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Native code

generation
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JOOS programs are compiled into bytecode.

This bytecode can be executed thanks to either:

• an interpreter;

• an Ahead-Of-Time (AOT) compiler; or

• a Just-In-Time (JIT) compiler.

Regardless, bytecode must be implicitly or

explicitly translated into native code suitable for

the host architecture before execution.
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Interpreters:

• are easier to implement;

• can be very portable; but

• suffer an inherent inefficiency:

pc = code.start;

while(true)

{ npc = pc + instruction_length(code[pc]);

switch (opcode(code[pc]))

{ case ILOAD_1: push(local[1]);

break;

case ILOAD: push(local[code[pc+1]]);

break;

case ISTORE: t = pop();

local[code[pc+1]] = t;

break;

case IADD: t1 = pop(); t2 = pop();

push(t1 + t2);

break;

case IFEQ: t = pop();

if (t == 0) npc = code[pc+1];

break;

...

}

pc = npc;

}
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Ahead-of-Time compilers:

• translate the low-level intermediate form into

native code;

• create all object files, which are then linked,

and finally executed.

This is not so useful for Java and JOOS:

• method code is fetched as it is needed;

• from across the internet; and

• from multiple hosts with different native code

sets.



COMP 520 Fall 2009 Native code generation (5)

Just-in-Time compilers:

• merge interpreting with traditional

compilation;

• have the overall structure of an interpreter;

but

• method code is handled differently.

When a method is invoked for the first time:

• the bytecode is fetched;

• it is translated into native code; and

• control is given to the newly generated native

code.

When a method is invoked subsequently:

• control is simply given to the previously

generated native code.
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Features of a JIT compiler:

• it must be fast, because the compilation

occurs at run-time (Just-In-Time is really

Just-Too-Late);

• it does not generate optimized code;

• it does not compile every instruction into

native code, but relies on the runtime library

for complex instructions;

• it need not compile every method; and

• it may concurrently interpret and compile a

method (Better-Late-Than-Never).
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Problems in generating native code:

• instruction selection:

choose the correct instructions based on the

native code instruction set;

• memory modelling:

decide where to store variables and how to

allocate registers;

• method calling:

determine calling conventions; and

• branch handling:

allocate branch targets.
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Compiling JVM bytecode into VirtualRISC:

• map the Java local stack into registers and

memory;

• do instruction selection on the fly;

• allocate registers on the fly; and

• allocate branch targets on the fly.

This is successfully done in the Kaffe system.
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The general algorithm:

• determine number of slots in frame:

locals limit + stack limit + #temps;

• find starts of basic blocks;

• find local stack height for each bytecode;

• emit prologue;

• emit native code for each bytecode; and

• fix up branches.
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NaÏve approach:

• each local and stack location is mapped to an

offset in the native frame;

• each bytecode is translated into a series of

native instructions, which

• constantly move locations between memory

and registers.

This is similar to the native code generated by a

non-optimizing compiler.
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Example:

public void foo() {

int a,b,c;

a = 1;

b = 13;

c = a + b;

}

Generated bytecode:

.method public foo()V

.limit locals 4

.limit stack 2

iconst_1 ; 1

istore_1 ; 0

ldc 13 ; 1

istore_2 ; 0

iload_1 ; 1

iload_2 ; 2

iadd ; 1

istore_3 ; 0

return ; 0

• compute frame size = 4 + 2 + 0 = 6;

• find stack height for each bytecode;

• emit prologue; and

• emit native code for each bytecode.
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Assignment of frame slots:

name offset location

a 1 [fp-32]

b 2 [fp-36]

c 3 [fp-40]

stack 0 [fp-44]

stack 1 [fp-48]

Native code generation:

save sp,-136,sp

a = 1; iconst 1 mov 1,R1

st R1,[fp-44]

istore 1 ld [fp-44],R1

st R1,[fp-32]

b = 13; ldc 13 mov 13, R1

st R1,[fp-44]

istore 2 ld [fp-44], R1

st R1,[fp-36]

c = a + b; iload 1 ld [fp-32],R1

st R1,[fp-44]

iload 2 ld [fp-36],R1

st R1,[fp-48]

iadd ld [fp-48],R1

ld [fp-44],R2

add R2,R1,R1

st R1,[fp-44]

istore 3 ld [fp-44],R1

st R1,[fp-40]

return restore

ret
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The näıve code is very slow:

• many unnecessary loads and stores, which

• are the most expensive operations.

We wish to replace loads and stores:

c = a + b; iload 1 ld [fp-32],R1

st R1,[fp-44]

iload 2 ld [fp-36],R1

st R1,[fp-48]

iadd ld [fp-48],R1

ld [fp-44],R2

add R2,R1,R1

st R1,[fp-44]

istore 3 ld [fp-44],R1

st R1,[fp-40]

by registers operations:

c = a + b; iload 1 ld [fp-32],R1

iload 2 ld [fp-36],R2

iadd add R1,R2,R1

istore 3 st R1,[fp-40]

where R1 and R2 represent the stack.
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The fixed register allocation scheme:

• assign m registers to the first m locals;

• assign n registers to the first n stack

locations;

• assign k scratch registers; and

• spill remaining locals and locations into

memory.

Example for 6 registers (m = n = k = 2):

name offset location register

a 1 R1

b 2 R2

c 3 [fp-40]

stack 0 R3

stack 1 R4

scratch 0 R5

scratch 1 R6
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Improved native code generation:

save sp,-136,sp

a = 1; iconst 1 mov 1,R3

istore 1 mov R3,R1

b = 13; ldc 13 mov 13,R3

istore 2 mov R3,R2

c = a + b; iload 1 mov R1,R3

iload 2 mov R2,R4

iadd add R3,R4,R3

istore 3 st R3,[fp-40]

return restore

ret

This works quite well if:

• the architecture has a large register set;

• the stack is small most of the time; and

• the first locals are used most frequently.
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Summary of fixed register allocation scheme:

• registers are allocated once; and

• the allocation does not change within a

method.

Advantages:

• it’s simple to do the allocation; and

• no problems with different control flow paths.

Disadvantages:

• assumes the first locals and stack locations

are most important; and

• may waste registers within a region of a

method.
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The basic block register allocation scheme:

• assign frame slots to registers on demand

within a basic block; and

• update descriptors at each bytecode.

The descriptor maps a slot to an element of the
set {⊥, mem, Ri, mem&Ri}:

a R2

b mem

c mem&R4

s 0 R1

s 1 ⊥

We also maintain the inverse register map:

R1 s 0

R2 a

R3 ⊥

R4 c

R5 ⊥
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At the beginning of a basic block, all slots are in

memory.

Basic blocks are merged by control paths:

J
J
J 







a R1

b R2

a R3

b R4

a ?

b ?

Registers must be spilled after basic blocks:

J
J
J 







a R1

b R2

st R1,[fp-32]
st R2,[fp-36]

a R3

b R4

st R3,[fp-32]
st R4,[fp-36]

a mem

b mem
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save sp,-136,sp

R1 ⊥

R2 ⊥

R3 ⊥

R4 ⊥

R5 ⊥

a mem

b mem

c mem

s 0 ⊥

s 1 ⊥

iconst 1 mov 1,R1

R1 s 0

R2 ⊥

R3 ⊥

R4 ⊥

R5 ⊥

a mem

b mem

c mem

s 0 R1

s 1 ⊥

istore 1 mov R1,R2

R1 ⊥

R2 a

R3 ⊥

R4 ⊥

R5 ⊥

a R2

b mem

c mem

s 0 ⊥

s 1 ⊥

ldc 13 mov 13,R1

R1 s 0

R2 a

R3 ⊥

R4 ⊥

R5 ⊥

a R2

b mem

c mem

s 0 R1

s 1 ⊥

istore 2 mov R1,R3

R1 ⊥

R2 a

R3 b

R4 ⊥

R5 ⊥

a R2

b R3

c mem

s 0 ⊥

s 1 ⊥
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iload 1 mov R2,R1

R1 s 0

R2 a

R3 b

R4 ⊥

R5 ⊥

a R2

b R3

c mem

s 0 R1

s 1 ⊥

iload 2 mov R3,R4

R1 s 0

R2 a

R3 b

R4 s 1

R5 ⊥

a R2

b R3

c mem

s 0 R1

s 1 R4

iadd add R1,R4,R1

R1 s 0

R2 a

R3 b

R4 ⊥

R5 ⊥

a R2

b R3

c mem

s 0 R1

s 1 ⊥

istore 3 st R1,R4

R1 ⊥

R2 a

R3 b

R4 c

R5 ⊥

a R2

b R3

c R4

s 0 ⊥

s 1 ⊥

st R2,[fp-32]

st R3,[fp-36]

st R4,[fp-40]

R1 ⊥

R2 ⊥

R3 ⊥

R4 ⊥

R5 ⊥

a mem

b mem

c mem

s 0 ⊥

s 1 ⊥

return restore

ret
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So far, this is actually no better than the fixed

scheme.

But if we add the statement:

c = c * c + c;

then the fixed scheme and basic block scheme

generate:

Fixed Basic block

iload_3 ld [fp-40],R3 mv R4, R1

dup ld [fp-40],R4 mv R4, R5

imul mul R3,R4,R3 mul R1, R5, R1

iload_3 ld [fp-40],R4 mv R4, R5

iadd add R3,R4,R3 add R1, R5, R1

istore_3 st R3,[fp-40] mv R1, R4
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Summary of basic block register allocation

scheme:

• registers are allocated on demand; and

• slots are kept in registers within a basic block.

Advantages:

• registers are not wasted on unused slots; and

• less spill code within a basic block.

Disadvantages:

• much more complex than the fixed register

allocation scheme;

• registers must be spilled at the end of a basic

block; and

• we may spill locals that are never needed.
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We can optimize further:

save sp,-136,sp save sp,-136,sp

mov 1,R1 mov 1,R2

mov R1,R2

mov 13,R1 mov 13,R3

mov R1,R3

mov R2,R1

mov R3,R4

add R1,R4,R1 add R2,R3,R1

st R1,[fp-40] st R1,[fp-40]

restore restore

ret ret

by not explicitly modelling the stack.
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Unfortunately, this cannot be done safely on the

fly by a peephole optimizer.

The optimization:

mov 1,R3 =⇒ mov 1,R1

mov R3,R1

is unsound if R3 is used in a later instruction:

mov 1,R3 =⇒ mov 1,R1

mov R3,R1
...

...

mov R3,R4 mov R3,R4

Such optimizations require dataflow analysis.
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Invoking methods in bytecode:

• evaluate each argument leaving results on the

stack; and

• emit invokevirtual instruction.

Invoking methods in native code:

• call library routine soft get method code to

perform the method lookup;

• generate code to load arguments into

registers; and

• branch to the resolved address.
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Consider a method invocation:

c = t.foo(a,b);

where the memory map is:

name offset location register

a 1 [fp-60] R3

b 2 [fp-56] R4

c 3 [fp-52]

t 4 [fp-48] R2

stack 0 [fp-36] R1

stack 1 [fp-40] R5

stack 2 [fp-44] R6

scratch 0 [fp-32] R7

scratch 1 [fp-28] R8
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Generating native code:

aload 4 mov R2,R1

iload 1 mov R3,R5

iload 2 mov R4,R6

invokevirtual foo // soft call to get address

ld R7,[R2+4]

ld R8,[R7+52]

// spill all registers

st R3,[fp-60]

st R4,[fp-56]

st R2,[fp-48]

st R6,[fp-44]

st R5,[fp-40]

st R1,[fp-36]

st R7,[fp-32]

st R8,[fp-28]

// make call

mov R8,R0

call soft get method code

// result is in R0

// put args in R2, R1, and R0

ld R2,[fp-44] // R2 := stack 2

ld R1,[fp-40] // R1 := stack 1

st R0,[fp-32] // spill result

ld R0,[fp-36] // R0 := stack 0

ld R4,[fp-32] // reload result

jmp [R4] // call method

• this is long and costly; and

• the lack of dataflow analysis causes massive

spills within basic blocks.
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Handling branches:

• the only problem is that the target address is

not known;

• assemblers normally handle this; but

• the JIT compiler produces binary code

directly in memory.

Generating native code:

if (a < b) iload 1 ld R1,[fp-44]

iload 2 ld R2,[fp-48]

if icmpge 17 sub R1,R2,R3

bge ??

How to compute the branch targets:

• previously encountered branch targets are

already known;

• keep unresolved branches in a table; and

• patch targets when the bytecode is eventually

reached.


