WYSIWYG NPR:
Drawing Strokes Directly on 3D Models
R.D. Kalnins et al.

Eric Blais

“The Grand Challenge for NPR”
- Create stylized worlds from scratch
 - Aesthetic look fully under the artist’s control
 - World can be explored with style remaining consistent
- Let artists do what they do best
- Let computers do what they do best

Related Work
- Temporal coherence
 - Allows smooth exploration of a world

Related Work
- Painting on 3D models

 Hanrahan & Haeberli (1990)

Related Work
- 3D NPR modeling

Related Work
- WYSIWYG NPR
 - Flexible, intuitive system to quickly create NPR worlds from 3D models
Outline
- Introduction
- Overview
- Rendering
- Decals, creases, and silhouettes
- Hatching
- Results/Conclusion

Overview
- Artist controls 6 aspects:
 - Background
 - Base coat
 - Silhouette style
 - Decals
 - Hatchings
 - Crease style

Example: Creating an NPR can of fruits
- Start with the 3D model of a can:

Step 1: Add the base coat to the model and the background

Step 2: Set the silhouette and crease styles

Step 3: Draw the decals directly on the 3D model
Overview

- Step 4: Add the hatching for the shadow
- We’re done!

Outline

- Introduction
- Overview
- Rendering
 - Decals, creases, and silhouettes
 - Hatching
 - Results/Conclusion

Rendering

- Two different categories of shaders:
 - Fill shaders
 - Background
 - Base coat
 - Stroke shaders
 - Silhouettes
 - Creases
 - Decals
 - Hatching

Rendering - Fill Shaders

- Background shader
 - One per scene
 - Fills space outside all objects
- Base coat shaders
 - One per object
 - Fills visible triangle of the objects

Rendering - Stroke Shaders

- Stroke rendering based on the model of Northrup and Markosian (2000)

Rendering - Strokes

- Strokes are rendered on a separate triangle strip over the 3D model
- Strokes have:
 - Variable width (taper)
 - Variable alpha
 - Haloing
Rendering - Media Simulation

- Paper effects can be applied to any stroke
- Same approach as Curtis et al. (1997)
 - Paper height encoded at each pixel
 - High points easily catch pigments

Outline

- Introduction
- Overview
- Rendering
 - Decals, creases, and silhouettes
 - Hatching
 - Results/Conclusion

Decals

- Drawn directly over the 3D model
- Creates a stroke path over the model's surface

Creases

- Creases are identified in the model by:
 - Explicit tag on certain edges
 - Automatic discovery based on dihedral angle sharpness
- Want to allow artist to customize the stroke style for all creases

Complex models can have 1000s of creases
- Too time consuming to draw them one by one
- Want a way to assign a desired style to many creases at once
- Can't look too mechanical
- Use: Synthesis by example

Synthesis by example

- Artist sketches over a crease
- Offset from the crease path is recorded
- Similar offset patterns applied over other crease paths
Silhouettes
- View dependent
 - Number, length, size of silhouette edges are all variable
 - Want inter-frame coherence
- Use: Rubber-stamping

Rubber-stamping
- Artist provides a stroke prototype
- Stroke is copied along the silhouette of the object

Outline
- Introduction
- Overview
- Rendering
- Decals, creases, and silhouettes
 ➔ Hatching
- Results/Conclusion

Hatching
- Provides texture, tone value
- Simulates shadows or highlights
- Provides automatic LOD control

Structured Hatching
- Constant stroke density always maintained by:
 - Adding new strokes when viewpoint becomes closer
 - Modifying the stroke width for small changes
Free Hatching
- User draws the hatching for specific levels of detail
- Density consistency maintained by blending between the user-defined levels

Stationary vs. Mobile Hatching
- **Stationary Hatching**
 - Remains fixed on the model
 - Simulates a fixed light source
- **Mobile Hatching**
 - Moves on the model
 - Simulates a view-dependent light source

Outline
- Introduction
- Overview
- Rendering
- Decals, creases, and silhouettes
- Hatching
 ➔ Results/Conclusion

Results
- Very flexible system

Results
- High-quality images

Results
- Can generate complex scenes quickly
Results
- Allows interactive exploration of the scene
- Supports animated geometries

Limitations
- Many styles not yet supported

Limitations
- Only 1 silhouette stroke style per object supported
- Silhouettes still not perfectly coherent from frame to frame
- Issues addressed in “Coherent Silhouette Styles” (Siggraph 2003)

Conclusion
- Good progress on “The Grand Challenge”
 - Artist has much control over the aesthetic look of the final result
 - Style coherence is maintained during exploration
 - Software does much of the dirty work
- More work left to do
 - Not even close to allowing same amount of aesthetic flexibility currently available on paper
 - Frame-to-frame coherence of silhouettes can still be improved
 - Hatching still requires much user input