;
• running time is polynomial (n, |X|) per query, which is better than we had before, but still sometimes

too much.

The algorithm: We view the database x as a distribution on X:
x(i) =

# rows of type i in x
n

.

Then, q(x) ≜ Ei∼x[q(i)]. The algorithm will maintain a distribution ℎ on X, some hypothesis for what the
data is. It will try to answer queries with ℎ, and update ℎ when it leads to too much error. Here are the details:

1. Initially, set ℎ to the uniform distribution on X.
Outer Loop REPEAT at most O(log |X|∕�2) times

(a) Randomize the accuracy threshold: �̂ = � + Lap(1∕�0n).
Inner loop REPEAT

i. Receive next query q
ii. Set a = q(x) + Lap(1∕�0n).
iii. If |a − q(ℎ)| < �̂, then output b = q(ℎ) and CONTINUE inner loop. Otherwise, output

b = q(x) + Lap(1∕�0n) (with fresh noise) and EXIT inner loop.
(b) Reweight using query q: ∀i g(i) =

{

ℎ(i)e(�∕4)⋅q(i) if � > q(ℎ),
ℎ(i)e−(�∕4)⋅q(i) if � < q(ℎ).

(c) Renormalize: ∀i ℎ(i) = g(i)
∑

j g(j)
.

(d) CONTINUE outer loop.

Utility analysis: With high probability, the maximum noise magnitude is no more than
O
(

log |Q|
�0n

)

because of the property of the tail of the Laplace distribution and the union bound. We constrain � so that
O(log(|Q|∕�0n) ≤ �∕4 .

This implies that all answers that we provide are within ±3�∕2 of q(x) by the triangle inequality.
Now, we must show that the mechanism will not stop early.
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Claim 3.2.1. Assuming the maximum noise magnitude is at most �∕4, at most O(log |X|∕�2) updates (i.e.
iterations of the outer loop) will be required.

Proof. Consider the potential function D(x || ℎ). Initially,
D(x||uniform) = log |X| −H(x) ≤ log |X|,

whereH is the Shannon entropy function. When we do an update, we know that |q(x) − q(ℎ)| ≥ �∕2. It can
be shown that this implies that:

D(x || ℎ
′) ≤ D(x || ℎ) − Ω(�2),

which follows from a tedious but not very hard calculation.

Privacy analysis: Note that the entire output of the algorithm is determined by three items: the indicators
for when the updates occur, the queries, and the noisy answers b when an update occurs. Define an epoch to
be one execution of the outer loop, up to the next update.
Claim 3.2.2. One epoch is 4�-differentially private.

Proof. Fix a transcript of an epoch in which the update occurs in the ttℎ query. Let q1,… , qt be the t queries
in the epoch and a1,… , at the corresponding noisy answers in the inner loop. Fix the noise in a1,… , at−1.
Then,

Pr[no update for queries q1,… , qt−1] = Pr
[

�̂ > max
i

|ai − qi(ℎ)|
]

. (3.1)
Note that this condition is determined by the quantity � = �̂ − maxi |ai − qi(ℎ)| = � − maxi |ai − qi(ℎ)| +
Lap(1∕�0). Since �−maxi |ai−qi(ℎ)| has global sensitivity 1 as a function of the database x, � is differentially
private.

Now conditioning on the value of � (such that � > 0 so that no updates happen in q1,… , qt−1, we consider
the probability of having an update in query qt. Since at = qt(x) + Lap(1∕�0n), this is the probability that
|qt(x) + Lap(1∕�0n) − qt(ℎ)| ≥ �̂ = � + maxi |ai − qi(ℎ)|. That is,

Pr[update at ttℎ query ∣ �] = Pr[Lap(1∕�0n) ≥ � + max
i

|ai − qi(ℎ)| + qt(ℎ) − qt(x)] +

Pr[Lap(1∕�0n) ≤ −� − maxi |ai − qi(ℎ)| + qt(ℎ) − qt(x)] .

Since �+maxi |ai−qi(ℎ)|+qt(ℎ)−qt(x) and−�−maxi |ai−qi(ℎ)|+qt(ℎ)−qt(x) both have global sensitivity
2, by the differential privacy of the Laplace mechanism, the probabilities above can vary by a factor of at
most e2�0 on neighboring databases, and thus the decision to do an update on qt is 2�0-differentially private.
The noisy answer bt = qt(x) + Lap(1∕�0) is �0-differentially private, giving a total of 4�0-differential privacy.

By composition, we get
O

(
√

log |X| log(1∕�)
�2

�0, �

)

differential privacy. Then, we use O(log |Q|∕�0n) ≤ �∕4. Solve for � to get the final answer.
Remark 3.2.3.

• There is a way to get a synthetic dataset at the end of the algorithm, but you need to do a little bit of
work to make sure that all queries are correctly answered simultaneously.

• If all queries are given simultaneously, we can go faster by first picking queries which should generate
an update (e.g., with the exponential mechanism) [24].
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LECTURE 4
Lower Bounds for Counting Queries

Lecturer: Kunal Talwar Scribe: Swastik Kopparty

In this lecture we will prove lower bounds on the problem of privately answering k counting queries from
a database of with n records, where each record comes from the space X. We will consider even weaker
notions of privacy.

4.1 Counting queries: Basic lower bounds
We begin with the definition of a very weak standard for privacy.
Definition 4.1.1. A mechanismM ∶ Xn → Y is called blatantly non-private if for every x ∈ Xn, one can use
M(x) to compute an x′ ∈ Xn, such that x′ and x differ in at most n∕100 coordinates (with high probability
over the randomness ofM).

Any mechanism which is (1, 0.1) differentially private is blatantly not blatantly non-private.
We now give some basic lower bounds, due to Dinur and Nissim [11], on the tradeoff between the error

and the number of counting queries that can be answered while maintaining privacy under the above definition.
Let X = {0, 1}. Then a database of n people is simply a vector x ∈ {0, 1}n. We will consider queries

q ∈ {0, 1}n: the intended answer to the query q is ⟨q, x⟩. These are not exactly counting queries, but
they can be transformed into counting queries over a larger data universe. (Set X′ = [n] × {0, 1}, x′ =
((1, x1), (2, x2),… , (n, xn)), q′((i, b)) = qi ⋅ b.)
Theorem 4.1.2. Given x ∈ {0, 1}n, supposeM outputs, for each q ∈ {0, 1}n, a value yq ∈ ℝ such that

|

|

|

yq − ⟨q, x⟩||
|

< E.

Then one can use the yq’s to compute x′ ∈ {0, 1}n such that |x − x′|1 < 4E (and thus x and x′ differ in at
most 4E coordinates).

Corollary 4.1.3. IfM is a mechanism as above with E < n∕400, then M is blatantly non-private.

Thus at least Ω(1) additive error is needed for privately answering all queries.
The procedure for computing x′ that we will see is not efficient; this is sufficient since we are dealing

with an information-theoretic notion of privacy.
Why would we ever consider a mechanism that answers 2n queries? This is very natural: if the mechanism

privately outputs a sanitized database or a synopsis (like in the previous lecture), we might hope that it can
preserve answers to a huge number of counting queries. Indeed, the mechanisms from the previous lecture can
answer exp(Ω(� ⋅ �3 ⋅ n∕(log |X|))) and exp(Ω(� ⋅ �2 ⋅ n∕√log |X| ⋅ log(1∕�))) counting queries, respectively.
These get close to 2n; the lower bound we are about to prove shows that we cannot hope to reach 2n.

20



Proof. Pick any x′ ∈ {0, 1}n such that for all q ∈ {0, 1}n,
|

|

|

yq − ⟨q, x′⟩||
|

< E.

(We know that at least one such x′ exists, namely x).
Claim 4.1.4. |x − x′|1 < 4E.

Proof. Set
I0 = {j ∈ [n] ∣ xj = 0} ,
I1 = {j ∈ [n] ∣ xj = 1} .

Define q0 ∈ {0, 1}n to be the vector which is nonzero in coordinates I0. Define q1 ∈ {0, 1}n to be the vector
which is nonzero in coordinates I1.

Note that ⟨q0, x⟩ = 0. Thus yq0 < E, and so 0 ≤ ⟨q0, x′⟩ < 2E. Thus x′ has at most 2E 1’s in the
coordinates of I0. Similarly ⟨q1, x⟩ = |I1|. Thus yq1 ∈ |I1| ± E, and so ⟨x′, q1⟩ ∈ |I1| ± 2E. Thus x′ has at
most 2E 0’s in the coordinates of I1.

Thus x′ and x differ on at most 4E coordinates.
This completes the proof.
Our next theorem says that for privately answering a fixed set of even O(n) counting queries, an additive

error of Ω(1∕√n) is sometimes needed.
We will in fact study the more general question of what additive error is needed for privately answering

any set of counting queries.
Let q1,… , qk be a collection of queries. Suppose we are given y1,… , yk with

|

|

yi − ⟨qi, x⟩|| < E.

Our privacy-breaking strategy is the same: take any x′ ∈ {0, 1}n with
|

|

yi − ⟨qi, x
′
⟩

|

|

< E

for each i.
Then, as in the previous argument, we deduce that |⟨qi, x− x′⟩| < 2E. We want to use this to deduce that

|x − x′|1 < n∕100.
Suppose not. Let z = x − x′. Let Q denote k × n matrix whose rows are qi. Thus we have:
1. z is a {0,+1,−1} vector with |z|1 > n∕100,
2. |Qz|∞ < 2�

√

n.
Definition 4.1.5. We define the partial discrepancy of a matrix Q, denoted PDisc(Q), by:

PDisc(Q) = min
z∈{0,+1,−1}n,
|z|1>n∕100

|Qz|∞.

Summarizing the above discussion: any mechanism for answering q1,… , qk within error PDisc(Q)∕2 is
blatantly non-private.

Let us see a quick application of this, the second theorem of Dinur and Nissim [11].
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Theorem 4.1.6. There exists � > 0 and a set of queries q1,… , qk ∈ {0, 1}n (where k = O(n)) such that:
Given x ∈ {0, 1}n, supposeM outputs, for each i ∈ [k], a value yi ∈ ℝ such that

|

|

yi − ⟨qi, x⟩|| < �
√

n.

Then one can use the yi’s to compute x′ ∈ {0, 1}n such that |x − x′|1 < n∕100 .

Corollary 4.1.7. IfM is a mechanism answering queries q1,… , qk with the accuracy given as above, then
M is blatantly non-private.

The collection of queries above is uniformly random. In fact, this can be derandomized with an explicit
collection of O(n) queries. The privacy-breaking procedure can also be implemented to run efficiently, and
can be implemented in real world databases using hashing.

The proof of Theorem 4.1.6 follows immediately by combining earlier observations connecting PDisc
and blatant nonprivacy, with the following basic claim about the PDisc of a random matrix.
Claim 4.1.8. There exists a constant � > 0 such that for k = Ω(n), a random 0, 1 k × n matrix Q has
PDisc(Q) > �

√

n.

Proof. Pick the rows q1,… , qk ∈ {0, 1}n uniformly. Fix z ∈ {0,+1,−1}n with |z|1 > n∕100. Then we have:
Pr
qi
[|⟨qi, z⟩| < �

√

n] < O(�),

(by the anticoncentration of the Binomial distribution, which is the distribution of ⟨qi, z⟩).
Thus, for each z we have

Pr[∀i ∈ [k], |⟨qi, z⟩| < �
√

n] < O(�)k.

Taking a union bound over all such z, the probability that for some z ∈ {0,+1,−1}n with |z|1 > n∕100,
we have that |⟨qi, z⟩| < �

√

n for each i ∈ [k], is at most 3n ⋅ O(�)k, which for � = 1∕2 and k = O(n) is
exponentially small in n.

Thus a random matrix has the desired discrepancy property.
This completes the proof of Theorem 4.1.6.
One can consider an even more relaxed version of error, where the mechanism is allowed to give answers

with O(√n) additive error for 51% of the queries, and for the remaining 49% it is free to make arbitrary error.
Even such a mechanism is necessarily non-private. If one wants this theoremwith an efficient privacy-breaking
algorithm, then this can also be done with the 51% replaced by about 77% (this is a theorem of Dwork et al.
[16], and is based on connections to compressed sensing).

4.2 General sets of counting queries
We now work towards a complete understanding the error required for differential privacy for answering a
given set of counting queries.

Let q1,… , qk ∈ {0, 1}N be a given set of counting queries, whereN = |X|. Let Q be the k ×N matrix
whose rows are the qi. We let Error(Q) denote the smallest quantity �, such that there is a (1, 0.1)-differentially
private mechanism for answering the queries Q, where the error in the answer is at most � with probability at
least 2∕3.
Remark 4.2.1. Kunal’s normalization is different from Salil’s (relative error vs. absolute error).
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For a set S ⊆ [N], we let QS denote the restriction of Q to the columns of S (this corresponds to
restricting the set of users to S). Now a trivial but important observation: an (�, �)-private mechanism for Q
is also an (�, �) private mechanism for QS .

Thus:
Error(Q) ≥ Error(Q|S) ≥ PDisc(Q|S).

Remark 4.2.2. This does not hold for blatant nonprivacy! (Because S can be very small.)
Define the hereditary partial discrepancy HerPDisc(Q) to be minS⊆[N] PDisc(QS). In this language, we

just proved the theorem of Muthukrishnan and Nikolov [31]:
Theorem 4.2.3.

Error(Q) ≥ HerPDisc(Q).

Amazingly, this bound is nearly tight. The following theorem is due to Nikolov, Talwar and Zhang.
Theorem 4.2.4 ([33]). For every Q,

Error(Q) ≤ HerPDisc(Q) ⋅ poly(log(k∕�)).

4.3 Lower bounds for (�, 0)-differential privacy
Wewill now see some lower bounds for pure (�, 0)-differential privacy that distinguish it from (�, �)-differential
privacy. In particular, we will prove that for answering k counting queries with (�, 0)-differential privacy,
one must have Error(Q) ≥ Ω(k) (this contrasts with the result we saw in Lecture 2 which shows that one can
have O(√k) error if one only requires (1, 0.1) differential privacy, by applying advanced composition to the
Laplace mechanism).

Let x ∈ ℝN represent our database in the histogram representation. (Recall what this means: N is the
number of possible “user types,” and the coordinates of x represent the frequency of each user type.) We will
also represent our queries qi as vectors in ℝN . Q will be the matrix with qis as rows. Suppose all the entries
of Q are in [−1, 1].
Lemma 4.3.1. Let s, R > 0 be such that there exist vectors vectors x1,… , xl ∈ ℝN with:

• |xi|1 ≤ s for each i,

• |Qxi −Qxj|∞ ≥ R for each i ≠ j.

Suppose l > 2e2�s. Then for any (�, 0) differentially private mechanism M answering queries Q, there exists
some i ∈ [l] with:

Pr[|M(xi) −Qxi|∞ > R∕2] > 1∕2 .

(In particular Error(Q) ≥ R∕2).

Proof. Suppose not. Then for every i, there is a good probability thatM(xi) is pretty close to Qxi.
Then by “group privacy” (using the fact that |x1 − xi|1 < 2s), we have for each i ∈ [l]:

Pr[|M(x1) −Qxi| < R∕2] > e−2�s ⋅
1
2
.

23



Thus M(x1) has a decent chance of lying close to each Qxi. But since all the Qxi are far away from each
other, and there are many of them, this cannot be.

Formally, we have

Pr

[

M(x1) ∈
l
⋃

i=1
Bl∞(Q(xi), R∕2)

]

=
l
∑

i=1
Pr

[

M(x1) ∈ Bl∞(Q(xi), R∕2)
]

≥ l ⋅ e−2�s ⋅ 1
2

> 1.

Contradiction.
Instantiating the above framework, take N = 2k. Then for i ∈ [k], take qi ∈ {0, 1}N to be the vector

with 1 in those coordinates j ∈ [N] for which the base-2 representation of j has a 1 in coordinate i. Now we
can take � = 1∕4 and l = 2k > 2 ⋅ e2�s in the above framework (to get s = R = k) by choosing xi = k ⋅ ei
for each i ∈ [N]. (Here ei is the elementary unit vector with 1 in coordinate i). Translating back to our old
language, here our data universe is X = {0, 1}k, our queries are the k column sums (i.e. one-way marginals),
and we are considering the 2k datasets that have n = k identical rows.

Observe that the required properties hold. Thus we see that Error(Q) > R∕2 = k∕2.
In general, by choosing a suitable Q and collection of vectors xi, we can prove a lower bound of

√

k log
|X|

k

on the error required for achieving (�, 0) differential privacy while answering k counting queries.
It is a good exercise to see what breaks down in the above argument when we consider (�, �) differential

privacy. Do it!
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LECTURE 5
Pirates of the Caribbean I

Lecturer: Salil Vadhan Scribe: Michal Koucký

5.1 Two lower bounds via cryptography
In this lecture we cover two lower bounds on the abilities of differentially private mechanisms. The lower
bounds are obtained from two different cryptographic primitives. The first lower bound shows that in order to
answer d attribute means (the same as the column sums we considered in the last lecture, normalized by a
factor of n) with error � < 1∕2 in differential private manner we need n ∈ Ω̃(√d), which is tight up to the
hidden polylogarithmic factors, by the Laplace mechanism and composition (cf. Lecture 2). This lower bound
is obtained using the fingerprinting codes of Boneh and Shaw [5] and holds unconditionally. The second
lower bound shows that to answer d = n2+o(1) certain efficiently computable counting queries with error
� < 1∕2 one needs time exponential in d (assuming the existence of exponentially strong one-way functions).
This latter lower bound is obtained using traitor-tracing schemes of Chor et al. [10].

5.2 Fingerprinting codes
Fingerprinting codes were designed to solve the following scenario. Imagine a digital movie distribution
company which wants to deliver copies of a movie to n different customers, and the company wants to mark
each copy so that if one of the costumers or a coalition S of the customers released a pirated copy of the
movie created from their own copies, the distribution company would be able to point a finger at one of the
pirates in S. There are d scenes in the movie and each of the scenes can be watermarked by either 0 or 1 (say
by choosing one of the two angles from which the movie was shot.) The colluding costumers may want to
merge their copies to evade detection. The fingerprinting code should help protect the movie by specifying for
each scene and each customer whether it should be watermarked by 0 or 1. An associated tracing algorithm
should determine with high probability from the code and a pirated copy one of the colluding pirates.

We will use the framework of Boneh and Shaw [5]. We will have a randomized generating algorithm
Gen(1n) which will produce n × d binary fingerprinting matrix C where Ci,j determines the watermark of
customer i in scene j. The generating algorithm will take as its only parameter n, d will be determined as a
function of n. Associated with the generating algorithm Gen(1n) → {0, 1}n×d is the (randomized) tracing
algorithm Trace ∶ {0, 1}n×d ×{0, 1}d → {1,… , n}which on input C and a pirated copyw (w is the sequence
of watermarks of the pirated copy) returns an index of a customer, hopefully one who contributed to the
creation of the pirated copy with watermarks w.

For a generating matrix C and a coalition S ⊆ {1,… , n}, we say that w ∈ {1, 0}d is feasible if for every
j ∈ {1,… , d}, for some i ∈ S, wj equals to ci,j . By CS we understand the submatrix of C consisting of
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rows in S.
We consider a (randomized) pirating algorithm P ∶ {0, 1}|S|×d → {0, 1}d which takes as its input CS for

a generating matrix C and produces a watermark sequence w for the pirated copy. The pirates can read off
the matrix CS from their copies of the movie.

The fingerprinting scheme is secure against any coalition S ⊆ {1,… , n} and any randomized pirating
algorithm P if:

Pr
C←Gen(1n)
w←P (CS )

[w is feasible for C and S, and Trace(C,w) ∉ S] ≤ negl(n).

The probability is negligible (≤ negl(n)) when it is asymptotically smaller than any polynomial 1∕nk, for any
fixed k.

Boneh and Shaw [5] construct a fingerprinting code for d ∈ Õ(n3) as follows. Gen(1n) outputs a matrix
obtained by randomly permuting columns of the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 block 1st block 2nd block … nth block
111…111 111…111 111…111
000…000 111…111 111…111

000…000 111…111

0 0 0 … 1
000…000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Each block spans Õ(n2) identical columns. For such a randomly generated matrix, a coalition which does
not include say the second player cannot distinguish columns that come from the first and the second block
of the matrix, these columns look identical to the coalition. The tracing algorithm takes advantage of this
observation. The tracing algorithm Trace(C,w) outputs the first i such that

E
j in ith block

[wj] − E
j in (i − 1)th block

[wj] ≥
1
n

where the expectation is taken over a randomly chosen index j among the ones coming from the ith block or (i−
1)th block. Notice, for a feasiblew such i is guaranteed to exist sinceEj in 0 block[wj] = 0, Ej in nth block[wj] = 1,
and the sum of the differences over all i forms a telescoping sum. The correctness of the tracing algorithm
follows from the following claim:
Claim 5.2.1. For a given coalition S, a randomly generated C ← Gen(1n) and a random pirated feasible
w← P (CS) with probability greater than 1 − negl(n), for all i ∉ S:

E
j in ith block

[wj] − E
j in (i − 1)th block

[wj] <
1
n
.

Proof. Fix i ∉ S. Condition the randomized processes on a specific CS and w. Columns from the ith block
and (i−1)th block look identical in CS . Each such column comes with the same probability from either of the
two blocks. There are Õ(n2) such columns and Ej in ith block[wj] sums over a randomly chosen half of them.
The same goes for Ej in (i − 1)th block[wj]. These sums have the same expectation and their standard deviation
is 1∕Õ(n). The probability that these sums would deviate from their mean by at least 1∕2n is bounded by
Chernoff bound, and by suitable choice of polylog(n) factors in Õ(n2) can be made negligibly small. Thus the
probability that there will be a large deviation for any of the i ∉ S is negligible.
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The dependence of d on n is not optimal in the fingerprinting codes of Boneh and Shaw [5]. One would
like to minimize d as a function of n. Tardos [36] provides a different construction and shows optimality of
his parameters. In his construction d ∈ Õ(n2). His generating matrix is chosen at random by the following
process: From a certain (artificial) probability distribution, for each column j, pick pj ∈ (0, 1). Then chose
each entry in jth column of the generating matrix independently according to Bernoulli distribution with
probability pj . It is still open whether choosing the pj’s uniformly from (0, 1) for all columns would give
good fingerprinting code.1

Now, we will use fingerprinting codes to derive lower bounds on differential privacy using the technique
of Bun et al. [7].
Theorem 5.2.2. If there is a fingerprinting scheme with codewords of length d for n + 1 users then there is
no (1, 1∕10n)-differentially private mechanism for answering d attribute means with error � < 1∕2.

Proof. The proof proceeds by contradiction. Fix a fingerprinting scheme and let M be the (1, 1∕10n)-
differentially private mechanism for answering attribute means. Generate a (random) fingerprinting code
C . Chose i ∈ {1,… , n + 1} at random and set S = {1,… , n + 1} ⧵ {i}. Let (a1,… , ad) be attribute means
obtained fromM on the data set CS . Define a vector w ∈ {0, 1}d by rounding vector (a1,… , ad) to the
nearest integer. Since,M makes error less than 1∕2, w is a feasible pirated copy for CS . By the properties of
the fingerprinting code

Pr[Trace(C,w) ∈ {1,… , n + 1} ⧵ {i}] ≥ 1 − negl(n).

Hence, for n large enough, there is an i∗ such that

Pr[Trace(C,w) = i∗] ≥ 1
2n
.

This is a probability over randomly chosen i and hence randomly chosen set S. So there must be a specific i0
so that if we condition on i = i0

Pr[Trace(C,w) = i∗ | i = i0] ≥
1
2n
.

M is (1, 1∕10n)-differentially private so for any C its output on C{1,….n+1}⧵{i0} and C{1,….n+1}⧵{i∗} should be
essentially indistinguishable. Hence,

Pr[Trace(C,w) = i∗ | i = i0] ≤ e1 ⋅ Pr[Trace(C,w) = i∗ | i = i∗] +
1
10n

.

This implies
Pr[Trace(C,w) = i∗ | i = i∗] ≥ 1

2en
− 1
10en

≥ Ω(1∕n),

which contradicts the correctness of the tracing algorithm as with non-negligible probability we are accusing
someone not among the pirates.

Notice that the proof is fairly strong and convincing in the sense that for example for Tardos’ fingerprinting
scheme the data on whichM is run are chosen from a distribution of essentially random samples. Hence it is
not just some contrived data set on whichM fails but it fails on a plausible data set.

1This has been proven in work subsequent to our workshop [20].
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5.3 Traitor-tracing schemes
A traitor-tracing is intended to solve a scenario related but different from fingerprinting codes. Imagine a
satellite broadcast company which for a fee distributes set-top boxes capable of decoding their satellite signal.
Each customer gets his own set-top box with a unique decryption key. A party of S customers wants to
collude to create (and sell) unauthorized set-top boxes. They will build their set-top box using the decryption
keys found in their set-top boxes. The goal of the satellite company is to be able to identify at least one of the
colluding customers who contributed by his decryption key.

We can formalize this problem as follows. For a security parameter d, we will have a randomized
key generating function Gen(1d , 1n) → (k1, k2,… , kn, bk, tk) where k1,… , kn ∈ {0, 1}d will be customer
decryption keys, bk will be the broadcast key and tk will be a key used to trace pirating users. We will have
a randomized encryption procedure parametrized by bk which for each plain-text message b ∈ {0, 1} will
give a ciphertext c, i.e., Encbk(b)→ c. Decoding is provided by a decoding procedure Decki(c)→ b which is
parametrized by private keys of customers.

We may have two alternative requirements on traitor-tracing procedure:
1. In this case we assume that a pirate procedure P ((ki)i∈S) on the input of private keys of users in S

outputs a pirate decoder P̃ that distinguishes between Encbk(0) and Encbk(1). We require that the
tracing algorithm Trace(P̃ , tℎ) outputs a user in S with high probability. The tracing algorithm has an
oracle (black-box) access to the pirate decoder P̃ so it cannot peek inside the box to see what kind of
decryption keys are hidden inside.

2. Here we assume an existence of a pirate procedure P ((ki)i∈S , c1,… , ck) which gets decryption keys of
users in S and ciphertext messages c1,… , ck, and outputs a1,… , ad such that if Decki(ci) is the same
bj for all i ∈ S then aj = bj . The tracing algorithm gets as its input the tracing key tk and it gets oracle
access to P ((ki)i∈S , ⋅). It can probe the oracle with arbitrary ciphertexts c1,… , ck, even malformed
ones. The tracing algorithm should identify a member of S with high probability.

A construction for the second alternative was given in Chor et al. [10], see also Ullman [38]. Fix a
secure private-key encryption system (Enc0,Dec0). Gen(1d , 1n) generates independently keys k1,… , kn for
the encryption system (Enc0,Dec0) and sets tk = bk = (k1, k2,… , kn). Encoding is given by:

Encbk(b) = (Enc0k1(b),Enc
0
k2
(b),… ,Encnk1(b))

and decoding for user i by:
Decki(c) = Dec0ki

(ci)

where ci is the ith component of the ciphertext.
The tracing algorithm with oracle access to P ((ki)i∈S , ⋅) for some set S works as follows. It generates a

fingerprinting code n × k matrix C ← Genf .p.(1n), and it creates a ciphertexts c(1), c(2),… , c(k) by

c(j)i = Enc0ki
(Ci,j).

The tracing algorithm queries its oracle on c(1), c(2),… , c(k) to get answers w = (b1,… , bk), and runs the
tracing algorithm of the fingerprinting code Tracef .p.(C,w) to get a suspect i. It outputs this i.

For the correctness of this tracing scheme: if the pirate algorithm is computationally bounded then it
cannot learn any information about the messages encrypted by private keys of users not participating in S, so
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w essentially depends only on the rows of C in S. Since w is also feasible for C and S, the fingerprinting
tracing algorithm correctly identifies someone in S with high probability.

The traitor-tracing scheme can be used to provide the following computational bound on differentially
private mechanisms as shown by Dwork et al. [17] and Ullman [38].
Theorem 5.3.1. If a traitor-tracing scheme for alternative 2 exists, then any (1, 1∕10n)-differentially private
mechanism for answering k = k(n, d) efficiently computable counting queries with error � < 1∕2 on data
sets with n rows must run in time at least s(d), where s(d) is the minimum running time of successful pirates
in the traitor-tracing scheme.

Proof. We provide a brief proof sketch. We consider a differentially private mechanism M whose data
set is a set of decryption keys (of colluding users). Queries to this mechanism are indexed by ciphertexts,
the output of a query is the fraction of keys that decode the ciphertext to one. Assuming that the decoding
procedure is efficient this is an efficiently computable query. A pirated set-top box can be build by fixing
the data set of M to the decryption keys of colluding users, and on ciphertexts c(1), c(2),… , c(k), the box
runsM with queries c(1), c(2),… , c(k), to get answers (a1,… , ak) which are rounded to the nearest integer
to get decoding (b1,… , bk). By an argument similar to the proof of Theorem 5.2.2 we conclude that ifM
is differentially private then the traitor-tracing scheme must fail. If the tracing scheme does not fail then
eitherM is not differentially private or M uses at least as much resources as a successful pirates for the
traitor-tracing scheme.
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LECTURE 6
Pirates of the Caribbean II

Lecturer: Salil Vadhan Scribe: Borja Balle

This lecture continues the discussion on computational lower bounds for differentially private mechanisms.
We will be using finger printing codes (FPCS) and traitor tracing schemes (TTS) as discussed in the previous
lecture.

6.1 Cryptographic lower bounds
Theorem 6.1.1 ([17, 38]). If a TTS of type 2 with the above notation exists, then any (1, 0.1∕n)-differentially
private mechanism for answering k = k(n, d) efficiently computable counting queries with error � < 1∕2 on
datasets with n individuals from X = {0, 1}d must run in time ≳ s(d).

Proof Sketch. Suppose M is a differentially private mechanism like in the statement of the theorem. We will
show how to construct a pirate for the TTS usingM and conclude from the security of the scheme thatM
must have a runtime big enough to break the scheme.

Start by setting up a TTS of type 2 with n+1 users and take a database x containing the keys of a coalition
of n users obtained by removing one user at random. We consider counting queries on this dataset given by
ciphertext decryption: for any ciphertext c the query qc evaluates to qc(ki) = Decki(c), where we identify the
row corresponding to the ith user with its key ki. Therefore, when query qc is answered by M on the dataset
x we obtain an �-approximation a = M(qc , x) to the number of users in x whose key decrypts c to 1; we
denote by b the {0, 1} rounding of a. With this notation, we define a pirate P for the type 2 TTS that given
ciphertexts c1,… , ck returns P (x, c1,… , ck) = (b1,… , bk), where bi is the rounding of ai =M(qci , x).Note that assumption � < 1∕2 implies that P is feasible. In addition, using the same argument as in
the lower bounds involving FPCS one can see that the tracing property of TTS implies that M cannot be
differentially private unless the running time of P is ≳ s(d). Now the bound on the running time ofM follows
from the construction of P .

A similar construction using type 1 TTS can be used to prove lower bounds for the time complexity of
mechanisms that produce differentially private digests from datasets. In particular, using the recent type
1 TTS candidate of Garg et al. [22] with ciphertext length poly(d) one can show that it is computationally
hard to produce a digest for a dataset with n = poly(d) individuals from which k = 2poly(d) queries can be
answered with error � < 1∕2. However, it is important to note that this hardness result relies on non-standard
cryptographic assumptions.

The previous lower bounds involve query families based on cryptographic primitives. An important
question is whether we can obtain similar bounds for families of queries that arise in practical situations.
Although some results of this sort are known, many question remain open. We discuss some of these in the
next two sections.
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6.2 Known results for interval queries

A simple but important problem is that of answering interval queries. Given a universe X = {1,… , D = 2d},
an interval query q� for � ∈ X is defined by q�(x) = I[x ≥ �]. The following table summarizes known bounds
on the order of the error needed to answer all interval queries with a differentially private mechanism. See
Beimel et al. [2] and references therein for details. An important open question is whether it is possible to
prove a lower bound on the noise required to answer interval queries in the (�, �)-differential privacy setting
which exhibits an explicit dependence on the dimension d.1

Upper bound Lower bound
(�, 0)-dp poly(d)

�n
d
�n

(�, �)-dp
(

2O(log∗ d) log(1∕�)
�n

)2∕5 log(1∕�)
�n

6.3 Computational lower bounds for t-way marginals
The set of all t-way conjunctions is a natural set of queries for which we know how to prove some computational
lower bounds. Let us consider the universe X = {0, 1}d and denote by Q the set of all t-way conjunctions
over d literals for some fixed t. Note that we have k = |Q| = 2t

(d
t

).
For small t, we can use the Laplace mechanism with independent noise for each query to give differentially

private answers to all queries in Q within error o(1) in a data set with n ≳ √

k ≳ dt∕2 individuals. This has
running time poly(n) per query. An interesting question is whether we can achieve similar privacy results for
databases with n < dt∕2 individuals.

On the other hand, instead of giving explicit answers to all possible queries in Q or providing interactive
access to the dataset x, a common approach is to produce a synthetic dataset, like Theorem 3.1.1. This is
basically a differentially private digest of the original dataset which can be used to answer any query in Q
with small error. The following result shows that under some standard cryptographic assumptions it is hard to
produce such digests in polynomial time.
Theorem 6.3.1 ([39]). Assuming exponentially secure digital signatures exists, there exists a constant � > 0
such that there is no (1, 0.1∕n)-differentially private mechanism that given a dataset with n individuals over
X = {0, 1}d outputs a sanitized dataset approximating all 2-way marginals to within error � in time 2d1−o(1)

for any n ≤ 2d1−o(1) .

Before we can proof this results we need to review digital signatures and the PCP theorem.
A digital signature scheme (DSS) is given by a triple of algorithms as follows:
1. A key generation randomized algorithm Gen(1d) = (pk, sk) that produces a public key pk and a private

key sk given a security parameter d as input.
2. A signing randomized algorithm that given a messagem ∈ {0, 1}d and a secret key produces a signature
� = Signsk(m).

3. A verification algorithm that accepts Verpk(m, �) if and only if � is a signature for m generated using
the secret key sk corresponding to pk.

1This has been done in work subsequent to our workshop [8], but there still is a gap between the lower bound of log∗ d and the
upper bound of 2log∗ d .
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We say that a DSS is exponentially secure if given access to examples (mi, �i = Signsk(mi)) signed with
the same secret key, any algorithm running in time 2o(d) cannot generate a new pair (m′, �′) such that
Verpk(m′, �′) = 1.

Secure DSS can be used to show the existence of hard to sanitize datasets for cryptographically defined
queries. This will be the starting point for the construction of a hard to sanitize dataset with respect to t-way
marginals.
Lemma 6.3.2 ([17]). Assuming secure DSS exist, there exist datasets which are hard to sanitize.
Proof. Let us consider a dataset xwith n individuals, where each row contains a pair (mi, �i)withmi randomly
generated and �i = Signsk(mi) for some fixed secret key. Take the counting query q defined by applying
Verpk(⋅) to each row of x, where pk is the public key associated with sk. This query is efficiently computable
and evaluates to 1 on the whole dataset. Now suppose there exists a differently private mechanismM with
running time 2o(d) that given x produces a digest y which is accurate with respect to q. By the accuracy,
y must contain at least one row yj = (m′j , �

′
j) such that q(yj) = Verpk(m′j , �

′
j) = 1. We note that this is a

contradiction: if yj ∉ x, then M succeeded in creating a forgery for the DSS in time 2o(d), and if yj ∈ x then
M is not differentially private.

Recall that circuit SAT is an NP-hard problem. Then, by the PCP theorem there exist a constant � > 0
and three polynomial time algorithms Red, Enc, Dec satisfying the following:

1. Red is a randomized reduction that given a circuit C output a 3-CNF Red(C) = � = �1 ∧…∧�m such
that if C is satisfiable then � is satisfiable, and otherwise there is no assignment satisfying more than
(1 − �)m clauses of �.

2. If w is a satisfying assignment for C , then z = Enc(C,w) is a satisfying assignment for �.
3. If z is an assignment for � satisfying more than (1 − �)m clauses, then w = Dec(C, z) is a satisfying

assignment for C .
Proof of Theorem 6.3.1. We prove the result for 3-way marginals; the proof for 2-way marginals is more
technical and requires another version of the PCP theorem.

Let x be the dataset from the proof of Lemma 6.3.2 based on DSS. Let C be the circuit corresponding
to the verification algorithm Verpk from the DSS. We write z for the dataset with n individuals obtained by
encoding each row xi of x with the encoding algorithm given by the PCP theorem: zi = Enc(C, xi). We
denote by � = �1 ∧⋯ ∧ �m the 3-CNF obtained by Red(Verpk). Note that for every row zi in z we have
�(zi) = 1, and for every clause �j in � we have �j(z) = n−1∑i∈[n] �j(zi) = 1. Suppose M is a differentially
private mechanism that produces sanitized datasets which are �-accurate with respect to 3-way conjunctions
and let z′ = M(z). Then for every j ∈ [m] we have �j(z′) ≥ 1 − �, which implies that there exists some
row z′i of z′ that satisfies at least (1 − �)m clauses from �. Therefore, using this row from the sanitized
dataset we can obtain (m′, �′) = Dec(Verpk, z′i) such that Verpk(m′, �′) = 1. Now the same argument used in
Lemma 6.3.2 shows that either (m′, �′) is a forgery or a violation of privacy. Thus, we conclude that M must
have running time ≳ 2d1−o(1) .
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LECTURE 7
2-way and t-way Marginals Using Geometric Algorithms

Lecturer: Salil Vadhan Scribe: Lila Fontes

The setup:
• people: v⃗ ∈ {−1,−1}d .
• queries: 2-way marginals (conjunctions).
• n known (or at least a factor of 2 upper bound on n is known).
• k ≈ d2 queries.
With independent noise, we can get error Õ(√k) = Õ(d) efficiently.
With private multiplicative weights, we can get error Õ(√n ⋅ d1∕4) and time polynomial in n and 2d . (For

some parameters, this error cannot be improved—see previous lecture notes for lower bounds.)
We’ll represent the database as a histogram x ∈ ℝ{−1,1}d , where xv is the number of people of type

v ∈ {−1, 1}d . (For convenience, we use the relaxation of a database over ℝ, not ℕ.)
We’ll define neighbors:

x ∼ x′ ⇐⇒ |x − x′|1 ≤ 1 .

One-way marginals are simple counts, e.g.:

q11 =
∑

v∈{−1,1}d

1 + v1
2

⋅ xv

is the count of people in the database with first coordinate = 1.
Two-way marginals are counts of conjunctions, e.g., the count of people with ith coordinate = 1 and jth

coordinate = 1 is:

q11ij =
∑

v∈{−1,1}d

(

1 + vi
2

)(1 + vj
2

)

xv

=
∑

v∈{−1,1}d

(

1
4
⋅ xv +

vi
4
⋅ xv +

vj
4
⋅ xv +

vi ⋅ vj
4

⋅ xv

)

.

So if we can release all parities up to 2 with error �, then we can release all marginals up to 2 with error �
(because the sum of the magnitude of coefficients is less than 1, so clever Fourier business lets us compute
the function from these coefficients).
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We can devise a matrix Q with d2 rows (one for each pair (i, j)) and 2d columns (one for each vector
v ∈ {−1, 1}d) such that

Qx = y

is a vector in ℝd2 which gives answers to all the 2-way parities on database x:
yij =

∑

v∈{−1,1}d
(vivj)xv .

If |x| = 1 (the database has only one member!), what answers are possible? Just columns of Q. But
since x is a ℝ vector, we might actually get a convex hull of ± columns of Q. Call this convex hull K (see
Figure 7.1).

Figure 7.1: The convex hull K .
For databases x ∼ x′ of arbitrary size, y − y′ = Q(x − x′) ∈ K . (Think of Q as an arbitrary set of linear

queries.)
There is a ball containing this K of radius R = maxw∈cols(Q) ‖w‖2 ≤ d. (This radius depends only on d,

not n—so it’s bad for small n and large |Q|, which is what intuition about privacy would suggest: it will be
hard to preserve privacy when asked many queries about a small population.)

What we’ll try first for privacy:
1. Calculate the answer!

y = Qx

2. Make it differentially private.

ỹ = y + R

√

log(1∕�)
�

⋅N(0, 1)d2

where forN(0, 1) we sample each coordinate independently from a Gaussian distribution.
Cynthia: This is “noise statisticians are more comfortable with.”
Kunal: This is “noise complex geometers are more comfortable with, which is convenient for us here.”
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It’s likely that the noise we’ve added is much too large, so we’ll need to project this back into the convex
hull K . For example, if n = o(d) then the noise will be Rd ≈ ||y − ỹ||2, but ||y|| ≤ nd.

We’re shooting for n ≈√

d, with constant relative error. We know n, but ỹ is likely tou end up outside
the nK polytope. (Kunal: “Anyone can look at this ỹ and say, this is bullshit.”)

Figure 7.2: The noise is way too large.
So we need to add a step 3:
3 Adjust this by projecting.

ŷ = argminz∈nK ||z − ỹ||2
Note that this step can be done in public (there’s no privacy to preserve here, we have already added
the privacy-protecting noise).

How much error does this mechanism (steps 1-2-3) have? Let p be the point where the perpendicular
from ỹ intersects the line defined by y and ŷ.

We know ||p − ỹ||2 ≤ ||y − p||2. Then
||y − ŷ||22 = ⟨y − ŷ, y − ŷ⟩

≤ 2⟨ŷ − y, p − y⟩ because y − ŷ ≤ p − y
= 2⟨ŷ − y, ỹ − y⟩ all that matters is the projection of w = ỹ − y in this direction
≤ 2 (|⟨y,w⟩| + |⟨ŷ, w⟩|) triangle inequality
≤ 4 max

z∈nK
|⟨z,w⟩|

This is the squared error mechanism. Then it follows that
E

w Gaussian
||y − ŷ||22 ≤ 4Ew

max
z∈nK

|⟨z,w⟩|
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Figure 7.3: This is how we project back into the nK polytope.

and

4Rn(width of polytope) ≤ 4Rn E
w∼N(0,1)d2

max
z∈K

|⟨z,w⟩|

≤ 4dn ⋅ d
√

d .

As
E

w∈N(0,1)
max
z∈K

|w − z| this max obtained at one of the 2d vertices of polytope K
≤ Emax 2d ⋅N(0, d2) total L2 weight of z is ≈ d

and random variables − d ⋅ Emax(g1, g2,… , gd2), eachN(0, 1)
≤ d

√

log 2d = d
√

d . by union bound.

And generally, this is√kd for k queries.

E
ij∈[d]×[d]

|ŷij − yij|2 ≤ n
√

d

So average root mean square error of this mechanism is ≤ Õ��(
√

n ⋅ d1∕4). This matches the PMW error.

What is the runtime of this mechanism? Steps 1 (nk = nd2 time) and 2 (linear in K) are no problem.
Step 3 is ok if you use a heuristic, but definitely dominates the runtime. Projection is equivalent (up to a
polynomial) to optimization (of a linear function over K).

The obvious way to implement step 3 is to enumerate over all vertices; this is poly(n, 2d , k) and we prefer
something which is simply poly(d).
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It is NP-hard to do this optimally. So instead, we’ll find an L close to K (where K ⊆ L) and optimize
over L. We need to ensure that the width of L is comparable to the width of K .

New task: find K ⊆ L such that:
• we can efficiently optimize over L, and
• l∗(L) ≲ l∗(K).
Recall that for v ∈ {−1, 1}d , we have K = convex hull(±v ⊗ v), where the ijth entry is vivj , containing

2d vertices.
K ⊆ L0 = convex hull(±v ⊗ v′ ∶ v, v′ ∈ {−1, 1}d)

The optimizing problem is:
max

v,v′∈{−1,1}d

∑

ij
gijviv

′
j .

This is still NP-hard, but Grothendieck’s inequality applies:
≤ max
{ui}di=1,{u

′
j}
d
j=1 unit vectors

∑

ij
gij⟨ui, u

′
j⟩

≤ 2 max
v,v′∈{−1,1}d

∑

ij
gijviv

′
j .

So if
L =

{

ℎ ∈ ℝd2 ∶ ∃{ui}di=1, {u
′
j}
d
j=1 unit vectors with ℎij = ⟨ui, u

′
j⟩
}

,

then efficient optimization over L is easy: you solve a small SDP.
We can update step 3 with argmin to get an efficient algorithm with polynomial runtime and similar error.
(Note: for all distributions D there exists a polytime algorithm such that

E
ij∈D

Emechanism
|ŷij − yij| ≤

√

nd1∕4 .

That is, small error over any distribution. But the minimax argument doesn’t work on this claim: it’s no longer
differential privacy.)
Theorem 7.0.1 (Boosting for queries). If, for any distribution D, we can privately obtain average error �
with a summary of s bits, then we can privately obtain worst-case error � + Õ(

√

s) (ignoring constants and
log terms).

Kunal: “This is an old result—from 2010.”
Therefore, two-way marginals can be privately obtained with worst-case error guarantees in polynomial

time.
t-way marginals are reducible to two-way marginals over ¿d2? coordinates.
Open question: Let K be the convex hull of v ⊗ v⊗ v where v ∈ {−1, 1}d . Does there exist a set L such

that K ⊆ L and l∗(L) ≤ c ⋅ l∗(K)?
We can’t do this with linear programs if we ask the stronger requirement K ⊆ L ⊆ c ⋅K .
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LECTURE 8
Large Conjunctions

Lecturer: Salil Vadhan Scribe: Luc Segoufin

8.1 Computational complexity of t-way conjunctions

In this lecture X = {0, 1}d .

Recap:

• It is hard to generate synthetic data even for t = 2 (NP-hard).
• We have mechanisms with error in Õ(dt∕4∕(�n)) and running time Poly(n, dt) [33, 19].

This lecture: A mechanism with error o(1) and running time Poly(n, dO(
√

t)), assuming n ≥ dO(
√

t) [25, 37].
There is another result that we will not cover: A mechanism with error o(1) and running time Poly(n, 2o(d)),

assuming n ≥ O(t ⋅ d .51) [9].

Starting with our database x with n rows in X the mechanism M will produce a “summary” S which will
add error to the function fx defined as fx(q) = q(x). S will be a polynomial of low degree. For notational
convenience the queries will be monotone disjunctions specified by y ∈ {0, 1}d :

qy(w) =
⋁

i∶yi=1
wi , w ∈ X . (8.1)

(“Monotone” is without loss of generality as we can duplicate attributes otherwise. Disjunction is the same as
conjunction modulo negation.)

Notice that:
qy(w) =

{

1 ∃i wi = yi = 1,
0 otherwise. (8.2)

Fact 8.1.1 (Chebishev Polynomials). ∀t ∈ ℕ,∀� > 0 there exists a univariate polynomial g of degree
O
(
√

t log(1∕�)
) such that g(0) = 0 and for i ∈ {1⋯ t}, 1 − � ≤ g(i) ≤ 1 + �.

Given w ∈ X, consider the following function defined for y with at most t entries set to 1:
fw(y) = g(Σjwjyj), (8.3)
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where g is the Chebishev polynomial of the Fact. fw can be viewed as a multivariate polynomial gw(y1,⋯ , yd)
of degree√t. Its coefficients have magnitude dO(

√

t).
By construction we have that for all x, y ∈ X,

|gx(y) − qy(x)| ≤ � . (8.4)

The desired mechanism adds Lap(dO(
√

t)∕(�n)) to each coefficient. The total error is � + dO(
√

t)∕(�n). S
is the resulting polynomial, gX + error.
Open Question 8.1.2. Can we summarize all conjunctions in time poly(d)?

8.2 Private PAC learning
These results are based on Kasiviswanathan et al. [26].

PAC learning:

• a concept class C = {c ∶ {0, 1}d → {0, 1}},
• an hypothesis classH = {ℎ ∶ {0, 1}d → {0, 1}},

both poly(d)-time computable.
Definition 8.2.1. A concept classC is PAC-learnable if there exists an algorithmL and a number n polynomial
in d, called the sample complexity, such that ∀D distribution on {0, 1}d , ∀c ∈ C , and ∀xi chosen independently
according to D, L(x1, c(x1),⋯ , xn, c(xn), d) returns a function ℎ ∈ H such that with high probability
ℎ(xn+1) = c(xn+1).

We speak of proper learningwhenH = C . We speak of efficient learningwhenL is poly-time computable.
(We will write L(x, c(x)) for L(x1, c(x1),⋯ , xn, c(xn), d)).

We obtain the notion of Private PAC-learning by further requiring that L be differentially private:
∀x, x′, y, y′ such that (x, y) ∼ (x′, y′), L(x, y) and L(x′, y′) should be (�, �)-indistinguishable.
Theorem 8.2.2 ([26]). If C is (non-privately) PAC-learnable then it is (�, �)-privately and properly PAC-
learnable with sample complexity O(d ⋅ VC(C)).

Proof. LetH = C . On input (x1, y1)⋯ (xn, yn) we output ℎ ∈ H with probability
∝ e−�#{i∶ℎ(xi)≠yi} .

By what we have seen in the proof of Theorem 3.1.1 with the exponential mechanism, this is 2�-
differentially private. Assume now that x1,⋯ , xn are taken according to some distribution D. Let yi = c(xi).

We record a few facts about this state of affairs:
1. If n ≥ O(VC(C)∕�2) then with high probability over x1⋯ xn

∀ℎ ∈ C,
#{i ∶ ℎ(xi) = c(xi)}

n
= Pr
w∼D

[ℎ(w) = c(w)] ∓ �.

2. |C| ≤ (2d)VC(C).
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From this we derive:

Prcoins of L[L outputs a ℎ with error > 2�] ≤ Σℎ with error >�e−��n

e−�⋅0
≤ |C|e−��n

≤ 2d⋅VC(C)e−��n.

We are done when taking
n = O

(

max
{

d ⋅ VC(C)
��

,
VC(C)
�2

})

≪ 1.

Questions.

Open Question 8.2.3. What about efficient private PAC-learning? We know that everything that is efficiently
PAC-learnable in the “statistical query model” is efficiently and privately PAC-learnable; we also know that
parities are efficiently and privately PAC-learnable.

It is open whether there is a separation between private and non private PAC-learning.1
Open Question 8.2.4. Is the gap between sample complexities inherent? (VC(C) vs. d ⋅ VC(C))? Yes for
(�, 0)-differentially private (next lecture). Open for (�, �)-differentially private.
OpenQuestion 8.2.5. What about learning problems outside the PAC framework, such as learning parameters
of structured distributions as studied in traditional statistical inference and applied machine learning? Some
very general results along these lines are given in [35], but we still are far from having a complete understanding
of what is possible.

1Subsequent to the workshop, evidence of a separation was provided in [6].
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LECTURE 9
Private Learning

Lecturer: Salil Vadhan Scribe: Cristopher Moore

9.1 A computationally efficient private mechanism for learning parity
In this lecture we continue our discussion of private PAC learning. To recap, Kasiviswanathan et al. [26]
showed that if a concept class C ∈ {0, 1}d is PAC-learnable, then it is privately PAC-learnable with sample
complexity O(d ⋅ VC(C)) using the exponential mechanism. This mechanism is not computationally efficient,
but for specific problems we can do better. In particular, they gave a computationally efficient private learner
for parity functions, whose sample complexity is within a constant of that of the best non-private learner.

Let C be the class of parities: that is, the class of functions {0, 1}d → {0, 1} of the form x → c ⋅ x. We
have a dataset (x, y) with n rows (xi, yi), where xi ∈ {0, 1}d and yi ∈ {0, 1}. We are promised that the data
is consistent with the class: that is, there is some c ∈ {0, 1}d such that yi = c ⋅ xi for all 1 ≤ i ≤ n. As
always in PAC learning, our goal is the following. Assume that x1,… , xn are drawn independently from
some distribution D. We wish to determine a hypothesis ℎ ∈ {0, 1}d such that, if x is drawn from D, then
ℎ ⋅ x = c ⋅ x with probability at least 0.99.

A simple (non-private) algorithm is to take any ℎ such that yi = ℎ ⋅xi for all i. We can do this by Gaussian
elimination, i.e., by solving the system of linear equations y = ℎ ⋅ x. Standard results show that this succeeds
with n = O(d) samples. Since the class C of parities has VC(C) = d, we have n = O(VC(C)).

Now let’s consider private learning. Keep in mind that we need to ensure privacy even when the data
is inconsistent with the concept class. Indeed, we need to make sure that we don’t leak information by
revealing whether or not the data is consistent! For instance, we need to make sure that the algorithm’s output
distribution only changes by " (multiplicatively) if we add a single row (xi, yi) such that yi ≠ c ⋅ xi.

Our mechanism M works as follows; we use ⟂ to denote failure. We will start by succeeding with
probability about 1∕2, and amplify this probability later.

1. Take n = O(d∕") samples.
2. With probability 1∕2, output ⟂.
3. For each 1 ≤ i ≤ n, set x̂i, ŷi independently as follows:

(x̂i, ŷi) =

{

(0d , 0) with probability 1 − " ,
(xi, yi) with probability " .

Call the resulting dataset (x̂, ŷ). This is a random sample of the original dataset, containing an expected
fraction " of the rows. The zero entries (x̂i, ŷi) = (0d , 0) will have no effect on what follows.
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4. Using Gaussian elimination, determine the affine subspace V of hypotheses ℎ that are consistent with
(x̂, ŷ), i.e.,

V = {ℎ ∣ ∀i ∶ ŷi = ℎ ⋅ x̂i} .
Output an ℎ chosen uniformly from V . If V = ∅, i.e., if no consistent ℎ exists, then output ⟂.

Since the non-private algorithm decribed above succeeds with probability 0.99, if the data is consistent
thenM succeeds with probablity at least 0.49. We can amplify by repeating this t times, in which case the
sample complexity is n = O(td∕").

Now we analyze M’s privacy. We willfully identify 1 ± " with e±", neglecting O("2) terms.
Theorem 9.1.1. M is (2", 0)-differentially private.
Proof. Let x ∼ x′ be two neighboring datasets that differ at one row i. Assume that (x′i, y′i) = (0d , 0). Sincewe can get from any x to any x′′ by going through such an x′, if M(x) and M(x′) are "-close, then M will be
(2", 0)-differentially private.

With probability 1 − ", we replace (xi, yi) with (0d , 0) in step 3 (assuming we make it past step 2). In that
case, (x̂, ŷ) = (x̂′, ŷ′), and the output probabilities are the same. Thus for all possible outputs z,

Pr[M(x) = z] ≥ (1 − ") Pr[M(x′) = z] . (9.1)
But we are not done. The problem is that x′ is special (by our assumption) so the reverse inequality does not
automatically hold. We also need to prove

Pr[M(x) = z] ≤ (1 + ") Pr[M(x′) = z] . (9.2)
To prove (9.2), start by fixing (x̂j , ŷj) = (x̂′j , ŷ′j) for all j ≠ i. (If you like, we are coupling the algorithm’s

choices on the two inputs, so thatM(x) andM(x′) agree on these rows after step 3. We also couple the events
that they fail in step 2.) Let V−i be the affine subspace consistent with these rows:

V−i = {ℎ ∣ ∀j ≠ i ∶ ŷj = ℎ ⋅ x̂j} .

As before, if we fail or if we set (x̂i, ŷi) = (0d , 0) = (x̂′i, ŷ′i), the output probabilities are the same. On the
other hand, with probability "∕2 we pass step 2 and set (x̂i, ŷi) = (xi, yi) in step 3. In that case, M(x′) is
uniform in V−i (orM(x′) =⟂ if V−i = ∅), whileM(x) is uniform in

V = V−i ∩ {ℎ ∣ yi = ℎ ⋅ xi} ,

or M(x) =⟂ if V = ∅.
Let’s compare the probabilities that M(x) and M(x′) fail. If V−i = ∅, then M(x) = M(x′) =⟂. But

if V−i ≠ ∅ but V = ∅, the probability that M(x) fails is at most 1∕2 + "∕2; and since M(x′) fails with
probability at least 1∕2, we have

Pr[M(x) =⟂] ≤ 1 + "
2

≤ (1 + ") Pr[M(x′) =⟂] .

Finally, we come to the most interesting case: comparing the probabilities thatM(x) andM(x′) output
some hypothesis ℎ, where both V−i and Vi are nonempty and contain ℎ. Linear algebra tells us that

|V | ≥ 1
2
|V−i| .

SinceM(x) andM(x′) are uniform in V and V−i respectively, for any ℎ ∈ V−i we have
Pr[M(x) = ℎ] ≤ 1

2

(

1 − "
|V−i|

+ "
|V |

)

≤ 1
2
1 + "
|V−i|

= (1 + ") Pr[M(x′) = ℎ] ,

which completes the proof.
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9.2 Private PAC learning and communication complexity
The results of [26] show that O(d ⋅VC(C)) samples suffice for private PAC learning. On the other hand, even
without privacy, PAC learning requires at least VC(C) samples. Is this factor of d necessary?

To get some sense of why it might be natural, note that
VC(C) ≤ log |C| ≤ d ⋅ VC(C) .

The first inequality follows trivially from the shattering definition of the VC dimension; the second inequality
comes from Sauer’s lemma (more properly known as the Perles-Sauer-Shelah lemma).

In fact there are classes C that can be learned non-privately withO(VC(C)) samples, but for which learning
with (", 0)-differential privacy requiresΩ(d ⋅VC(C)) samples. One such class is the class of threshold functions
{c� ∣ 0 ≤ � ≤ 2d}, where

c�(x) =

{

1 x ≥ � ,
0 x < � .

It is easy to see that VC(C) = 1. However, Beimel et al. [1] showed that the sample complexity of proper
private learning is Ω(d), and this was extended to improver private learning by Feldman and Xiao [21].

This gap is proven using beautiful connections between VC dimension, private learning, and communica-
tion complexity. Suppose that Alice has a function c ∈ C, Bob has a string x ∈ {0, 1}d , and together they
want to compute c(x). The one-way communication complexity of this problem is the length of the shortest
message m that Alice needs to send to Bob that lets him compute c(x).

We can also consider randomized communication complexity, where Alice and Bob want to succeed with
some probability 1 − �. (We will assume that Alice and Bob have access to shared randomness, i.e., a public
coin.) The complexity then depends on the distribution of c and x. Given a distribution � on C × {0, 1}d , we
denote one-way, public-coin communication complexity as CC→,pub

� (C).
Kremer et al. [28] showed that the VC dimension is closely related to the one-way communication

complexity maximized over all product distributions,

VC(C) = Θ
(

max
�A,�B

CC→,pub
�A⊗�B

(C)
)

,

where �A and �B are distributions on C and {0, 1}d respectively. (The constant hidden in Θ depends on the
success probability 1− �.) In contrast, Feldman and Xiao [21] showed that the sample complexity of privately
learning C is related to the one-way communication complexity maximized over all joint distributions on
C× {0, 1}d . This can be larger than the maximum over product distributions, and thus larger than VC(C), due
to perverse correlations between c and x. In particular, Alice and Bob now need to succeed with probability
1 − � on all pairs (c, x), so we can simply write

CC→,pub(C) = max
�
CC→,pub

� (C)

and
private sample complexity = Θ(CC→,pub(C)

)

.

Returning to the threshold function, computing c�(x) is equivalent to computing the “greater than” function.
Miltersen et al. [30] showed that for this problem we have CC→,pub = Ω(d), giving a more general proof [28]
that private learning requires Ω(d) samples.
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We conclude by sketching the proof from [21] that CC→,pub(C) = O(sample complexity). Let L be a
(", 0)-differentially private learner with a given sample complexity n. Using their shared randomness, Alice
and Bob both run L on the all-zeros database (0d , 0)n. They do thisM times forM to be determined in a
moment, giving a list of shared functions ℎ1,… , ℎM ∈ H.

Since (0d , 0)n is at most n rows different from any database, and since L is (", 0)-differentially private,
the distribution of functions returned by L “covers” the distribution on any other database D, in the sense that
for each ℎ ∈ H,

Pr[L((0d , 0)n) = ℎ] ≥ e−"n Pr[L(D) = ℎ] .

Thus withM = eO("n) samples, Alice and Bob can ensure that, with high probability, at least one ℎi in their
shared list is a good hypothesis for any particular database.

In particular, let � be a distribution on pairs (c, x), and let c0 ∈ C be Alice’s function. Then there is
some 1 ≤ i ≤ M such that ℎi is a good hypothesis for the database we would get by sampling x from the
conditional distribution �(x ∣ c = c0): that is, ℎi(x) = c0(x) with high probability in x. Alice can send Bob
this index i with communication complexity logM = O("n).

Given the fact that CC→,pub(C) = Ω(d ⋅ VC(C)) for some classes, this shows that the gap of d between
public and private learning is sometimes unavoidable.

We give an even quicker sketch of the other direction, that the private sample complexity isO(CC→,pub(C)).
Namely, given a low-communication protocol between Alice and Bob, the messages from Alice define a small
set of hypotheses, from which we can privately sample using the exponential mechanism.
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