Weakening in Simple Type Theory

Masahiko Sato

Graduate School of Informatics, Kyoto University

McGill University, October 18, 2017

Summary

We formulate the Curry-style simple type theory using the
map/skeleton representation of untyped lambda terms introduced
in [Sato et al. 2013].

We illustarate the usefulness of our approach by showing the
admissiblity of the weakening rule.

[Sato et al. 2013] Sato, M., Pollack, R., Schwichtenberg, H. and
Sakurai, T., Viewing A-terms through maps, Indag. Math., 24,
1073 — 1104, 2013.

We have formally verified all the technical results in the above
paper in the proof assistants Minlog and Isabelle.

Good points of our approach

@ The inductive structure of the terms is nicer compared to
other approaches.

@ Can define closed lambda terms directly without first defining
the lambda terms containing free parameters.

@ Can use the same technique to define sentences without first
defining formulas containing free parameters.

@ A special generic constant [1 must be included as a term,
however.

Part |

Untyped Lambda-terms

Summary of Part |

Two datatypes
We will relate the two datatypes A of tradtional raw lambda-terms
and LL of our datetype based on map/skeleton.

A = The datatype of raw A-terms.
L = The datatype of lambda-expressions.

Two types of abstractions

A : abstraction by parameters x € X.
L : abstraction by maps m € M.

Summary of Part | (cont.)

K, Le Au=x|0O]|app(K,L) | lam(zx, K).

M,N €L u=a|0O]|app(M,N) | mask(m, M) (m | M).
z e X.
m € M.

[is a special constant denoting a hole to be filled with lambda
expressions.

The notion of map

The notion of map is a generalization of the
notion of occurrence of a symbol in syntactic
expressions such as formulas or lambda
terms.

Plan of the talk

e Part I.1. L.
e Part 1.2. A. Will show L ~ A/ =,.
@ Part Il. Simple type theory

map/skeleton functions will play important roles in all the 3 parts.

Part |.1

L
The Datatype of Lambda-exressions

The Datatype M of Maps

0eM leM

meM neM m#Oorn #0
cons(m,n) € M

Note that
cons : M x M — M

is a partial function.
We will write (m n) or mn for cons(m, n).
We will also write 0 for (0 0).

Orthogonality and order relations on maps

mln m' Ln
m 10 0Lln mm’ L nn'

Example: (1 0) L (0 1) but not (1 1) L (0 1).

The Datatype X of Parameters

We assume a countably infinite set X of parameters.
We will write x,y, z for parameters.
We assume that equality relation on X is decidable.

The Datatype L and the Divisibility Relation

wELpar 7D€Lbox
MelL NeL meM MelL m|M

app mask
app(M,N) € L mask(m, M) € L

Ol 0]O0 1|0

mapp(m, n) | app(M, N) m | mask(n, N)

The Datatype L of lambda-expressions (cont.)

Notational Convention
o We use M, N, P as metavariables ranging over
lambda-expressions.
e We write (M N) and also M N for app(M, N).
e We write m\ M for (m, M).
@ A lambda-expression of the form m\M is called an abstract.

o We use A, B as metavariables ranging over abstarcts, and
write A for the subset of I consisting of all the abstracts.

map: X XL — M and skel : X X L — LL
We write M, for map(x, M), and M® for skel(x, M).

if x =y,
Yo 3= { if & £ z
g :=
(M N)p := (M, N,).
(m\M) g := M,.

m._{ O ifz=uy,

T ly ifx#y.
0% :=0

(M N)* := (M?* N?%).

(m\M)®* := m\M?*.

Lambda Abstraction in L
We define lam : X X . — LL by:

lam(x, M) := Mz\M?*.

Examples. We assume that @, y and z are distinct parameters.

lam(x,) = 1\O.
lam(xz,y) = 0\y.
lam(z,lam(y, z)) = lam(z, 0\x)
= I\O\L.
lam(z, lam(y, y)) = lam(x,lam(1,0))
= O\I\O.
lam(x, lam(y, lam(z, (xz y2)))) =
(10 00>\ (00 10X\ (01 0I)Y\ (OO 0D

Instantiation

We define the instantiation operation ¥ : A X . — LL as follows.

\MVP := M
\VYP := P
(m n)\(M N)VP := (m\MVP n\NVP)
m\n\NVP := n\(m\NVP)

Remark. We remark that for any fresh x, we have:
m\M = lam(z, m\MVzx).

Moreover, putting IN := m\M Vx, we have m\M = N \N?Z.
Namely, m = N, and M = N*Z.

Substitution

We can now define substitution operation:
subst : L X X X . — L as follows.

[P/x]M := lam(x, M)V P.
subst enjoys the following property.

pran= {1 423
[P/2]0 = O.
[P/z](M N) = ([P/x]|M [P/z]N).

[P/x](m\M) = (m\[P/x]M).

Substitution (cont.)

Example.

[y/x]lam(y, yx) = [y/x](10\Ox)
= 10\[y/x] (0 x)
= 10\([y/2]0 [y/x]x)
— 10\(ly

= lam(z, zy)

Remark. By internalizing the substitution operation, we can easily
get an explicit substitution calculus.

Substitution Lemma
If x # y and « & FP(P), then

[P/yl[N/z]M = [[P/y]|N /z|[P/y]|M.

Proof. By induction on M € L. Here, we only treat the case
where M = m\M'.

[P/y)[N/a]M

= [P/y][N/a](m\M")

= mA\[P/y][N /x]M’

= mA\[[P/yIN/a][P/y]M’ (by TH)
= [[P/yIN/2][P/y)(m\M’)

= [[P/yIN/][P/y]M.

Substitution (cont.)

We can develop a theory of lambda-calculus on the datatype IL of
lambda expressions.

It is remarkable that the theory can be develped without using the
notions of variable, lambda abstraction and substitution.

For example, the B-reduction rule is defined by:

(m\M P) —-g m\MVP

without mentioning variables, lambda abstraction and substitution.

Note that in the traditional lambda calculus, the 3-rule is:

(AeM P) —5 [P/x]M

Part .2

A
The Datatype of Raw Lambda-terms

The Datatype A of Raw \-terms

ar -
:cGAp DeAbOX

reX KeA
lam(z, K) € A

KeA LGAQPP lam

app(K, L) € A

K, Le Au=x|O]|app(K,L) | lam(xz, K).

Remark. lam binds parameter « in M.

map: X X A — M and skel : X X A — A

o ife =1y,
ym'_{ if ¢ # y.

Oy := 0.
(K L)y := (K, L;).

L if e =y,
(¥, K)o := { K, ifz#uy.

. O ifzx=uy,
T ly ifx#uy.
0% .= [O.
(K L)? := (K* L®).
T (y, K) if ¢ =y,
,K)* = = .
v, K) { (y, K*) ifz#y.

Map and Skeleton (cont.)

x does not occur free in K
<—K, =
<—K*=K

Remark. This shows that the notion of map is a generalization of
the notion of occurrence.

a-equivalence Relation

We define the a-equivalence relation, =, using the map/skeleton
functions.

T =q T O =,0

K:aKl L:a L/ Kw:Ly K*® ~a Ly
KL=, K'L' (z, K) =q lam(y, L)

Remark. No renaming is needed in this definition, and it is easy to
verify that this is indeed a decidable equivalence relation.

a-equivalence Relation

We can show that lam(z, lam(y, yx)) =4 lam(y, lam(x, zy)) as
follows.

U= O=o0

10 =10 U0 =, 00

01 =01 lam(y,yd) =4 lam(x, z0)
lam(z, lam(y, yz)) =q lam(y, lam(z, xy))

Interpretation of A in LL

We define the interpretation function [—] : A — L as follows.

[z] := .
o] .= 0.
[KL] := [K][L]-
[lam(z, K)] := lam(z, [K])-

Remark. Two raw A-terms K and L are a-equivalent iff
[M] = [N].

Part |1

Simple Type Theory

We will work in I. and write A\, M for M, \M?®.

Simple types
Simple types are defined by the grammar:
o,pu=1t|p— o,
where ¢ ranges over a set of base type symbols.
A typing context is a finite sequence of type assignments x;
I'=x1:01,...,¢p : Op,
where n > 0, and x; are all distinct from each other.

We put

Vars(T') := {z1,...,Zn}.

: 0y

Simple type theory in traditional form

The judgments we treat in the traditional calculus are of the form:

'y M:o

x:o0o€l) F'xM:p—0o T'FxN:p
Thzio (M Ty (MN):o (—E)
T'x:pFxM:0o
T AM:ipoo (N
Remark.

@ In the (Ini) rule, if « is declared more than once in T, then we
use the right-most type assignment x : o.

Q@ IfI' F)x M : o is derivable then M is [-free. In particular,
I' Fy O : o is not derivable.

Simple type theory in traditional form (cont.)

We note that the (—1) rule is an abbreviation of the following rule:

Tbe:pkyxM:o
Thy M,\M®:p oo)

Putting A := M_\M?™, we have

T,x:phky) AV : o
T'FxA:p—o

(=)

So, we can reformulate the type theory as follows.

Simple type theory in traditional form (cont.)

gc:o'EI‘(Ini) FFxM:p—o I‘l—AN:p(

TFr(MN) :o —E)

T'kyxx:o
T,x:phky) AVx : o T,e:pkxM: 0o

Trd:ipoo TV ToaMipse N

Remark. The conclusion of the original (—) rule mentions , but
the new form of the rule does not. Moreover, we have the
following theorem.

Theorem
'FxA:p—o
<= T,z :pkx AVx : o for some/any x not in Vars(T').

Admissibility of the weakening rule

Proposition
'FaM:o0, x g Vars(T) = T,xz:pkx M : 0.

Proof by induction on the derivation (in the traditonal syntax) of
T -\ M : o fails. Consider the case where M = A,M’ and the
bottom part of the derivation is:

Lz:pkx M :0o'
CkExAeM :p— o'

We cannot apply IH in this case. We have to prove by induction on
the size of the derivation.

Frege-style formulation of simple type theory

Let M be a hole-free lambda-term such that Vars(M) is, say,
{z1,xz2}.

Suppose further that

x1:p1,x2:p2baM:o.

Then we have
Fa mi\mso\N : p1 — P2 — O,
where m; = M, and N = (M®*2)"1,

Conversely, if we have the latter judgment we also have the former
judgement. Thus, in general, type-assignments for open terms can
be reduced to those for closed terms.

Frege-style simple simple type theory for closed terms

@] = || @;=1 ji; =0
Fa\O : g — HOLE
Fm\M : jf—v—oc FaA\N : g—v |m|=|7d =|F

FmANMN) : f— o

In the HOLE rule % is a unit sequence. That is, 4 is a sequence of
0 and 1 containing exactly one occurrence of 1.

An example: S combinator

We show an example of type-assignment for the S combinator
Azyz (xz yz). We write g, py and p for the types of x, y and
z. We write o for the type of (xz yz) and write v for the type
introduced by the bottom application of the APP rule. We also
write fi — o for py — by — p, — 0.

\NONO ¢ i — p ONONL : @ — p, ONINO : i — poyy ONONL : i — poy

\OO\OL : i > v —> 0o \IO\OL : i —» v
(DAN(DAN()i —> o

By analyzing the top left application of APP, we have
e = p» — v — o, and from the top right application of APP,
we have py = p, — v. Writing p for p, we have:

B = — V —> 0y by = —Vy Uz = M.

An example: S combinator (cont.)

Using the A-notation, the same derivation can be written as
follows.

Azyzm : ﬁ — Mg)\wyzz : ﬁ — Mz Amyzw : ﬁ - Hy Amyzz : ﬁ — Mz

AgyzTZ 1 [l >V =0 AzyzYZ i [= v

Azyz(Xz Yz) : i = 0

A final remark

Hilbert style formulation of the minimal implicational logic can be
obtained as follows.

f; = o i—>v—0 i—v
BiZ= 9 pxiom E I K MP
bh— o bh— o

For example, we have:

A final remark

Hilbert style formulation of the minimal implicational logic can be
obtained as follows.

f; = o i—>v—0 i—v
BiZ= 9 pxiom E I K MP
bh— o bh— o

For example, we have:

A—ou—v—oo f—opu gop—ov g—p
i—v—o o—v
i—o ;

where
g—o*x=pup—-v—oo)o>(pu—ov)—op—x*

for « = p — v — o, 4 — v or u are axioms.

A final remark (cont.)

Or, equivalently,

N =

3
4
5
6

(p—ov—oo)s(p—ov)opup— (p—>v—o)
(pov—oo)>(p—v) s> pu— (p—v)
(pov—oo)s>(p—ov) > pu—p
(pov—oo)>(p—ov) op—ov—oo
(pov—oo)>(p—ov) > p—v
(p—ov—oo) > (p—ov)>p—o

Axiom
Axiom

(Axiom
(MP 1,3
(MP 2, 3
(MP 4, 5

~— ~—rf ~— " "

