
COMP 520 Fall 2009 The JOOS language (1)

The

language

COMP 520 Fall 2009 The JOOS language (2)

The Java language:

• was originally called Oak;

• was developed as a small, clean, OO language

for programming consumer devices;

• was built into the Webrunner browser;

• matured into Java and HotJava;

• is now supported by many browsers, allowing

Java programs to be embedded in WWW

pages;

• is also used by web servers, even if the client

user is not running Java; and

• is the implementation language for several

large applications.

COMP 520 Fall 2009 The JOOS language (3)

Basic compilation (.java → .class):

• Java programs are developed as source code

for a collection of Java classes;

• each class is compiled into Java Virtual

Machine (JVM) bytecode;

• bytecode is interpreted or JIT-compiled using

some implementation of the JVM;

• Java supports a GUI; and

• many browsers have Java plugins for

executing JVM bytecode.

COMP 520 Fall 2009 The JOOS language (4)

Major benefits of Java:

• it’s object-oriented;

• it’s a “cleaner” OO language than C++;

• it’s portable (except for native code);

• it’s distributed and multithreaded;

• it’s secure;

• it supports windowing and applets;

• it’s semantics is completely standardized;

• it has a huge class library; and

• it’s finally finally finally officially open source.

COMP 520 Fall 2009 The JOOS language (5)

Java security has many sources:

• programs are strongly type-checked at

compile-time;

• array bounds are checked at run-time;

• null pointers are checked at run-time;

• there are no explicit pointers;

• dynamic linking is checked at run-time; and

• class files are verified at load-time.

COMP 520 Fall 2009 The JOOS language (6)

Major drawbacks of Java:

• it misses some language features, e.g.

genericity (until 1.5), multiple inheritance,

operator overloading;

• it does not have one single standard (JDK

1.0.2 vs. JDK 1.1.* vs. . . .) and probably

never will;

• it can be slower than C++ for expensive

numeric computations due to dynamic

array-bounds checks; Z
Z

Z
ZZ

and

• it’s not JOOS.

COMP 520 Fall 2009 The JOOS language (7)

Goals in the design of JOOS:

• extract the object-oriented essence of Java;

• make the language small enough for course

work, yet large enough to be interesting;

• provide a mechanism to link to existing Java

code; and

• ensure that every JOOS program is a valid

Java program, such that JOOS is a strict

subset of Java.

COMP 520 Fall 2009 The JOOS language (8)

Programming in JOOS:

• each JOOS program is a collection of classes;

• there are ordinary classes which are used to

develop JOOS code; and

• there are external classes which are used to

interface to Java libraries.

An ordinary class consists of:

• protected fields;

• constructors; and

• public methods.

COMP 520 Fall 2009 The JOOS language (9)

$ cat Cons.java

public class Cons {

protected Object first;

protected Cons rest;

public Cons(Object f, Cons r)

{ super(); first = f; rest = r; }

public void setFirst(Object newfirst)

{ first = newfirst; }

public Object getFirst()

{ return first; }

public Cons getRest()

{ return rest; }

public boolean member(Object item)

{ if (first.equals(item))

return true;

else if (rest==null)

return false;

else

return rest.member(item);

}

public String toString()

{ if (rest==null)

return first.toString();

else

return first + " " + rest;

}

}

COMP 520 Fall 2009 The JOOS language (10)

Notes on the Cons example:

• fields in JOOS must be protected: they can

only be accessed via objects of the class or its

subclasses;

• constructors in JOOS must start by invoking

a constructor of the superclass, i.e. by calling

super(...) where the argument types

determine the constructor called;

• methods in JOOS must be public: they can

be invoked by any object; and

• only constructors in JOOS can be overloaded,

other methods cannot.

COMP 520 Fall 2009 The JOOS language (11)

Other important things to note about JOOS:

• subclassing must not change the signature of

a method;

• local declarations must come at the beginning

of the statement sequence in a block; and

• every path through a non-void method must

return a value. (In Java such methods can

also throw exceptions.)

COMP 520 Fall 2009 The JOOS language (12)

The class hierarchies in JOOS and Java are both

single inheritance, i.e. each class has exactly one

superclass, except for the root class:

!!!!!!
�

��
@

@@

�
��

@
@@

!!!!!!
�

��
S

SS

aaaaaa

The root class is called Object, and any class

without an explicit extends clause is a subclass

of Object.

COMP 520 Fall 2009 The JOOS language (13)

The definition of Cons is equivalent to:

public class Cons extends Object

{ ... }

which gives the tiny hierarchy:

Object

public String toString();

public boolean equals(Object obj);

Cons

public void setFirst(Object newfirst);

public Object getFirst();

public Cons getRest();

public boolean member(Object item);

public String toString();

COMP 520 Fall 2009 The JOOS language (14)

The class Object has two methods:

• toString() returns a string encoding the

type and object id; and

• equals() returns true if the object reference

denotes the current object.

These methods are often overridden in subclasses:

• toString() encodes the value as a string; and

• equals() decides a more abstract equality.

When overriding a method, the argument types

and return types must remain the same.

When overriding equals(), hashcode() must

also be overridden: equal objects must produce

the same hashcode.

COMP 520 Fall 2009 The JOOS language (15)

Extending the Cons class:

$ cat ExtCons.java

public class ExtCons extends Cons {

protected int intField;

public ExtCons(Object f, Cons r, int i)

{ super(f,r);

intField = i;

}

public void setIntField(int i)

{ intField = i; }

public int getIntField()

{ return(intField); }

}

COMP 520 Fall 2009 The JOOS language (16)

The extended hierarchy:

Object

public String toString();

public boolean equals(Object obj);

Cons

public void setFirst(Object newfirst);

public Object getFirst();

public Cons getRest();

public boolean member(Object item);

public String toString();

ExtCons

public void setIntField(int i);

public int getIntField();

COMP 520 Fall 2009 The JOOS language (17)

Using the Cons class:

$ cat UseCons.java

import joos.lib.*;

public class UseCons {

public UseCons() { super(); }

public static void main(String argv[])

{ Cons l;

JoosIO f;

l = new Cons("a",new Cons("b",new Cons("c",null)));

f = new JoosIO();

f.println(l.toString());

f.println("first is " + l.getFirst());

f.println("second is " + l.getRest().getFirst());

f.println("a member? " + l.member("a"));

f.println("z member? " + l.member("z"));

}

}

A Java program (not an applet) requires a

main() method.

It is necessary to import library functions such as

println().

COMP 520 Fall 2009 The JOOS language (18)

Compile and run the UseCons program:

$ javac joos/lib/*.java

$ joosc UseCons.java Cons.java

$ java UseCons

The UseCons program builds these objects:

member()

rest

first

setFirst()

l

"b" "c"

member()

rest

first

setFirst()

member()

rest

first

setFirst()

"a"

equals() equals()equals()

The output of the UseCons program is:

a b c

first is a

second is b

a member? true

z member? false

COMP 520 Fall 2009 The JOOS language (19)

Types in JOOS are either primitive types:

• boolean: true and false;

• int: −2
31

. . . 2
31

− 1;

• char: the ASCII characters;

or user-defined class types;

or externally defined class types:

• Object;

• Boolean;

• Integer;

• Character;

• String;

• BitSet;

• Vector;

• Date.

Note that boolean and Boolean are different.

COMP 520 Fall 2009 The JOOS language (20)

Types in Java and JOOS:

• Java is strongly-typed;

• Java uses the name of a class as its type;

• given a type of class C, any instance of class C

or a subclass of C is a permitted value;

• there is “down-casting” which is

automatically checked at run-time:

SubObject subobj = (SubObject) obj;

• there is an explicit instanceof check:

if (subobj instanceof Object)

return true;

else

return false;

• and finally some type-checking must be done

at run-time.

COMP 520 Fall 2009 The JOOS language (21)

Statements in JOOS:

• expression statements:

x = y + z;

x = y = z;

a.toString(l);

new Cons("abc",null);

• block statements:

{ int x;

x = 3;

}

• control structures:

if (l.member("z")) {

// do something

}

while (l != null) {

// do something

l = l.getRest();

}

• return statements:

return;

return true;

COMP 520 Fall 2009 The JOOS language (22)

Expressions in JOOS:

• constant expressions:

true, 13, ’\n’, "abc", null

• variable expressions:

i, first, rest

• binary operators:

||

&&

!= ==

< > <= >= instanceof

+ -

* / %

• unary operators:

-

!

COMP 520 Fall 2009 The JOOS language (23)

Expressions in JOOS:

• class instance creation:

new Cons("abc",null)

• cast expressions:

(String) getFirst(list)

(char) 119

• method invocation:

l.getFirst()

super.getFirst();

l.getFirst().getFirst();

this.getFirst();

COMP 520 Fall 2009 The JOOS language (24)

Abstract methods and classes:

• a method may be abstract, where no

implementation is given;

• if a class contains one or more abstract

methods, it must be defined as an abstract

class;

• the constructor of an abstract class cannot

be invoked;

• abstract classes are used to define

“frameworks”.

COMP 520 Fall 2009 The JOOS language (25)

$ cat Benchmark.java

import joos.lib.*;

public abstract class Benchmark {

protected JoosSystem s; // JOOS interface to

// the Java System Class

public Benchmark()

{ super();

s = new JoosSystem();

}

// Hook for actual benchmark

public abstract void benchmark();

// driver to time repeated executions

public int myrepeat(int count)

{ int start;

int i;

start = s.currentTimeMillis();

i = 0;

while (i < count) {

this.benchmark();

i = i+1;

}

return s.currentTimeMillis()-start;

}

}

COMP 520 Fall 2009 The JOOS language (26)

$ cat ExtBenchmark.java

public class ExtBenchmark extends Benchmark {

public ExtBenchmark() {

super();

}

public void benchmark() {} // timing an empty method

}

$ cat UseBenchmark.java

import joos.lib.*;

public class UseBenchmark {

public UseBenchmark() { super(); }

public static void main(String argv[])

{ ExtBenchmark b;

JoosIO f;

int reps;

int time;

b = new ExtBenchmark();

f = new JoosIO();

f.print("Enter number of repetitions: ");

reps = f.readInt();

time = b.myrepeat(reps);

f.println("time is " + time + " millisecs");

}

}

COMP 520 Fall 2009 The JOOS language (27)

Final methods and classes:

• the final keyword is used when no

modifications to functionality are allowed;

• a final method cannot be overridden by

subclasses;

• a final class cannot be extended;

• final classes typically belong to libraries:

Boolean, Integer, and String (for security

purposes).

Note that JOOS does not provide final fields

like Java does.

COMP 520 Fall 2009 The JOOS language (28)

Synchronized methods:

• Java and JOOS programs can start multiple

threads;

• sometimes access to a shared resource must

be protected, such that only one thread is in

a critical section at a time;

• each object has an associated lock; and

• JOOS provides synchronized methods, such

that when a thread invokes a synchronized

method on an object, the thread does not

enter the method until it has successfully

acquired the target object’s lock and it holds

on to the lock until the method execution

completes.

Note that JOOS does not provide synchronized

blocks like Java does.

COMP 520 Fall 2009 The JOOS language (29)

$ cat SyncBox.java

public class SyncBox {

protected Object boxContents;

public SyncBox() { super(); }

// return contents of the box, set contents to null

public synchronized Object get()

{

Object contents;

contents = boxContents;

boxContents = null;

return contents;

}

// put something in the box,

// if the box already has something in it, return false

// else fill the box, return true

public synchronized boolean put (Object contents)

{

if (boxContents != null) return false;

boxContents = contents;

return true;

}

}

COMP 520 Fall 2009 The JOOS language (30)

External classes in Java:

• Java compiles programs with respect to a set

of libraries of precompiled class files; and

• when a Java compiler encounters an unknown

method, it searches the precompiled bytecode

for an implementation.

External classes in JOOS:

• JOOS compiles programs with respect to a

set of libraries of precompiled class files; but

• external classes must be explicitly presented

to the JOOS compiler.

COMP 520 Fall 2009 The JOOS language (31)

$ cat joos/extern/javalib.joos

[...]

// java.lang.String

extern public final class String in "java.lang" {

public String();

public String(String value);

public String(StringBuffer buffer);

public String vlaueOf(boolean b);

public char charAt(int index);

public int compareTo(String anotherString);

public boolean endsWith(String suffix);

public boolean equals(Object obj);

public boolean equalsIgnoreCase(String anotherString);

public int indexOf(String str, int fromIndex);

public int lastIndexOf(String str, int fromIndex);

public int length();

public boolean regionMatches(boolean ignoreCase,

int toffset, String other, int ooffset, int len);

public boolean startsWith(String prefix, int toffset);

public String substring(int beginIndex, int endIndex);

public String concat(String str);

public String toLowerCase();

public String toUpperCase();

public String toString();

public String trim();

}

[...]

COMP 520 Fall 2009 The JOOS language (32)

External declarations for Java libraries:

• javalib.joos

• appletlib.joos

• awtlib.joos

• netlib.joos

• BigDecimal.joos

External declarations for JOOS libraries:

• jooslib.joos

COMP 520 Fall 2009 The JOOS language (33)

Example JOOS programs:

• AppletGraphics: simple graphics programs

to be displayed via a browser;

• AwtDemos: examples of using the Abstract

Windows Toolkit;

• ImageDemos: two techniques for displaying an

animation;

• Network: simple examples of interacting over

the network;

• Simple: a relatively large collection of simple

programs;

• Threads: simple multithreaded programs; and

• WIGapplets: examples of WIG applets.

All examples should work, please email your TA if

they do not.

COMP 520 Fall 2009 The JOOS language (34)

When compared to Java, JOOS:

• does not support packages, interfaces,

exceptions, some control structures, mixed

statements and declarations;

• has only protected fields and public

methods;

• does not allow overloading of methods;

• does not support arrays;

• does not allow static methods;

• supports only int, boolean, and char as

primitive types; and

• uses external class declarations.

COMP 520 Fall 2009 The JOOS language (35)

Converting between JOOS & Java source code

(*.java, *.joos), Jasmin assembler (*.j) and

Java bytecode (*.class):

joosc simply calls joos and then jasmin.

