
COMP 520 Fall 2009 Garbage collection (1)

Garbage collection

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

�

-

-

�

�

�

- �

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

-

-

�

-

-
-

-

-

-

-

�

�

�
�

�
�

�

COMP 520 Fall 2009 Garbage collection (2)

A garbage collector is part of the run-time

system: it reclaims heap-allocated records that

are no longer used.

A garbage collector should:

• reclaim all unused records;

• spend very little time per record;

• not cause significant delays; and

• allow all of memory to be used.

These are difficult and often conflicting

requirements.

COMP 520 Fall 2009 Garbage collection (3)

Life without garbage collection:

• unused records must be explicitly deallocated;

• superior if done correctly;

• but it is easy to miss some records; and

• it is dangerous to handle pointers.

Memory leaks in real life (ical v.2.1):

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

hours

MB

COMP 520 Fall 2009 Garbage collection (4)

Which records are dead, i.e. no longer in use?

Ideally, records that will never be accessed in the

future execution of the program.

But that is of course undecidable...

Basic conservative assumption:

A record is live if it is reachable from a

stack-based program variable, otherwise dead.

Dead records may still be pointed to by other

dead records.

COMP 520 Fall 2009 Garbage collection (5)

A heap with live and dead records:

s

s

s

s

s

s

s

s

s

s

s

s

s

s

-

�

�

-

-

�

�

-

p

q

r

37

12

15

7

37

59

20

9

COMP 520 Fall 2009 Garbage collection (6)

The mark-and-sweep algorithm:

• explore pointers starting from the program

variables, and mark all records encountered;

• sweep through all records in the heap and

reclaim the unmarked ones; also

• unmark all marked records.

Assumptions:

• we know the size of each record;

• we know which fields are pointers; and

• reclaimed records are kept in a freelist.

COMP 520 Fall 2009 Garbage collection (7)

Pseudo code for mark-and-sweep:

function DFS(x)

if x is a pointer into the heap then

if record x is not marked then

mark record x

for i:=1 to |x| do

DFS(x.fi)

function Mark()

for each program variable v do

DFS(v)

function Sweep()

p := first address in heap

while p < last address in heap do

if record p is marked then

unmark record p

else

p.f1 := freelist

freelist := p

p := p+sizeof(record p)

COMP 520 Fall 2009 Garbage collection (8)

Marking and sweeping:

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

-

�

�

-

-

�

�

-

-

�

�

-

�

-

-

�

37

p

q

r

12

15

7

37

59

20

9

p

q

r

12

15

7

37

59

20

9

37

freelist

COMP 520 Fall 2009 Garbage collection (9)

Analysis of mark-and-sweep:

• assume the heap has size H words; and

• assume that R words are reachable.

The cost of garbage collection is:

c1R + c2H

Realistic values are:

10R + 3H

The cost per reclaimed word is:

c1R + c2H

H − R

• if R is close to H, then this is expensive;

• the lower bound is c2;

• increase the heap when R > 0.5H; then

• the cost per word is c1 + 2c2 ≈ 16.

COMP 520 Fall 2009 Garbage collection (10)

Other relevant issues:

• The DFS recursion stack could have size H

(and has at least size log H), which may be

too much; however, the recursion stack can

cleverly be embedded in the fields of marked

records (pointer reversal).

• Records can be kept sorted by sizes in the

freelist. Records may be split into smaller

pieces if necessary.

• The heap may become fragmented: containing

many small free records but none that are

large enough.

COMP 520 Fall 2009 Garbage collection (11)

The reference counting algorithm:

• maintain a counter of the references to each

record;

• for each assignment, update the counters

appropriately; and

• a record is dead when its counter is zero.

Advantages:

• is simple and attractive;

• catches dead records immediately; and

• does not cause long pauses.

Disadvantages:

• cannot detect cycles of dead records; and

• is much too expensive.

COMP 520 Fall 2009 Garbage collection (12)

Pseudo code for reference counting:

function Increment(x)

x.count := x.count+1

function Decrement(x)

x.count := x.count−1

if x.count=0 then

PutOnFreelist(x)

function PutOnFreelist(x)

Decrement(x.f1)

x.f1 := freelist

freelist := x

function RemoveFromFreelist(x)

for i:=2 to |x| do

Decrement(x.fi)

COMP 520 Fall 2009 Garbage collection (13)

The stop-and-copy algorithm:

• divide the heap into two parts;

• only use one part at a time;

• when it runs full, copy live records to the

other part; and

• switch the roles of the two parts.

Advantages:

• allows fast allocation (no freelist);

• avoids fragmentation;

• collects in time proportional to R; and

• avoids stack and pointer reversal.

Disadvantage:

• wastes half your memory.

COMP 520 Fall 2009 Garbage collection (14)

Before and after stop-and-copy:

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq�

�

-

-

�

-

�

�

�

from-space to-space to-space from-space

next

limit

next

limit

• next and limit indicate the available heap

space; and

• copied records are contiguous in memory.

COMP 520 Fall 2009 Garbage collection (15)

Pseudo code for stop-and-copy:

function Forward(p)

if p ∈ from-space then

if p.f1 ∈ to-space then

return p.f1

else

for i:=1 to |p| do

next.fi := p.fi

p.f1 := next

next := next + sizeof(record p)

return p.f1

else return p

function Copy()

scan := next := start of to-space

for each program variable v do

v := Forward(v)

while scan < next do

for i:=1 to |scan| do

scan.fi := Forward(scan.fi)

scan := scan + sizeof(record scan)

COMP 520 Fall 2009 Garbage collection (16)

Snapshots of stop-and-copy:

q

q

37

p

q

r

q

q

37

p

q

r

q

q

q

q

q

q

q

q

q

q

q

q

�

-

-

�

�

�

- �

12

15

7

37

59

20

9

before

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

-

-

�

-

-
-

-

-

-

-

�

�

�
�

�
�

�

7

59

20

9

15

37

12

scan

next

after forwarding p and q and scanning 1 record

COMP 520 Fall 2009 Garbage collection (17)

Analysis of stop-and-copy:

• assume the heap has size H words; and

• assume that R words are reachable.

The cost of garbage collection is:

c3R

A realistic value is:

10R

The cost per reclaimed word is:

c3R
H

2
− R

• this has no lower bound as H grows;

• if H = 4R then the cost is c3 ≈ 10.

COMP 520 Fall 2009 Garbage collection (18)

Earlier assumptions:

• we know the size of each record; and

• we know which fields are pointers.

For object-oriented languages, each record already

contains a pointer to a class descriptor.

For general languages, we must sacrifice a few

bytes per record.

COMP 520 Fall 2009 Garbage collection (19)

We use mark-and-sweep or stop-and-copy.

But garbage collection is still expensive:

≈ 100 instructions for a small object!

Each algorithm can be further extended by:

• generational collection (to make it run faster);

and

• incremental (or concurrent) collection (to

make it run smoother).

COMP 520 Fall 2009 Garbage collection (20)

Generational collection:

• observation: the young die quickly;

• hence the collector should focus on young

records;

• divide the heap into generations:

G0, G1, G2, . . .;

• all records in Gi are younger than records in

Gi+1;

• collect G0 often, G1 less often, and so on; and

• promote a record from Gi to Gi+1 when it

survives several collections.

COMP 520 Fall 2009 Garbage collection (21)

How to collect the G0 generation:

• roots are no longer just program variables but

also pointers from G1, G2, . . .;

• it might be very expensive to find those

pointers;

• fortunately, they are rare; so

• we can try to remember them.

Ways to remember:

• maintain a list of all updated records (use

marks to make this a set); or

• mark pages of memory that contain updated

records (in hardware or software).

COMP 520 Fall 2009 Garbage collection (22)

Incremental collection:

• garbage collection may cause long pauses;

• this is undesirable for interactive or real-time

programs; so

• try to interleave the garbage collection with

the program execution.

Two players access the heap:

• the mutator: creates records and moves

pointers around; and

• the collector: tries to collect garbage.

Some invariants are clearly required to make this

work.

The mutator will suffer some slowdown to

maintain these invariants.

