
Weakening in Simple Type Theory

Masahiko Sato

Graduate School of Informatics, Kyoto University

McGill University, October 18, 2017



Summary

We formulate the Curry-style simple type theory using the
map/skeleton representation of untyped lambda terms introduced
in [Sato et al. 2013].

We illustarate the usefulness of our approach by showing the
admissiblity of the weakening rule.

[Sato et al. 2013] Sato, M., Pollack, R., Schwichtenberg, H. and
Sakurai, T., Viewing λ-terms through maps, Indag. Math., 24,
1073 – 1104, 2013.

We have formally verified all the technical results in the above
paper in the proof assistants Minlog and Isabelle.



Good points of our approach

The inductive structure of the terms is nicer compared to
other approaches.

Can define closed lambda terms directly without first defining
the lambda terms containing free parameters.

Can use the same technique to define sentences without first
defining formulas containing free parameters.

A special generic constant � must be included as a term,
however.



Part I

Untyped Lambda-terms



Summary of Part I

Two datatypes
We will relate the two datatypes Λ of tradtional raw lambda-terms
and L of our datetype based on map/skeleton.

Λ = The datatype of raw λ-terms.

L = The datatype of lambda-expressions.

Two types of abstractions

Λ : abstraction by parameters x ∈ X.
L : abstraction by maps m ∈ M.



Summary of Part I (cont.)

K,L ∈ Λ ::= x | � | app(K,L) | lam(x,K).

M,N ∈ L ::= x | � | app(M,N) | mask(m,M) (m |M).

x ∈ X.
m ∈ M.

� is a special constant denoting a hole to be filled with lambda
expressions.



The notion of map

The notion of map is a generalization of the
notion of occurrence of a symbol in syntactic
expressions such as formulas or lambda
terms.



Plan of the talk

Part I.1. L.

Part I.2. Λ. Will show L ' Λ/ ≡α.

Part II. Simple type theory

map/skeleton functions will play important roles in all the 3 parts.



Part I.1

L
The Datatype of Lambda-exressions



The Datatype M of Maps

0 ∈ M 1 ∈ M

m ∈ M n ∈ M m 6= 0 or n 6= 0

cons(m,n) ∈ M

Note that
cons : M×M→ M

is a partial function.
We will write (m n) or mn for cons(m,n).
We will also write 0 for (0 0).



Orthogonality and order relations on maps

m⊥ 0 0⊥ n
m⊥ n m′ ⊥ n′

mm′ ⊥ nn′

Example: (1 0)⊥ (0 1) but not (1 1)⊥ (0 1).

0≤ n 1≤ 1

m≤ n m′ ≤ n′

mm′ ≤ nn′



The Datatype X of Parameters

We assume a countably infinite set X of parameters.
We will write x, y, z for parameters.
We assume that equality relation on X is decidable.



The Datatype L and the Divisibility Relation

x ∈ L
par

� ∈ L box

M ∈ L N ∈ L
app(M,N) ∈ L

app
m ∈ M M ∈ L m |M

mask(m,M) ∈ L mask

0 | x 0 | � 1 | �

m |M n |N
mapp(m,n) | app(M,N)

m |N n |N m⊥ n
m | mask(n,N)



The Datatype L of lambda-expressions (cont.)

Notational Convention

We use M,N,P as metavariables ranging over
lambda-expressions.

We write (M N) and also MN for app(M,N).

We write m\M for mask(m,M).

A lambda-expression of the form m\M is called an abstract.

We use A,B as metavariables ranging over abstarcts, and
write A for the subset of L consisting of all the abstracts.



map : X× L→ M and skel : X× L→ L
We write Mx for map(x,M), and Mx for skel(x,M).

yx :=

{
1 if x = y,
0 if x 6= y.

�x := 0

(M N)x := (Mx Nx).

(m\M)x := Mx.

yx :=

{
� if x = y,
y if x 6= y.

�x := �

(M N)x := (Mx Nx).

(m\M)x := m\Mx.



Lambda Abstraction in L
We define lam : X× L→ L by:

lam(x,M) := Mx\M
x.

Examples. We assume that x, y and z are distinct parameters.

lam(x, x) = 1\�.

lam(x, y) = 0\y.

lam(x, lam(y, x)) = lam(x, 0\x)

= 1\0\�.

lam(x, lam(y, y)) = lam(x, lam(1,�))

= 0\1\�.

lam(x, lam(y, lam(z, (xz yz)))) =

(10 00)\(00 10)\(01 01)\(�� ��)



Instantiation

We define the instantiation operation H : A× L→ L as follows.

0\MHP := M

1\�HP := P

(m n)\(M N)HP := (m\MHP n\NHP )

m\n\NHP := n\(m\NHP )

Remark. We remark that for any fresh x, we have:

m\M = lam(x,m\MHx).

Moreover, putting N := m\MHx, we have m\M = Nx\N
x.

Namely, m = Nx and M = Nx.



Substitution

We can now define substitution operation:
subst : L× X× L→ L as follows.

[P/x]M := lam(x,M)HP.

subst enjoys the following property.

[P/x]y =

{
P if x = y,
y if x 6= y.

[P/x]� = �.

[P/x](M N) = ([P/x]M [P/x]N).

[P/x](m\M) = (m\[P/x]M).



Substitution (cont.)

Example.

[y/x]lam(y, yx) = [y/x](10\�x)

= 10\[y/x](� x)

= 10\([y/x]� [y/x]x)

= 10\�y

= lam(z, zy)

Remark. By internalizing the substitution operation, we can easily
get an explicit substitution calculus.



Substitution Lemma
If x 6= y and x 6∈ FP(P ), then

[P/y][N/x]M = [[P/y]N/x][P/y]M.

Proof. By induction on M ∈ L. Here, we only treat the case
where M = m\M ′.

[P/y][N/x]M

= [P/y][N/x](m\M ′)

= m\[P/y][N/x]M ′

= m\[[P/y]N/x][P/y]M ′ (by IH)

= [[P/y]N/x][P/y](m\M ′)

= [[P/y]N/x][P/y]M.



Substitution (cont.)

We can develop a theory of lambda-calculus on the datatype L of
lambda expressions.

It is remarkable that the theory can be develped without using the
notions of variable, lambda abstraction and substitution.

For example, the β-reduction rule is defined by:

(m\M P )→β m\MHP

without mentioning variables, lambda abstraction and substitution.

Note that in the traditional lambda calculus, the β-rule is:

(λxM P )→β [P/x]M



Part I.2

Λ
The Datatype of Raw Lambda-terms



The Datatype Λ of Raw λ-terms

x ∈ Λ
par

� ∈ Λ
box

K ∈ Λ L ∈ Λ
app(K,L) ∈ Λ

app x ∈ X K ∈ Λ
lam(x,K) ∈ Λ

lam

K,L ∈ Λ ::= x | � | app(K,L) | lam(x,K).

Remark. lam binds parameter x in M .



map : X× Λ→ M and skel : X× Λ→ Λ

yx :=

{
1 if x = y,
0 if x 6= y.

�x := 0.

(K L)x := (Kx Lx).

lam(y,K)x :=

{
0 if x = y,
Kx if x 6= y.

yx :=

{
� if x = y,
y if x 6= y.

�x := �.

(K L)x := (Kx Lx).

lam(y,K)x :=

{
lam(y,K) if x = y,
lam(y,Kx) if x 6= y.



Map and Skeleton (cont.)

x does not occur free in K

⇐⇒Kx = 0

⇐⇒Kx = K

Remark. This shows that the notion of map is a generalization of
the notion of occurrence.



α-equivalence Relation

We define the α-equivalence relation, =α, using the map/skeleton
functions.

x=α x �=α �

K =α K
′ L=α L

′

KL=α K
′L′

Kx = Ly Kx =α L
y

lam(x,K) =α lam(y, L)

Remark. No renaming is needed in this definition, and it is easy to
verify that this is indeed a decidable equivalence relation.



α-equivalence Relation

We can show that lam(x, lam(y, yx)) =α lam(y, lam(x, xy)) as
follows.

01 = 01

10 = 10

�=α � �=α �

��=α ��

lam(y, y�) =α lam(x, x�)

lam(x, lam(y, yx)) =α lam(y, lam(x, xy))



Interpretation of Λ in L

We define the interpretation function [[−]] : Λ→ L as follows.

[[x]] := x.

[[�]] := �.

[[KL]] := [[K]][[L]].

[[lam(x,K)]] := lam(x, [[K]]).

Remark. Two raw λ-terms K and L are α-equivalent iff
[[M ]] = [[N ]].



Part II

Simple Type Theory

We will work in L and write λxM for Mx\M
x.



Simple types

Simple types are defined by the grammar:

σ, ρ ::= ι | ρ→ σ,

where ι ranges over a set of base type symbols.

A typing context is a finite sequence of type assignments xi : σi:

Γ = x1 : σ1, . . . , xn : σn,

where n ≥ 0, and xi are all distinct from each other.

We put

Vars(Γ) := {x1, . . . , xn}.



Simple type theory in traditional form

The judgments we treat in the traditional calculus are of the form:

Γ `λ M : σ

x : σ ∈ Γ
Γ `λ x : σ

(Ini)
Γ `λ M : ρ→ σ Γ `λ N : ρ

Γ `λ (M N) : σ
(→E)

Γ, x : ρ `λ M : σ

Γ `λ λxM : ρ→ σ
(→I)

Remark.

1 In the (Ini) rule, if x is declared more than once in Γ, then we
use the right-most type assignment x : σ.

2 If Γ `λ M : σ is derivable then M is �-free. In particular,
Γ `λ � : σ is not derivable.



Simple type theory in traditional form (cont.)

We note that the (→I) rule is an abbreviation of the following rule:

Γ, x : ρ `λ M : σ

Γ `λ Mx\M
x : ρ→ σ

(→I)

Putting A := Mx\M
x, we have

Γ, x : ρ `λ AHx : σ

Γ `λ A : ρ→ σ
(→I)

So, we can reformulate the type theory as follows.



Simple type theory in traditional form (cont.)

x : σ ∈ Γ
Γ `λ x : σ

(Ini)
Γ `λ M : ρ→ σ Γ `λ N : ρ

Γ `λ (M N) : σ
(→E)

Γ, x : ρ `λ AHx : σ

Γ `λ A : ρ→ σ
(→I)

Γ, x : ρ `λ M : σ

Γ `λ λxM : ρ→ σ
(→I)

Remark. The conclusion of the original (→I) rule mentions x, but
the new form of the rule does not. Moreover, we have the
following theorem.

Theorem
Γ `λ A : ρ→ σ
⇐⇒ Γ, x : ρ `λ AHx : σ for some/any x not in Vars(Γ).



Admissibility of the weakening rule

Proposition

Γ `λ M : σ, x 6∈ Vars(Γ) =⇒ Γ, x : ρ `λ M : σ.

Proof by induction on the derivation (in the traditonal syntax) of
Γ `λ M : σ fails. Consider the case where M = λxM

′ and the
bottom part of the derivation is:

Γ, x : ρ `λ M ′ : σ′

Γ `λ λxM ′ : ρ→ σ′.

We cannot apply IH in this case. We have to prove by induction on
the size of the derivation.



Frege-style formulation of simple type theory

Let M be a hole-free lambda-term such that Vars(M) is, say,
{x1, x2}.

Suppose further that

x1 : ρ1, x2 : ρ2 `λ M : σ.

Then we have

`λ m1\m2\N : ρ1 → ρ2 → σ,

where mi = Mxi and N = (Mx2)x1 .

Conversely, if we have the latter judgment we also have the former
judgement. Thus, in general, type-assignments for open terms can
be reduced to those for closed terms.



Frege-style simple simple type theory for closed terms

|~u| = |~µ| ~ui = 1 ~µi = σ

` ~u\� : ~µ→ σ
HOLE

` ~m\M : ~µ→ ν → σ ` ~n\N : ~µ→ ν |~m| = |~n| = |~µ|
` (~m ~n)\(M N) : ~µ→ σ

APP

In the HOLE rule ~u is a unit sequence. That is, ~u is a sequence of
0 and 1 containing exactly one occurrence of 1.



An example: S combinator

We show an example of type-assignment for the S combinator
λxyz(xz yz). We write µx, µy and µz for the types of x, y and
z. We write σ for the type of (xz yz) and write ν for the type
introduced by the bottom application of the APP rule. We also
write ~µ→ σ for µx → µy → µz → σ.

1\0\0 : ~µ→ µx 0\0\1 : ~µ→ µz

10\00\01 : ~µ→ ν → σ

0\1\0 : ~µ→ µy 0\0\1 : ~µ→ µz

00\10\01 : ~µ→ ν

(10 00)\(00 10)\(01 01) : ~µ→ σ

By analyzing the top left application of APP, we have
µx = µz → ν → σ, and from the top right application of APP,
we have µy = µz → ν. Writing µ for µz, we have:

µx = µ→ ν → σ, µy = µ→ ν, µz = µ.



An example: S combinator (cont.)

Using the λ-notation, the same derivation can be written as
follows.

λxyzx : ~µ→ µx λxyzz : ~µ→ µz

λxyzxz : ~µ→ ν → σ

λxyzx : ~µ→ µy λxyzz : ~µ→ µz

λxyzyz : ~µ→ ν

λxyz(xz yz) : ~µ→ σ



A final remark

Hilbert style formulation of the minimal implicational logic can be
obtained as follows.

~µi = σ

~µ→ σ
Axiom

~µ→ ν → σ ~µ→ ν

~µ→ σ
MP

For example, we have:

~µ→ µ→ ν → σ ~µ→ µ

~µ→ ν → σ

~µ→ µ→ ν ~µ→ µ

~µ→ ν

~µ→ σ ,

where

~µ→ ∗ = (µ→ ν → σ)→ (µ→ ν)→ µ→ ∗

for ∗ = µ→ ν → σ, µ→ ν or µ are axioms.



A final remark

Hilbert style formulation of the minimal implicational logic can be
obtained as follows.

~µi = σ

~µ→ σ
Axiom

~µ→ ν → σ ~µ→ ν

~µ→ σ
MP

For example, we have:

~µ→ µ→ ν → σ ~µ→ µ

~µ→ ν → σ

~µ→ µ→ ν ~µ→ µ

~µ→ ν

~µ→ σ ,

where

~µ→ ∗ = (µ→ ν → σ)→ (µ→ ν)→ µ→ ∗

for ∗ = µ→ ν → σ, µ→ ν or µ are axioms.



A final remark (cont.)

Or, equivalently,

1. (µ→ ν → σ)→ (µ→ ν)→ µ→ (µ→ ν → σ) (Axiom)

2. (µ→ ν → σ)→ (µ→ ν)→ µ→ (µ→ ν) (Axiom)

3. (µ→ ν → σ)→ (µ→ ν)→ µ→ µ (Axiom)

4. (µ→ ν → σ)→ (µ→ ν)→ µ→ ν → σ (MP 1, 3)

5. (µ→ ν → σ)→ (µ→ ν)→ µ→ ν (MP 2, 3)

6. (µ→ ν → σ)→ (µ→ ν)→ µ→ σ (MP 4, 5)


