
COMP 520 Compiler Design
Peephole Contest

Due: Tuesday, April 14

Overview:

The purpose of this assignment is to get everyone familiar with Java bytecode, and the basics
of a peephole optimizer.

We have already studied JOOS and the peephole optimizer in class, and you may want
to review the class notes on JOOS and Java bytecode. You should also review, in detail,
the slides from Week 8 on optimizations, which give an introduction the the JOOS peephole
optimizer.

I have also created for you a directory which has everything you need to build and test
your peephole optimizer. You can find this at:
http://www.cs.mcgill.ca/~cs520/2015/PeepholeContest/,
with a .tar.gz file that you can download from
http://www.cs.mcgill.ca/~cs520/2015/Peephole.tar.gz.

If you have already made your own structure, then just take the bits from this that you
need. You should take at least the JOOS compiler files (because I gave you some A+ features
in it), and the benchmarks.

You should download and untar this file in some directory. Then, you should set an
environment variable called PEEPDIR to refer to this directory. All commands have been
set to be relative to PEEPDIR.

What you will find in PEEPDIR:

JOOSA-src: The source code for the JOOS compiler. This is mostly the A+ compiler,
except for the A+ peephole patterns. Thus, it does a bit more than the A- compiler
previously put on the web site. For example, it supports for loops, increment ex-
pressions, and proper computation of stack height. These extensions used to be class
assignments, but we did different assignments this year.

The key file you need to edit is patterns.h. This is where you will add your new
patterns. We saw how these patterns worked in our lecture, and you can review the
slides.

jasmin.jar: A copy of jasmin, used by the joosc script.

jooslib.jar: A copy of the JOOS library. You will need to make sure this is on your classpath
if you want to run the programs you are compiling and optimizing. It would be a very
good idea to do this, as a sanity check that your optimizations are not changing the
behaviour (which would be bad).

1



joos: This is a script that calls the joos compiler in JOOSA-src/ directory. It appends the
externals joos file names to the arguments you give. It produces one .j file for each
input .java file.

joosc: This calls the joos compiler to generate the .j files and then calls jasmin to generate
the .class files. You should be able to run those .class files with any Java system.
If you are using a cygwin windows system, then use the joosc.windows file (rename
it to joosc).

JOOSexterns: These are the .joos files that define the external signatures. They are in-
cluded by the scripts.

PeepholeBenchmarks: There are 7 benchmarks in this directory. For each benchmark you
should be able to use the Makefile (if there is one), or you can just ues the command:
$PEEPDIR/joosc *.java or $PEEPDIR/joosc -O *.java. Note that your peephole
optimizations will be applied only when the -O flag is set.

We will test your optimizer on these benchmarks, as well as some others that you don’t
get ahead of time.

Objective

The objective is to create output .j files which have the fewest number of bytecode instruc-
tions.

For each pattern that you add to patterns.h you must:

1. Ensure that it is sound, and that improves the generated code in some fashion (to
ensure that peephole optimizer reaches a fixed point).

2. Put a comment which describes the pattern clearly, and argues why it is sound. Un-
sound patterns will result in deductions of marks, and will be removed for the contest.

You will be asked to submit your patterns.h file, so all of your code should be in this
file, and it should work in the standard JOOS compiler without modification.

I will provide a script for counting the number of instructions (I am just trying to improve
it).

2


