
COMP-520 – Review lecture

Vincent Foley-Bourgon

Sable Lab
McGill University

Winter 2015

Plan
I We’ll go over the different concepts we learned

I You will have to provide the answers

I People who answer get chocolate!

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 86

Compiler overview

What is a compiler?
An automated program that translates programs written in a
source language into equivalent programs in a target language.

4 / 86

Compiler vs interpreter?
I Compiler: translate a program (execute the result later)

I Interpreter: execute a program immediately

5 / 86

AOT vs JIT?
I AOT: compile everything now, execute later

I JIT: execute now (interpreter), compile the hot parts
during execution

6 / 86

Phases of the compilers

7 / 86

Phases of the compilers
Scanner

8 / 86

Phases of the compilers
Scanner Parser

9 / 86

Phases of the compilers
Scanner Parser AST

10 / 86

Phases of the compilers
Scanner Parser AST

Weeder

11 / 86

Phases of the compilers
Scanner Parser AST

WeederType check

Symbol
table

12 / 86

Phases of the compilers
Scanner Parser AST

WeederType check

Symbol
table

Code gen

13 / 86

Scanner

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

15 / 86

Regular expressions
What are the 5 building blocks of regular expressions?

I C

I E

I C

I A

I R

16 / 86

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I E

I C

I A

I R

17 / 86

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I C

I A

I R

18 / 86

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I A

I R

19 / 86

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I Alternation A|B

I R

20 / 86

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I Alternation A|B

I Repetition A*

21 / 86

Regular expressions
More regular expressions

I Optional A? = A|ε

I One-or-more A+ = A(A*)

I Range of characters [a-c] = ’a’|’b’|’c’

22 / 86

Scanner
How does flex match tokens?

23 / 86

Scanner
How does flex handle multiple matches?

I Longest match rule (e.g. var vs variance)

I First match rule (e.g. keywords vs identifiers)

24 / 86

Scanner
How does flex make regular expressions executable?

Regular expression → NFA → DFA

25 / 86

Regular languages
Given a language, what is one sign that it is not a regular
language?

Nesting (e.g. parentheses, control structures)

Regular languages cannot be defined recusively.

26 / 86

Parser

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

28 / 86

Context-free grammars
What are the 4 building blocks of context-free grammars?

I T

I N

I P

I S

29 / 86

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I N

I P

I S

30 / 86

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I P

I S

31 / 86

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I Productions (e.g. stmt → PRINT ’(’ expr ’)’)

I S

32 / 86

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I Productions (e.g. stmt → PRINT ’(’ expr ’)’)

I Start symbol

33 / 86

Context-free grammars
When is a grammar ambiguous?

When at least one sentence that has more than one derivation.

34 / 86

Ambiguous grammar
E → id | E ’+’ E

id + id + id

What are the two derivations for this sentence?

E

E E

E Eid

id id

+

+

E

EE

EE id

idid

+

+

35 / 86

Ambiguous grammar
What are the two ways to fix this ambiguity?

Factoring the grammar:
E = E ’+’ T | T;

T = id;

Precedence declarations:
%left ’+’

E = id | E ’+’ E;

36 / 86

Parsers
What do LL(1) and LR(1) mean?

I LL(1): left-to-right processing, left-most derivation, one
token of lookahead

I LR(1): left-to-right processing, right-most derivation, one
token of lookahead

37 / 86

Parsers
What is a left-most derivation? A right-most derivation?

stmt = IF expr THEN stmt ENDIF
| PRINT expr

expr = ID

if x then print x endif

// left -most derivation
IF expr THEN stmt ENDIF ==>

IF ID THEN stmt ENDIF

// right -most derivation
IF expr THEN stmt ENDIF ==>

IF expr THEN PRINT expr ENDIF

38 / 86

Parsers
What are the two types of parser we saw in class?

I T

I B

39 / 86

Parsers
What are the two types of parser we saw in class?

I Top-down

I B

40 / 86

Parsers
What are the two types of parser we saw in class?

I Top-down

I Bottom-up

41 / 86

Parsers
What is the difference between top-down and bottom-up?

I Top-down: start symbol ↓ leaves

I Bottom-up: leaves ↑ start symbol

42 / 86

Recursive descent parser
// Grammar
stmt = ID ’=’ expr ’;’

| PRINT expr ’;’
| ...

// Python code
def stmt():

next_tok = peek()
if next_tok == TOK_ID:

id = consume(TOK_ID)
consume(TOK_EQ)
e = expr()
consume(TOK_SEMI)
return astnode(AST_ASSIGN , lhs=id , rhs=e)

elif next_tok == TOK_PRINT:
consume(TOK_PRINT)
e = expr()
consume(TOK_SEMI)
return astnode(AST_PRINT , expr=e)

elif ...

43 / 86

Bottom-up parsers
What are the three actions of a bottom-up parser?

I S

I R

I A

44 / 86

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I R

I A

45 / 86

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I Reduce (replace the rhs of a production that’s on top of
the stack with its lhs)

I A

46 / 86

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I Reduce (replace the rhs of a production that’s on top of
the stack with its lhs)

I Accept

47 / 86

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: rule1 | rule2
rule1: ID
rule2: ID
%%

Reduce/reduce

48 / 86

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: ID ID | rule1 ID
rule1: ID
%%

Shift/reduce

49 / 86

AST

50 / 86

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

51 / 86

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

52 / 86

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

53 / 86

260 Chapter 7. Syntax-Directed Translation

T

E

T

E

T

E

T

E

T

E

T

E

Stmt

T

E

Stmt

x +if (y) { while (z) z = z + 1 od ; x = 8 } else z = 7 fi
id plus num rparenbegin while lparenif lparen id rparen id assign id plus num od semi id assign num end else id assign num fi

Stmt

Stmt

Stmts

Stmts

Stmt

$

$

Stmt

Start

Figure 7.18: Concrete syntax tree.

if

id
x

plus

id
y

assign

7
intconstid

z

block

while

id
z

id
z

id
z

plus

1
intconst

assign

8
intconst

assign

id
x

Figure 7.19: AST for the parse tree in Figure 7.18.

Weeder

55 / 86

Weeder
What is the role of the weeder?

Reject invalid programs that the parser cannot.

56 / 86

Weeder
What are some examples that a parser cannot reject and must
be done in a weeder?

I Reject break and continue outside of loops

I Reject switch statements with multiple default branches

I Reject non-void functions without return statements

57 / 86

Weeder
Why can’t we write a parser to refuse break outside loops?

Context-free grammar, we can’t know whether we are in a loop
or not.

(With a hand-written parser, we could increment/decrement a
counter when we enter/exit a loop body. This model is more
powerful than a CFG.)

58 / 86

Weeder
If a check can be done in the parser and in the weeder, where
should we do it?

I Where it’s simpler

I Where it gives the better error message

59 / 86

Symbol tables

Symbol tables
What is stored in a symbol table?

Identifiers and their related information.

61 / 86

Symbol tables
What information can be associated with a symbol?

I Type

I Offset in stack frame

I Resources for methods (e.g. number of locals, stack limit)

I Original name

I Etc.

62 / 86

Symbol tables
What data structure is typically used for symbol tables?

Hash tables

63 / 86

Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables

64 / 86

Symbol tables
How do we lookup a symbol?

Search hash tables in the stack from top to bottom

65 / 86

Type checking

Type checking
What is the role of type checking?

Reject programs that are syntactically correct, but semantically
wrong

67 / 86

Type checking
I What is the input of the type checker? AST

I What is the output of the type checker? Annotated AST

68 / 86

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type? Yes

69 / 86

Type checking
Where do we store the type of expressions?

I In the AST

I In an auxiliary table (SableCC)

70 / 86

Type checking
Exercise

var x int = expr

I Type check expr

I Make sure int = typeof(expr)

I Report an error if the types don’t match

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

71 / 86

Type checking
Exercise

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool

72 / 86

Type checking
Exercise

// x is declared as an int
max(2+3, x)

I Type check 2+3

I Type check x

I Type check max

I Make sure max accepts two parameters and that 2+3 has
the type of the first formal parameter and x has the type
of the second formal parameter

I The whole expression has the return type declared for max

73 / 86

Inference rules
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e : bool Γ ` s1 Γ ` s2

Γ ` if e {s1} else {s2}

74 / 86

Inference rules
You should have no problem reading and writing rules like
this one:

L,C,M,V ` Ei : σi

∃~τ : constructor(L, C, ~τ) ∧
~τ := ~σ ∧
(∀~γ : constructor(L, C, ~γ) ∧ ~γ := ~σ

⇓
~γ := ~τ

)

L,C,M,V ` new C(E1, . . . ,En) : C

Just kidding :)

75 / 86

Code generation

Code generation
Code generation has many sub-phases:

I Computing resources

I Generating an IR of the code

I Optimizing the code

I Emitting the code

77 / 86

Computing resources
In JOOS, what resources did we need to compute?

I L

I S

I L

I O

78 / 86

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I S

I L

I O

79 / 86

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I L

I O

80 / 86

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I Labels (for control structures and some operators)

I O

81 / 86

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I Labels (for control structures and some operators)

I Offsets (locals and formals)

82 / 86

IR
Which IRs did we see in class?

JVM Bytecodes and VirtualRISC

83 / 86

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

I How many locals? 1

I Stack height? 2

84 / 86

JVM bytecodes
How would we generate code for the following pattern?

if (E) S1 else S2

<code for E>
ifeq else_branch
<code for S1>
goto end_if
else_branch:
<code for S2>
end_if:

85 / 86

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

86 / 86

