
Restricted Two-Variable FO+MOD Sentences,
Circuits and Communication Complexity

Pascal Tesson1,� and Denis Thérien2,��

1 Département d’Informatique et de Génie Logiciel, Université Laval
pascal.tesson@ift.ulaval.ca

2 School of Computer Science, McGill University
denis@cs.mcgill.ca

Abstract. We obtain a logical characterization of an important class of
regular languages, denoted DO, and of its most important subclasses in
terms of two-variable sentences with ordinary and modular quantifiers
but in which all modular quantifiers lie outside the scope of ordinary
quantifiers. The result stems from a new decomposition of the variety of
monoids DO in terms of iterated block products.

This decomposition and the ensuing logical characterization allows
us to shed new light on recent results on regular languages which are
recognized by bounded-depth circuits with a linear number of wires and
regular languages with small communication complexity.

1 Introduction

Descriptive complexity uses logical sentences to define languages. For instance,
one can view the sentence

∃x∃y∃z(x < y < z ∧ Qax ∧ Qby ∧ Qcz)

as defining the set of words in which there are positions x, y, z with x < y < z
holding the letters a, b and c respectively, i.e. the set Σ∗aΣ∗bΣ∗cΣ∗. A large
amount of research has sought to understand the expressive power of such sen-
tences. In particular, the celebrated result of McNaughton and Papert [6] shows
that languages definable by a first-order sentence which, as the one above, use
only the order predicate < are exactly the star-free regular languages. By a re-
sult of Schützenberger, these are also the regular languages recognizable by an
aperiodic (or group-free) monoid and we can thus decide whether a language
is FO definable. Kamp [4] further showed that these FO sentences could be
restricted to use only three variables (provided that they can be reused). Much
later, Thérien and Wilke characterized languages definable by FO formulas us-
ing only two variables (FO2) [16] as languages recognized by monoids in DA.

� Part of this research took place while the author was at the University of Tübingen,
supported by the von Humboldt Foundation.

�� Research supported in part by NSERC, FQRNT and the von Humboldt Foundation.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 526–538, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Restricted Two-Variable FO+MOD Sentences 527

When FO is augmented with modular quantifiers (checking whether a property
holds for i (mod p) of the positions in the string), all languages recognizable by
solvable monoids can further be described. In this case too, three variables suf-
fice to obtain full expressivity. The power of FO+MOD two-variable sentences
was studied in [11, 12] and the results depended crucially on showing that every
such sentence was equivalent to one where no ordinary quantifier occurs within
the scope of a modular quantifier. In this paper, we handle the other extreme
case, that is sentences in which no modular quantifier lies in the scope of an
ordinary quantifier. This restriction is meaningful since we show that these are
provably less expressive than general two-variable sentences and can provide a
logical characterization for important subclasses of regular languages.

The key to our new results is a decomposition of the variety of monoids
DO (precise definitions will be given in Section 2) in terms of weakly-iterated
block products, an idea put forward in [12]. That result is interesting in its own
right but our motivation comes from two recent results in complexity theory. We
show that a regular language is definable by a two-variable sentence in which
no modular quantifier lies in the scope of another quantifier iff it is recognized
by a monoid in the class DO ∩ Ab. This happens to be precisely the class of
regular languages that can be recognized by ACC0-circuits with a linear num-
ber of wires [5] and by O(log n)-cost communication protocols [15]. In contrast,
languages defined by a two-variable sentence without this restriction can be com-
puted by ACC0-circuits using a linear number of gates and we believe that they
are the only regular languages with this property. The logical characterization of
languages recognized by monoids in DO∩Ab sheds new light on the circuit com-
plexity and communication complexity upper bounds, highlighting the interplay
between logic, algebra, complexity and formal languages in this context.

In Section 2, we introduce the algebraic tools needed for our discussion.
In Section 3, we decompose subvarieties of DO using weakly iterated block-
products and use this to obtain a logical characterization of the corresponding
regular languages in Section 4. Finally, we discuss the applications of these re-
sults to circuit complexity and communication complexity in Section 5.

2 Finite Monoids and Regular Languages

We sketch here the algebraic background needed for our discussion. For a more
thorough overview of algebraic automata theory, we refer the reader to e.g. [7].
A monoid M is a set with a binary associative operation (which we denote
multiplicatively) and a distinguished identity element 1M . For an alphabet Σ,
the set of finite words Σ∗ forms a monoid under concatenation and with identity
element ε. For a finite monoid M and language K ⊆ Σ∗, we say that K is
recognized by M if there exists a homomorphism h : Σ∗ → M and a subset
T ⊆ M such that K = h−1(T). A simple variant of Kleene’s Theorem states
that a language is regular iff it can be recognized by some finite monoid. In fact,
all monoids considered in this paper, with the exception of the free monoid Σ∗,
will be finite. It is useful to point out that if K and K ′ are recognized by M and

528 P. Tesson and D. Thérien

M ′ respectively then K’s complement is recognized by M and both K ∪K ′ and
K ∩ K ′ are recognized by M × M ′.

A class of finite monoids is a variety if it is closed under direct product,
homomorphic images and submonoids. In particular, we will deal with the variety
of solvable groups Gsol, p-groups Gp, Abelian groups Ab, Abelian p-groups
Abp, aperiodic or group-free monoids A, semilattices SL, i.e. monoids satisfying
x2 = x and xy = yx, and the variety DO of monoids M which satisfy the
identity (xy)ω(yx)ω(xy)ω = (xy)ω for all x, y ∈ M . In fact, ω can be chosen as
the smallest integer such that x2ω = xω for all x ∈ M .

Furthermore, for any variety of groups H, we denote as H the variety of
monoids whose subgroups all lie in H. For any variety V of monoids, we will
denote as L(V) the class of languages that can be recognized by a monoid of V.
These varieties of languages are fairly robust and in particular are closed under
Boolean operations. We focus on varieties of the form DO∩H and we give here
a description of the corresponding regular languages.

We say that words x, y ∈ Σ∗ are M -equivalent if h(x) = h(y) for any ho-
momorphism h : Σ∗ → M . Let α(x) ⊆ Σ be the set of letters occurring in x.
For a ∈ α(x), the a-left decomposition of x is the factorization x = x0ax1 with
a �∈ α(x0). The a-right decomposition is defined symmetrically. For a finite group
G we define the congruence ∼G

n,k on Σ∗ with |Σ| = n by induction on n + k.
First, x ∼G

n,0 y iff x, y are G-equivalent. Next, we let x ∼G
n,k y iff:

1. x ∼G
n,k−1 y;

2. α(x) = α(y);
3. For any a ∈ α(x) = α(y), if x = x0ax1 and y = y0ay1 are the a-left decom-

positions of x and y then x0 ∼G
n−1,k y0 and x1 ∼G

n,k−1 y1;
4. For any a ∈ α(x) = α(y), if x = x0ax1 and y = y0ay1 are the a-right

decompositions of x and y then x0 ∼G
n,k−1 y0 and x1 ∼G

n−1,k y1.

This equivalence relation is well-defined since |α(x0)| < |α(x)| in (3) and
|α(x1)| < |α(x)| in (4). These congruences allow us to describe languages in
L(DO ∩ H) and this will be crucial in the proof of Theorem 3.

Theorem 1 ([15]). Let K be a language in Σ∗ with |Σ| = n. Then K is in
L(DO ∩ H) iff K is the union of ∼G

n,k-classes for some k ∈ N and G ∈ H.

The following simple fact will also prove useful for Theorem 3 and Lemma 4:

Lemma 1 (e.g. [7]). A language K ∈ Σ∗ can be recognized by a semilatice iff
it is in the Boolean algebra generated by the languages Σ∗aΣ∗. Furthermore, u, v
are M -equivalent for any semilattice M iff α(u) = α(v).

Let M and N be finite monoids. As in [11] we denote the operation of M as
+ and its identity element as 0 to distinguish it from the operation of N . A left-
action of N on M is a function mapping pairs (n,m) ∈ N ×M to nm ∈ M and
satisfying n(m1 +m2) = nm1 +nm2, n1(n2m) = (n1n2)m, n0 = 0 and 1m = m.
Right actions are defined symmetrically. If we have both a right and a left-
action of N on M that further satisfy n1(mn2) = (n1m)n2, we can construct the

Restricted Two-Variable FO+MOD Sentences 529

bilateral semidirect product M ∗∗N which we define as the monoid with elements
in M ×N and multiplication defined as (m1, n1)(m2n2) = (m1n2 +n1m2, n1n2).
This operation is associative and (0, 1) acts as an identity for it.

For varieties V,W, we denote V�W the variety generated by all semidirect
products M ∗ ∗N with M ∈ V, N ∈ W. For varieties U,V,W we always
have (U�V)�W ⊆ U�(V�W) but the containment is strict in general. Block-
product decompositions of varieties traditionally use the stronger bracketing
but [11] showed the relevance of the weak bracketing, particularly in relation to
two-variable logical sentences.

The languages recognized by V�W can be conveniently described in terms of
languages recognized by V and W. For a monoid N ∈ W, an N -transduction τ
is a function determined by two homomorphisms hl, hr : Σ∗ → N and mapping
words in Σ∗ to words in (N × Σ × N)∗. For a word w = w1 . . . wn ∈ Σ∗ we set
τ(w) = τ(w1)τ(w2) . . . τ(wn) with τ(wi) = (hl(w1 . . . wi−1), wi, hr(wi+1 . . . wn)).
For a language K ⊆ (N × Σ × N)∗, let τ−1(K) = {w ∈ Σ∗ : τ(w) ∈ K}.
Theorem 2. [9, 7] A regular language lies in L(V�W) iff it is the Boolean
combination of languages in L(W) and languages τ−1(K) for some K ∈ V and
N -transduction τ with N ∈ W.

A pointed word is a pair (w, p) consisting of a word w ∈ Σ∗ and a pointer p
with 1 ≤ p ≤ |w|. A pointed language K̇ is a set of such structures and, as in [17],
we extend the notion of monoid recognizability to these languages: K̇ is recog-
nized by M if there are homomorphisms hl, hr : Σ∗ → M and a set of triples T ⊆
(M × Σ × M) such that K̇ = {(w, p) : (hl(w1 . . . wp−1), wp, hr(wp+1 . . . w|w|)) ∈
T}. For a variety V we will denote as P (V) the set of pointed languages recog-
nized by a monoid in V. Abusing our terminology, it will be convenient to think
of ordinary words in Σ∗ as pointed words with p = 0 and thus view L(V) as a
subset of P (V).

3 A Weak Block Product Decomposition of DO

In this section, we characterize each variety DO ∩ H for a variety of groups H
using weakly iterated block products. The idea is similar to that of [11] but we
also need the combinatorial description of the corresponding regular languages.

Theorem 3. Let H be a variety of finite groups, and VH be the smallest variety
such that H ⊆ VH and VH�SL ⊆ VH, then VH = DO ∩ H.

Proof. Clearly, DO ∩ H contains H and we also need to show that it is closed
under block product with SL. First, we claim that DO�SL = DO. Let M ∈ DO
and N ∈ SL. As we did earlier, we denote the multiplication of M additively
(even though M is not necessarily commutative). Since M ∈ DO there exists an
integer k such that k(v + w) + k(w + v) + k(v + w) = k(v + w) and (2k)v = kv
for all v, w ∈ M and we prove that any bilateral semidirect product M ∗ ∗N
satisfies the identity (xy)2k(yx)2k(xy)2k = (xy)2k.

530 P. Tesson and D. Thérien

Let x = (m1, n1) and y = (m2, n2) be arbitrary elements of M ∗ ∗N . By
definition of the bilateral semidirect product, we have xy = (m1n2+n1m2, n1n2)
and so (xy)2k = (z, (n1n2)2k) where

z = m1n2(n1n2)2k−1 + n1m2(n1n2)2k−1 + . . . + (n1n2)2k−1n1m2

Since N is commutative and idempotent (n2 = n), this is simply:

z = m1(n1n2) + n1m2(n1n2) + . . . + (n1n2)m2

= m1(n1n2) + n1m2(n1n2) + (2k − 1) [(n1n2)m1(n1n2) + (n1n2)m2(n1n2)]
+(n1n2)m2n1 + (n1n2)m2

By the same argument (xy)2k(yx)2k(xy)2k is the pair (z′, n1n2) with

z′ = m1(n1n2) + n1m2(n1n2) + (2k − 1) [(n1n2)m1(n1n2) + (n1n2)m2(n1n2)]
+(2k)[(n1n2)m2(n1n2) + (n1n2)m1(n1n2)]
+(2k − 1) [(n1n2)m1(n1n2) + (n1n2)m2(n1n2)] + (n1n2)m2n1 + (n1n2)m2.

If we let v = (n1n2)m1(n1n2) and w = (n1n2)m2(n1n2), then the middle part
of the product is simply (2k−1)(v+w)+2k(w+v)+(2k−1)(v+w) and since M
satisfies k(v+w)+k(w+v)+k(v+w) = k(v+w) and (2k)v = kv, this sum is equal
to (k−1)(v +w)+k(v +w)+(k−1)(v +w) = (3k−2)(v +w) = (2k−2)(v +w).
This gives

z′ = m1(n1n2) + n1m2(n1n2) + (2k − 2)[(n1n2)m1(n1n2)
+(n1n2)m2(n1n2)] + (n1n2)m2n1 + (n1n2)m2

= z

and so (xy)2k(yx)2k(xy)2k = (xy)2k as claimed.
Furthermore, folklore results show that if the variety W is aperiodic (i.e.

contains no non-trivial groups), then for any variety V the groups lying in V�W
are exactly those in V. In particular, SL is aperiodic so (DO ∩ H)�SL ⊆ H
and by the first part of our argument (DO ∩ H)�SL ⊆ DO ∩ H.

Let V0 = H and Vi+1 = Vi�SL: to complete our proof we now show
that DO ∩ H is contained in any variety containing H and closed under block
product with SL. We do so by proving that any monoid of DO∩H lies in some
Vi. We use the family ∼H of congruences for DO ∩ H and show that for each
alphabet Σ with |Σ| = n, any k ≥ 0, any group G and any word w ∈ Σ∗, the
language L

(w)
n,k = {v ∈ Σ∗ : v ∼G

n,k w} is recognized by some M in Vn+k. We
argue by induction on n + k: if n = 0 the claim is trivial. If k = 0 then Lw

is the set of words that are G-equivalent to w and this can be recognized by a
direct product of t copies of G where t is the number of homomorphisms from
Σ∗ to G.

Suppose n, k > 0: to check if v ∼G
n,k w, we need to first verify that α(v) =

α(w) and, as stated in Lemma 1, this can be done using some monoid in SL.
Now, let w = wlawr and v = vlavr be the a-left-decompositions of w and v.

Restricted Two-Variable FO+MOD Sentences 531

We claim that there is an SL-transduction τ and a language K ′ ∈ L(Vn+k−1)
such that τ−1(K ′) is the set of words v such that vl ∼G

n−1,k wl. Consider the
two-element monoid U1 = {0, 1} in SL with multiplication given by 0 · x =
x · 0 = 0 and 1 · x = x · 1 = x. Let hl = hr : Σ∗ → U1 be the homomorphism
mapping a to 0 and every other letter to the identity 1. Thus, hl(v) = 0 iff
a ∈ α(v) and the transduction τ defined by hl and hr maps v to the sequence
of triples

(1, v1, 0) . . . (1, vi, 0)(0, vi+1, 0) . . . (0, vj , 0)(0, vj+1, 1) . . . (0, vn, 1)

where vi and vj are the first and last occurrence of a in v (if any such occur-
rence exists). We are trying to check if vl ∼G

n−1,k wl and we know by induction

that the language L
(wl)
n−1,k is in L(Vn+k−1), i.e. there exists M ∈ Vn+k−1, a

homomorphism h : Σ∗ → M and a subset T ⊆ M with L
(wl)
n,k−1 = h−1(T).

Let h′ : (U1 × Σ × U1)∗ → M be the homomorphism which maps triples

(t, b, t′) ∈ (U1 × Σ × U1) to h′(t, b, t′) =

{
h(b) if t = 1 and b �= a;
1M otherwise.

One can verify that for any v ∈ Σ∗ with the a-left decomposition vlavr we
now get h′(τ(v)) = h′(τ(vl)) = h(vl) because all the triples of τ(v) beyond that
prefix are mapped to 1M . Let K ′ = h′−1(T): we have K ′ ∈ L(Vn+k−1) and
τ−1(K ′) = {v ∈ Σ∗ : vl ∈ L

(wl)
n−1,k} as we had required.

Similarly, we can recognize words such that wr ∼G
n,k−1 vr with the help of

a U1-transduction. We argue symmetrically about the right-decompositions and
conclude that L

(w)
n,k ∈ L(Vn+k).

4 An Application to Two-Variable Sentences

We refer the reader to e.g. [9] for a thorough overview of logical descriptions
of regular languages and their relation to algebraic automata theory and cir-
cuit complexity. As we suggested in our introduction, we view finite words over
the finite alphabet Σ as logical structures. We construct logical formulas using
the order predicate <, the “content” predicates {Qa|a ∈ Σ}, constants t (true)
and f (false), Boolean connectives, a set of variables {x1, . . . , xn}, existential
and universal quantifiers as well as modular quantifiers ∃i mod mx. The atomic
formulas are either t, f , xi < xj or Qaxi. A word structure over alphabet Σ
and variable set V ⊆ {x1, . . . , xn} is a pair (w,p) consisting of a word w ∈ Σ∗

and a set of pointers p = (pi1 , . . . , pik
) with 1 ≤ pi ≤ |w| which associate each

variable xij
∈ V with a position pij

in the string. A simple extension of a word
structure (w,p) over Σ,V is a word structure (w,p′) over Σ, (V ∪{xik+1}) such
that xik+1 �∈ V and pij

= p′ij
for 1 ≤ j ≤ k. We can now formally define the

semantics of our formulas in a natural way. If w = w1 . . . wt is a word, we have

532 P. Tesson and D. Thérien

(w,p) |= Qaxi if wpi
= a;

(w,p) |= xi < xj if pi < pj ;
(w,p) |= ∃x(φ(xk)) if there exists an extension (w,p′) of (w,p) such

that (w,p′) |= φ(xk);
(w,p) |= ∃i mod mxk(φ(xk)) if there exists i modulo m extensions (w,p′) of

(w,p) such that (w,p′) |= φ(xk);

We omit for space the obvious definition of the semantics of the Boolean con-
nectives and of the universal quantifiers.

If φ is a sentence, i.e. a formula with no free variable, we denote as Lφ ⊆ Σ∗

the language Lφ = {w : (w, ∅) |= φ}. Similarly, it will be useful for our purposes
to consider the special case of formulas with a single free variable. Such a formula
naturally defines a set of word structures (w, p) with 1 ≤ p ≤ |w|, i.e. a pointed
language. For any formula φ having a single free variable and Φ a class of such
formulas, we will denote as Pφ the pointed language Pφ = {(w, p) : (w, p) |= φ}
and P (Φ) the class of all Pφ with φ ∈ Φ.

We will denote as FO, MOD, MODp, FO + MOD and FO + MODp the
class of respectively first-order sentences (no modular quantifier), modular sen-
tences (no existential or universal quantifier), modular sentences with only mod
p quantifiers and so on. The expressive power of such sentences has been in-
vestigated thoroughly and all existing results are algebraic in nature: languages
definable by sentences of the fragment Γ are exactly those in L(VΓ) for some
appropriate variety VΓ. (see [10] for elements of a meta-explanation). In partic-
ular, we have L(FO) = L(A) [6, 8], L(MOD) = L(Gsol), L(MODp) = L(Gp),
L(FO + MOD) = L(Gsol) [13].

While it is natural to construct logical sentences using a new variable for each
quantifier, one can just as well write sentences that reuse variables. For instance,
we gave earlier a three-variable sentence defining the language Σ∗aΣ∗bΣ∗cΣ∗. It
is also definable by the two-variable sentence ∃x(Qax∧∃y(Qby∧x < y∧∃x(Qcx∧
y < x))). The semantics of the sentence are perfectly unambiguous (see [12] for
a formal discussion). We denote FOk, FO + MODk and so on the class of
sentences using only k variables. Surprisingly, three variables suffice to describe
any language in L(FO + MOD) [4, 3, 12]. If only one variable is allowed, it is
easy to show that our expressive power is dramatically reduced and, for instance,
that L(FO1) = L(SL) and L(MOD1) = L(Ab). The expressiveness of FO2

or FO + MOD2 is trickier to understand [16, 12] but also admits algebraic
characterizations. In order to study FO + MOD2, [12] show that every such
sentence can be rewritten so that no existential or universal quantifier appears
in the scope of a modular quantifier. We will show that this is not just an artefact
of the proof: at the other end of the spectrum, two-variable sentences in which
no modular quantifier appears in the scope of an ordinary quantifier are provably
less expressive than general FO + MOD2 sentences.

Definition 1. Let Σ be an alphabet and Φ = {φ1, . . . φk} be a set formulas over
Σ with one free variable, say x, and a single bound variable y (possibly bound

Restricted Two-Variable FO+MOD Sentences 533

by more than one quantifier). A recycling Φ-substitution σ over Σ is a function
mapping two-variable sentences over the alphabet 2Φ (the power set of Φ) to two-
variable sentences over Σ as follows: each occurrence of the predicate QSx with
S ⊆ Φ is replaced by the conjunction

∧
φi∈S φi and each occurrence of QSy is

replaced by the similar formula in which the roles of x and y are interchanged.

Note that recycling substitutions preserve the two-variable property. If Γ is
a class of two-variable sentences and Λ is a class of formulas with one bound and
at most one free variable we will denote by Γ ◦Λ the class of sentences which are
Boolean combinations of sentences in Λ and of sentences obtained by applying
to a sentence ψ of Γ a recycling substitution in which all formulas in Φ lie in Λ.

Lemma 2. Let σ be a substitution and for any w = w1 . . . wn in Σ∗ let σ−1(w)
be the word u1 . . . un over the alphabet 2Φ with ui = {φj : (w, i) |= φj}. Then
w |= σ(ψ) iff σ−1(w) |= ψ.

The proof is omitted but is straightforward. The function mapping w to
σ−1(w) is of course quite similar to the notion of transduction which we in-
troduced in Section 2 and we now prove an equivalent of the “block prod-
uct/substitution principle” of [17] which formalizes the idea:

Lemma 3. Let Γ be a class of FO + MOD2 sentences and Λ a class of FO +
MOD2 formulas with one free variable. If V,W are monoid varieties such that
L(Γ) = L(V) and P (Λ) = P (W), then L(Γ ◦ Λ) = L(V�W).

Proof. Since L(V�W) is closed under Boolean combinations, the left-to-right
containment follows if we show that for any ψ ∈ Γ and any Λ-substitution σ
we have L(σ(ψ)) ∈ L(V�W). Let w be some word in Σ∗ and Φ = {φ1, . . . φk}
be the formulas used by σ. Since P (W) = P (Λ), the pointed languages Pφj

:
{(w, i) : (w, i) |= φj} can be recognized by monoids M1, . . . , Mk in W and
M = M1 × . . . × Mk recognizes any Boolean combination of them. We can
therefore construct an M -transduction τ such that τ(wi) completely determines
the set {φj : (w, i) |= φj}. Since we assume that L(ψ) is recognized by a monoid
N in V, we get that L(σ(ψ)) = τ−1(K) for some K ⊆ (M × Σ × M)∗ also
recognized by N . Hence, L(σ(ψ)) ∈ L(V�W).

For the right-to-left containment, we need to show that any language of
L(V�W) can be described by a sentence of Γ ◦ Λ and we proceed similarly.
If τ is an M -transduction for some M ∈ W then for any triple (m1, a,m2) ∈
M × Σ × M , the pointed language T(m1,a,m2) = {(w, i) : τ(wi) = (m1, a,m2)}
is in P (W) and is thus definable by some formula φ(m1,a,m2) in P (Λ). Any lan-
guage K ⊆ (M ×Σ ×M)∗ in L(V) is definable by some sentence ψK ∈ Γ . Now
the set of words such that τ(w) ∈ K is defined by the sentence obtained from
ψK by a recycling substitution using the formulas1 φ(m1,a,m2).

Let FF1 be the class of FO formulas with one free and one quantified variable.

1 Note that at any position i, exactly one of the φ(m1,a,m2) is true and we can thus
identify the domain of σ−1(wi) with the set M × Σ × M .

534 P. Tesson and D. Thérien

Lemma 4. P (FF1) = P (SL).

Proof (sketch). Each FF1 formula can be rewritten as a Boolean combination
of formulas of the form ∃y((x ∗ y) ∧ Qay with ∗ ∈ {<,>,=}. By Lemma 1, the
pointed language defined by such a formula is recognized by some M ∈ SL since
we are simply asking whether the letter a occurs somewhere before x (if ∗ is
>), at x (if ∗ is =) or after x (if ∗ is <). Conversely, if a pointed language K
is recognized by some M ∈ SL then by Lemma 1 membership of (w, p) in K
depends on the letter wp and on the set of letters occurring before and after the
pointer. Thus, K can be defined by an FF1 formula.

Theorem 4. Let Σ be a finite alphabet. A language L ⊆ Σ∗ is
(1) definable by a FO+MOD2 sentence in which no modular quantifier appears
in the scope of an ordinary quantifier iff M(L) ∈ DO ∩ Gsol;
(2) definable by a FO+MOD2 sentence in which no modular quantifier appears
in the scope of another quantifier iff M(L) ∈ DO ∩ Ab;
(3) definable by a FO + MOD2 sentence in which all modular quantifiers have
prime moduli and no Modp-quantifier appears in the scope of an ordinary quan-
tifier or of a Modq quantifier for p, q distinct primes iff M(L) ∈ DO ∩ Gnil;

Proof. The proofs are applications of Lemma 3. By [11], we have L(MOD2) =
L(Gsol). Let Dk be the class FO+MOD2 sentences in which no modular quanti-
fier appears in the scope of an ordinary quantifier and in which the nesting depth
of ordinary quantifiers is k. To complete our argument, it suffices to note that sen-
tences in Dk are exactly those which can be obtained from MOD2 sentences by
applying successively k FF1 substitutions. By applying the block-product substi-
tution principle and Lemma 4 we get that L(Dk) = L((. . . (Gsol�SL) . . . �SL))
(where the product has length k) and by Theorem 3 the union of the varieties
on the right is exactly DO ∩ Gsol.

To obtain, the second and third parts of our theorem we simply need to recall
that L(MOD1) = L(Ab) and that L(Gnil) is the class of languages definable
by MOD2 sentences satisfying the restriction given in (3) [11, 13].

The regular language K = (b∗ab∗a)∗bΣ∗ is defined by the sentence ∃x(Qbx∧
∃0 mod 2y(x < y ∧ Qax)). We claim that K cannot be recognized by some M
in DO and, thus defined by a FO + MOD2 sentence in which the modular
quantifiers lie outside the scope of the ordinary quantifiers. Indeed, let h be the
recognizing morphism and consider x = h(ab) and y = h(a): we have for some
ω that h[(aba)ω(baa)ω(aba)ω] = h[(aba)ω] in M but this is impossible since
(aba)ω(baa)ω(aba)ω is in K while (aba)ω is not.

The variety DO is decidable since it is defined by a simple identity and it is
also easy to decide whether the subgroups of such a monoid lie in Ab,Gp,Gnil

or Gsol. Moreover the proof of Theorem 4 actually shows a tight correspondence
between the depth of ordinary quantifiers in the FO + MOD2 formulas with
the depth of the product (. . . (H�SL)�SL) . . . �SL and each of these varieties
is also decidable, as long as H is. The argument requires machinery beyond the
scope of this paper but the key ideas can be found in [17].

Restricted Two-Variable FO+MOD Sentences 535

5 A New Perspective on Communication Complexity
and Circuit Complexity Upper Bounds

Our decomposition of DO ∩ Ab in terms of block products and the ensuing
logical characterization of the corresponding languages allow us to shed new
light on two complexity problems recently resolved in [5, 15].

In [5], one considers Boolean circuits of bounded depth. A circuit Cn is an
acyclic digraph: the nodes of in-degree 0 are input nodes labeled with a Boolean
variable xi with 1 ≤ i ≤ n or a Boolean constant, the other nodes are labeled by
one of the Boolean functions {∧,∨,Modm}. We also assume that there is a single
output node, i.e. a node of out-degree 0. A circuit Cn with n inputs computes
a function Cn : {0, 1}n → {0, 1} in the obvious way (note that the output of a
Modm gate is 1 if the sum of its inputs is 0 modulo m). The depth of Cn is the
longest path from an input to the output node. The wire-size and the gate-size of
Cn are, respectively, the number of edges and nodes in the graph. By extension
a family of circuits C = (Cn)n≥0 computes a function C : {0, 1}∗ → {0, 1} (i.e.
defines a language of {0, 1}∗) and we then think of the depth and size of C as
a function of n. The class of languages which can be recognized by such circuits
in polynomial-size and bounded-depth is denoted ACC0.

To process a non-Boolean input w ∈ Σ∗ with such circuits we can for instance
require that the circuit be given a simple Boolean encoding of each letter wi.
In [5], it was shown that the regular languages definable by an ACC0 circuit using
only a linear number of wires are exactly those recognized by monoids in DO∩
Ab. The result relies on a communication complexity result: suppose Alice and
Bob are given a word w = w1w2 . . . w2n where Alice knows only the odd-indexed
wi and Bob only the even-indexed ones. What is then the minimal number
of bits that Alice and Bob need to exchange in the worst case to determine
whether w lies in some regular language L? If L is recognized by some M in
DO ∩ Ab this can be done with O(log n) bits of communication but requires
Θ(n) bits otherwise [15]. It is interesting to note that the circuit complexity and
communication complexity upper bounds follow simply from the block-product
decomposition of this variety:

Theorem 5. If every K ∈ L(V) has a circuit with a linear number of wires then
so does any K ′ ∈ L(V�SL). Similarly, if each K ∈ L(V) has communication
complexity O(log n) then so does any K ′ ∈ L(V�SL).

Proof (sketch). Bilardi and Preparata show in [2] that there exists a linear-size
circuit computing Prefix-Suffix-OR i.e. a circuit with n Boolean inputs x1, . . . , xn

and 2n outputs p1, . . . , pn, s1, . . . , sn with pi =
∨i−1

j=1 xj and si =
∨n

j=i+1 xj .
It suffices to show that for any language K recognized by a monoid of V

and any M -transduction τ with M ∈ SL, the language τ−1(K) has a linear size
circuit. By Lemma 1, the value of τ(wi) is determined entirely by the letter wi

and the sets α(w1 . . . wi−1) and α(wi+1 . . . wn) of letters occurring in the prefix
and suffix around wi. By using |Σ| copies of the Prefix-Suffix-OR circuit, we can
therefore build a circuit with a linear number of wires which on input w1 . . . wn

536 P. Tesson and D. Thérien

produces n blocks of k = log(|M |2 · |Σ|) outputs such that the ith block encodes
the value of τ(wi). These values can now simply be fed into a circuit recognizing
K which, by assumption, uses only a linear number of wires.

For the communication complexity problem, Alice and Bob begin by exchang-
ing the location of the first and last occurrence of a letter that they have access
to. This requires O(log n) bits of communication and this information is enough
for each player to privately compute τ(wi) for any wi he has access to.

In fact, the result in [2] is more general: for a regular language L, there exists a
circuit which computes Prefix-Suffix-L iff L is piecewise-testable, i.e. recognized
by a monoid in the variety J. This well known variety contains SL and is in fact
the largest variety of aperiodics satisfying the equality DO�V = DO [1].

Corollary 1. Every language in L(DO∩Ab) can be defined by a linear-wire-size
family of ACC0 circuits and has two-party communication complexity O(log n).

Proof. For any K ∈ L(Ab), membership of w ∈ K depends solely on the number
|w|a of occurrences of each letter a in w modulo some integer m [7]. Computing
|w|a modulo m, can clearly be done with a single Modm gates with n input
wires and by a communication protocol of cost 2 log |m|. Thus, any K in L(Ab)
has linear-wire-size circuits and communication complexity O(1). Our statement
then follows from Theorem 5 and the decomposition result of Theorem 3.

We should note that the same idea can be used to show that for every lan-
guage L recognized by M ∈ DO ∩ Gnil there exists k such that the k-party
communication complexity of L is O(1) (see [14] for a discussion of the multi-
party communication model).

Alternatively, one can view the linear-wire-size circuits for DO∩Ab as evalu-
ating a two-variable formula with no modular quantifier nested in another quan-
tifier. First the circuit evaluates the most deeply nested subformulas with one
free variable, say x. These are FF1 formulas and thus Boolean combinations of
formulas such as φ(x) = ∃y(x < y ∧Qay) and the Prefix-Suffix-OR construction
allows us to simultaneously compute the value of φ(x) for each value of x using
only O(n) wires. These results are used in the next step to compute, for all po-
sitions y the value of formulas such as ψ(y) = ∃x(x < y ∧ φ(x)). At the output
level, we evaluate the value of a modular quantifier ∃i mod mxχ(x). It suffices to
feed the n values of χ(x) obtained in the previous step into a Modm gate.

In general, recognizing a language definable by an FO + MOD2 sentence
in which modular quantifiers are allowed in the scope of other quantifiers will
require an ACC0 circuit with a super-linear number of wires. However, these
languages can still be recognized using only O(n) gates. The strategy to build
such a circuit is similar: we are given, at some stage in our circuit the values
for each x of a formula φ(x) and want to compute for each y the value of a
formula of the form ψ(y) = ∃i mod mx(x < y ∧ φ(x)). For each y, this can of
course be computed by a single Modm gate in which we feed the results of
φ(x) for each x < y. The sub-circuit computing all values ψ(y) from the values
φ(x) will use only n gates but Ω(n2) wires. In fact, we conjecture that the

Restricted Two-Variable FO+MOD Sentences 537

regular languages recognized by an ACC0 circuit with a linear number of gates
are exactly those definable in FO + MOD2 and that, among these, the fine
line between linear-gate-size and linear-wire-size is thus captured exactly by the
ability to pull modular quantifiers out of the scope of any other quantifier.

It is also very natural to try and characterize regular languages which can
be computed by linear-gate-size restricted ACC0 circuits where we allow only
Modm gates (i.e. CC0 circuits), or only ∧,∨ gates (i.e. AC0 circuits). We believe
that these regular languages are exactly those in MOD2 and FO2 respectively.
In particular, we conjecture that every regular language recognized by an AC0

circuit with a linear number of gates can also be recognized by an AC0 circuit
with a linear number of wires. Resolving this question for CC0 circuits amounts
to proving a lower bound of ω(n) for the number of gates in CC0 circuits com-
puting the AND of n bits or the word problem of a non-solvable group. To the
best of our knowledge, the state-of-the-art lower bound state that CC0 circuits
for AND requires Ω(n) non-input gates, a world away from the suspected Ω(cn).
As a first step, it would an interesting start to establish an ω(n) lower bound
for the number of wires in such circuits.

References

1. J. Almeida and P. Weil. Profinite categories and semidirect products. J. Pure and
Applied Algebra, 123:1–50, 1998.

2. G. Bilardi and F. Preparata. Characterization of associative operations with prefix
circuits of constant depth and linear size. SIAM J. Comput., 19(2):246–255, 1990.

3. N. Immerman and D. Kozen. Definability with a bounded number of bound vari-
ables. Information and Computation, 83(2):121–13, 1989.

4. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California, Berkeley, 1968.

5. M. Koucký, P. Pudlák, and D. Thérien. Bounded-depth circuits: separating wires
from gates. In Symposium on Theory of Computing (STOC’05), 2005.

6. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, Cambridge,
Mass., 1971.

7. J.-E. Pin. Syntactic semigroups. In G. R. et A. Salomaa, editor, Handbook of
language theory, volume 1, chapter 10, pages 679–746. Springer Verlag, 1997.

8. M. P. Schützenberger. On finite monoids having only trivial subgroups. Informa-
tion and Control, 8(2):190–194, Apr. 1965.

9. H. Straubing. Finite Automata, Formal Logic and Circuit Complexity. Boston:
Birkhauser, 1994.

10. H. Straubing. On the logical description of regular languages. In Proc. of the 5th
Latin American Theoretical Informatics Conf. (LATIN ’02), 2002.

11. H. Straubing and D. Thérien. Weakly iterated block products of finite monoids. In
Proc. of the 5th Latin American Theoretical Informatics Conf. (LATIN ’02), 2002.

12. H. Straubing and D. Thérien. Regular languages defined by generalized first-
order formulas with a bounded number of bound variables. Theory of Computing
Systems, 36(1):29–69, 2003.

13. H. Straubing, D. Thérien, and W. Thomas. Regular languages defined by general-
ized quantifiers. Information and Computation, 118:289–301, 1995.

538 P. Tesson and D. Thérien

14. P. Tesson. Computational Complexity Questions Related to Finite Monoids and
Semigroups. PhD thesis, McGill University, 2003.

15. P. Tesson and D. Thérien. Complete classifications for the communication com-
plexity of regular languages. Theory of Comput. Syst., 2004. To appear.

16. D. Thérien and T. Wilke. Over words, two variables are as powerful as one quan-
tifier alternation. In Proc. 30th ACM Symposium on the Theory of Computing,
pages 256–263, 1998.

17. D. Thérien and T. Wilke. Nesting until and since in linear temporal logic. Theory
Comput. Syst., 37(1):111–131, 2004.

	Introduction
	Finite Monoids and Regular Languages
	A Weak Block Product Decomposition of $\bf DO$
	An Application to Two-Variable Sentences
	A New Perspective on Communication Complexity and Circuit Complexity Upper Bounds

