Question 1

Consider the following algorithm to detect cycles in an undirected graph $G = (V, E)$. Imagine that a father and son are travelling along the edges of G. The father sits at a vertex v (for $v = 1, 2, \ldots, |V|$), while the son traverses the graph according to the so-called “cycle searching principle”:

- For every vertex $u \in G$, give all edges out from u an order according to their end vertex. Thus we can say that u has a first edge, second edge, and so on. Note that an edge (u, v) may be the ith edge for u but the jth edge for v, where $i \neq j$.

- Whenever entering a vertex u of fanout k along the ith edge of u, the son leaves through edge $i + 1$ (here $k + 1$ is taken to be 1)

The father remembers the edge along which the son departed and sees if he comes back along the same edge. If, for every edge adjacent to v, the son does so, the father takes his son to vertex $v + 1$ (if $v < |V|$), or declares that G has no cycle (if $v = |V|$). Otherwise, he declares that there must be a cycle. Prove that this algorithm terminates in finite time, and that it is correct. What is the space complexity of the algorithm?

Question 2

A language is called unary if every string in it is of the form 1^i (the string of i ones) for some $i \geq 0$; in other words it is a subset of $\{1\}^*$. Show that if a unary language is NP-complete then $P = NP$. Prove that if every unary NP-language is in P then $EXP = NEXP$.

Here, $EXP = \bigcup_{k \in \mathbb{N}} DTIME(2^{n^k})$, i.e. all the problems solvable in exponential time. $NEXP$ is defined similarly.

Question 3

Assume that $DTIME(n) = NTIME(n)$. Show that $P = NP$.

Question 4

Find a non-regular language that you can recognize in $DSPACE(loglog(n))$. (In fact, it’s possible to show that this bound is tight, and that every language in $DSPACE(o(loglog(n)))$ is regular).

Question 5

In the proof that there is no optimal time bound, we used the assumption that you can pad the encoding of a TM M with an arbitrary number of 1’s. Explain why you need this assumption in the proof.