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Abstract that it improves the dependence of the convergence rates on
the disagreement coefficient comparedita Both algorithms

We study the rates of convergence in classification are defined below in Section 3. While all of these advances
error achievable by active learning in the presence of are encouraging, they are limited in two ways. First, the-con
label noise. Additionally, we study the more general vergence rates that have been proven for these algoritlpns ty
problem of active learning with a nested hierarchy of ically only improve the dependence on the magnitude of the
hypothesis classes, and propose an algorithm whose noise (more precisely, the noise rate of the hypothesis)las
error rate provably converges to the best achievable compared to passive learning. Thus, in an asymptotic sense,
error among classifiers in the hierarchy at a rate adap- for nonzero noise rates these results represent at best-a con
tive to both the complexity of the optimal classifier stant factor improvement over passive learning. Secordeth
and the noise conditions. In particular, we state suf- results are limited to learning with a fixed hypothesis clafss
ficient conditions for these rates to be dramatically limited expressiveness, so that convergence to the Bayes er
faster than those achievable by passive learning. rate is not always a possibility.

On the first of these limitations, recent work by [CNO6] on
. learning threshold classifiers discovered that if cert@iram-

1 Introduction eters of the noise distribution ak®own(namely, parameters
related to Tsybakov’s margin conditions), then we can aehie
strict improvements in the asymptotic convergence rateavia
specific active learning algorithm designed to take ad\gatd
that knowledge for thresholds. That work left open the ques-

Aion of whether such improvements could be achieved by an

algorithm that does not explicitly depend on the noise condi

tions (i.e., in theagnosticsetting), and whether this type of im-

provement is achievable for more general families of hypeoth

sis classes. In a personal communication, John Langford and

Rui Castro claimed4? achieves these improvements for the

Active learning is a powerful supervised learning methqobea
ble of producing more accurate classifiers while using alemal
number of labeled examples than traditional (passivehlagr
techniques. In active learning, a learning algorithm isegiv
access to a large pool of unlabeled examples, and is allowe
to interactively request the label of any particular exasspl
from that pool. The objective is to learn a function that ac-
curately predicts the labels of new examples, while minimiz
ing the number of label requests. This contrasts with pas-

sive learning, where the labeled examples are sampled at ran , e .
g P b special case of threshold classifiers. However, there resdai

dom. In comparison, by more carefully selecting which exam- . .

ples should be labeled, active learning can often signifigan 21 OP€N question of whethe_r such rate Improvements could be
decrease the total amount of effort required for data arnota 9€N€ralized to hold for arbitrary hypothesis classes. lor Se
tion. This can be particularly interesting for tasks whengas 10N 4, we provide this generalization. We analyze the rates

. ) ation a
beled examples are available in abundance, but label imform achlevgql byA® under Tsybakov's noise conditions [MT99,
tion comes only through significant effort or cost. Tsy04]; in particular, we find that these rates are stritiges
There have recently been a series of exciting advances or 0" 10 theﬁkn_own_ rates }‘lcwvsassllve Ieadrnlng, whlen tzi_d“—"?g}lf
the topic of active learning with arbitrary classificatioise ~ Mentcoefficientis small. We also study a novel modificatibn o
(the so-callecagnosticPAC model), resulting in several new € algorithm of [DHMO7], proving that it improves upon the

algorithms capable of achieving improved convergencesrate rates ofA? in its dependence on the disagreement coefficient.
compared to passive learning under certain conditions. The  Additionally, in Section 5, we address the second limita-
first, proposed by [BBL06] was thd? (agnostic active) algo-  tion by proposing a general model selection procedure for ac
rithm, which is provably never significantly worse than pas- tive learning with an arbitrary structure of nested hypsibe
sive learning by empirical risk minimization. This algduit classes. If the classes each have finite capacity, the exter r
was later analyzed in more detail in [Han07], where it was for this algorithm converges to the best achievable erraryy
found that a complexity measure called thisagreement coef-  classifier in the structure, at a rate that adapts to the woise
ficientcharacterizes the worst-case convergence rates achieveditions and complexity of the optimal classifier. In gengifal
by A2 for any given hypothesis class, data distribution, and the structure is constructed to include arbitrarily gooprapi-
best achievable error rate in the class. The next major agdvan mations to any classifier, the error converges to the Bayes er
was by [DHMO7], who proposed a new algorithm, and proved rate in the limit. In particular, if the Bayes optimal cld&si



is in some class within the structure, the algorithm perorm
nearly as well as running an agnostic active learning algiori
on that single hypothesis class, thus preserving the cgeuee
rate improvements achievable for that class.

2 Definitions and Notation

In the active learning setting, there isiastance spacg&’, and
some fixed distributio® xy overX x {—1, 1}, with marginal
Dx overX. Thereis somei.i.d. sequenc&;,Yr), (Xo,Ya),...
sampled according tP xy. However, the learning algorithmiis
only permitted to observe th¥; values (unlabeled examples),
and must request th¢ values one at a time, interactively. That
is, the algorithm picks some indéxto observe the’; value,
then after observing it, picks another indéxo request to ob-
serve they;, label value, etc. We are interested in studying the
rate of convergence of the error rate of the classifier ouigut
the learning algorithm, in terms of the number of label rexsie
it has made. To simplify the discussion, we will think of this

sequence of examples as being inexhaustible, and will study
(1 — &)-confidence bounds on the error rate of the classifier

produced by an algorithm permitted to make at mosabel
requests, for a fixed valug € (0,1). The actual number of
(unlabeled) examples the algorithm uses will be made ciear i
the proofs (it is typically close to the passive learning pEm
complexity corresponding to the stated error guarantee).

A hypothesis clas€ is simply a set of measurable classi-
fiersh : X — {—1, 1}. We will denote byl the VC dimension
of C [Vap82]. For any measurable: ¥ — {—1,1} and dis-
tribution D, defineerp(h) =P(x y)~p{h(X)#Y}, theerror
rate of h; whenD = Dxy, we abbreviate this as(h). We
also define th(e:onditional error rate given a setR C X, as
er(h|R) = P{h(X) # Y|X € R}. Letv = infpecer(h),
called thenoise rateof C. Additionally, define thediameter
of V. C Casdiam(V) = supy,, p,ev P{h1(X) # h2(X)},
and for anye > 0 define the diameter of theminimal set
asdiam(e; C) = diam({h € C : er(h) — infpccer(h’) <
€}). Foranyz € X, letn(z) = ]P’{Y 11X = z}, let
h*(x) = 21[n(z) > 1/2] — 1, and letv* = er(h*). h*is
called theBayes optimal classifierand v* is the Bayes er-
ror rate. For a classifiet,, and a sequence of labeled exam-
plesQ = {(Xl,yl (X3,Y9), ... (XL, Y]} leterg(h) =
LS 1[A(X]) # Y] denote theempmcal error rateon Q.
Forthetruelabeled sequence,,, ={(X1,Y1),...,(Xm, Y )},
we abbreviate this byr,,(h) = erz, (h), the true empirical
error on the firsin examples.

2.1 Tsybakov’s Noise Conditions

Here we describe a particular parameterization of noise dis
tributions, relative to a hypothesis class, known as Tsglak
margin conditions [MT99, Tsy04]. These noise conditiongha
recently received substantial attention in the passivenieg
literature, as they describe situations in which the asptigpt
minimax convergence rate of passive learning is fastertian
worst caser~'/2 rate (e.g., [MT99, Tsy04, Kol06, MNOG]).

Condition 1 There exist finite constants> 0 andx > 1, s.t.
Ve > 0, diam(e; C) < pex. o

For example, this is satisfied whéri € C, and3y’ >
0,k > 1st.Vh e C,er(h) —v > p'P{h(X) # h*(X)}*, or

Jo, 1/ > 0s.t.P(In(X) —1/2| <t) < 't~ fort € (0,1/2)
[MT99, Tsy04, Kol06]. As we will see, the case where= 1
is particularly interesting; for instance, this is the caggen
h* € CandP{|n(X) — 1/2| > ¢} = 1 for some constant
¢ € (0,1/2). Informally, in many cases this condition can
often be interpreted in terms of the relation between mageit
of noise, density, and distance to the decision boundaayjsh
in practice the amount of noise in an example’s label is often
inversely related to the distance from the decision boundar
and the value of is essentially determined by how quickly
n(z) changes as approaches the decision boundary, relative
to how dense the distribution is in that region. See [MT99,
Tsy04, Kol06, CN06, MNO6] for further interpretations ofgh
margin condition.

Itis known that when these conditions are satisfied for some
k > 1landy > 0, the passive learning method of empirical risk
minimization achieves a convergence rate guarantee,rpldi

with probability> 1 — 4, of
pr
iner,(h)) —v < ;
er(argr}{leléler (h)—v<e ( )

wherec is a (x and i -dependent) constant [Kol06]. Further-
more, for some hypothesis classes, this is known to be a tight
bound (up to the log factor) on the minimax rate, so that there
is no passive learning algorithm for these classes for which we

can guarantee a faster convergence rate, given that tharguar
tee depends oP xy only throughu andx [CNO6, Tsy04].

dlog(n/d)

n

2.2 Disagreement Coefficient

The disagreement coefficient, introduced in [Han07], is a-me
sure of the complexity of an active learning problem, which
has proven quite useful for analyzing the convergence tdtes
certain types of active learning algorithms: for example t
algorithms of [CAL94,BBL06,DHMO07]. Informally, it quanti

fies how much disagreement there is among a set of classifiers
relative to how close to somie they are. The following is a
version of its definition, which we will use extensively balo

For any hypothesis clagdandV C C, let

DIS(V) = {$ eX:3dhy,heo €V S.t.hl(.%') 75 hg(l‘)}
Forr € [0,1] and measurable: X — {—1,1},let B(h,r) =
{n" € C: P{A(X) # K (X)} <r}.

Definition 1 The disagreement coefficient/ofvith respect to
C underDy ist
P(DIS(B(h,r)))

oh = Sup )
r>rg r

We further define the disagreement coefficientGowith re-
spect toDxy asf = liminfy_ .o 0,00, Wwhere{nl¥} is any
sequence ofl¥l € C with er(h*) monotonically decreasing
tov. o

The ry in the definition can either be defined @sgiving a
coarse analysis, or for a more subtle analysis we can tage it t
be a function of:, the number of labels. For our present pur-
poses, we will generally takey = 0; a more refined analysis

Throughout this paper, we will IeE and P (and indeedany
reference to “probability”) refer to theuter expectation and mea-
sure [vdVW96], so that quantities suchB&1S(B(h,r))) are well
defined, even iDIS(B(h,r)) is not measurable.



with rq a function ofn will appear in an extended version of | Algorithm 1
this paper. Input: hypothesi§ clasg, label budget,, confidence
Output: classifieh

0.V~ C,R« DIS(C),Q < 0,m <0
1. Fort=1,2,...,n

2. IfP(DIS(V)) < 3P(R)

3 R—DIS(V);Q 0

4 IfP(R) <27", Returnanyr € V
5. m«— min{m’ >m: X, € R}
6
7
8
9

Because of its simple intuitive interpretation, measutirey
amount of disagreement in a local neighborhood of some clas-
sifier h, the disagreement coefficient has the wonderful prop-
erty of being relatively simple to calculate for a wide rarje
learning problems, especially when those problems have som
type of geometric representation.

Request,,, and letQ — Q U {(X,,Ym)}
V—{heV :LB(h,Q,0/n) < }ILnelE UB(K,Q,5/n)}

hy — arggleigUB(h,Qﬁ/n)
Br — (UB(ht, Q,6/n) — min LB(h, Q,8/n))P(R)

10. Returm,, = hi, wheret = argmin 3,
te{1,2,...,n}

3 General Algorithms

We begin the discussion of the algorithms we will analyze by ~ Algorithm 1 is defined in terms of two functiong B and
noting the underlying inspiration that unifies them. Specifi LB. These represent upper and lower confidence bounds on
cally, at this writing, all of the published general-purpasy- the error rate of a classifier froff with respect to an arbitrary
nostic active learning algorithms achieving nontriviapiave- ~ sampling distribution, as a function of a labeled sequeaoe s
ments are derivatives of a basic technique proposed by [@RL9 pled according to that distribution. As long as these bounds
for the realizable active learning problem. Under the agsum satisfy

tion that there exists a perfect classifierGn they proposed / / Y

an algorithm which processes unlabeled examples in sequenc Pznpr{Vh€C, LB(h.2,0") <erp(h) <UB(h.2,0")} 21 -0

and for each one it determines whether there exists a classifi for any distributionD over X’ x {—1,1} and anyd’ € (0, 1),

in C consistent with all previously observed labels that labels andU B and L B converge to each other as grows, this al-

this new example-1 andone that labels this examplel; if so, gorithm is known to be correct, in that(h) — v converges

the algorithm requests the label, and otherwise it does&ot r to 0 in probability [BBLO6]. For instance, [BBL06] suggest
quest the label; after label requests, the algorithm returns any  defining these functions based on classic results on uniform
classifier consistent with all observed labels. In someeens convergence rates in passive learning [Vap82], such as

this algorithm corresponds to the very least we could explect , ) ,

an active learning algorithm, as it never requests the latash UB(h,Q,0") = min{erq(h) + G(|Q[,¢"), 1}, (1)
example it can derive from known information, but otherwise LB(h,Q,¢") = max{erg(h) — G(|Q|,d"),0},

makes no effort to search for informative examples. We can

equivalently think of this algorithm as maintaining two set whereG(m, ) = + + In 7 +dln 2gm
V' C Cis the set of candidate hypotheses still under consider- N me Y L :
ation, andR = DIS(V) is their region of disagreement. We gu(g’tf) )[\Aggé]Th'S choice is justified by the following lemma,
can then think of the algorithm as requesting a random labele '

example from the conditional distribution &fxy given that Lemma 2 For any distributionD over X x {—1,1}, and any

, and by convention

X € R, and subsequently removing frovh any classifier in- 8" € (0,1) andm € N, with probability> 1 — " over the draw
consistent with the observed label. of Z ~ D™, everyh € C satisfies
!
The algorithms described below for the problem of active lerz(h) — erp(h)| < G(m, &"). @
learning with label noise each represent noise-robusantyi o
of this basic idea. They work to reduce the set of candidate ] ] ] . o
hypotheses’ while 0n|y requesting the labels of examp|§‘Ein To avoid Computatlonal ISSUEesS, instead of eXp|ICIt|y repre

region of disagreement of these candidates. The trick islp o~ Senting the sets” and R, we may implicitly represent them by
remove a classifier from the candidate set once we have high@ set of constraints imposed by the condition in Step 7 ofiprev
statistical confidence that it is worse than some other cimteli ~ OUS iterations. We may also repla€D15(V)) andP(R) by
classifier so that we never remove the best classifier. Haweve estimates, since these quantities can be estimated toaaybit
the two algorithms differ somewhat in the details of how that Precision with arbitrarily high confidence using onlglabeled
confidence is calculated. examples. ) o
The second algorithm we study was originally proposed

The first algorithm, originally proposed by [BBLO6], istyp-  PY [PHMO7]. It uses a type of constrained passive learning

ically referred to asd? for Agnostic Active This was histor- ~ SuProutine, EARN, defined as follows.

ically the first general-purpose agnostic active learnilgpa LEARNC(L, Q) = argmin erg(h).
rithm shown to achieve improved error guarantees for aertai heC:err(h)=0
learning problems in certain rangesofandv. A version of If no h € C haser.(h) =0, define LEARNc (L, Q) = @. Algo-

the algorithm is described below. rithm 2 is defined in terms of a functiah,,, (£, Q, h(¥) h(=¥) §),



Algorithm 2
Input: hypothesis clasg, label budget:, confidence

Output: classifief, set of labeled example3 set of labeled example3

0.L—~0,Q 0

1. Form=1,2,...

2. If|Q| = nor|L| = 2", Returnh = LEARNc(L, Q) along with£ andQ
3. Foreachy € {—1,+1},leth® = LEARNc(L U {(X.m, )}, Q)

4. Ifsomey hash(~¥) =z or

ercug(hY) — erpug(h®) > Ap_1(L,Q, K h(-¥)6)
Thent «— LU {(Xm,y)}
Else Request the lab¥), and letQ «— Q U {(Xmn, Ym)}

oo

representing a threshold for a type of hypothesis test. Thiser(h’), making it significantly easier to determine which of the
threshold must be set carefully, since the et @ is not ac- two is worse using a sample of labeled examples. In particu-
tually an i.i.d. sample fronDxy . [DHMO7] suggest defining lar, [Han07] developed a technique for analyzing this type o
this function as algorithm, resulting in the following convergence rate igumea
tee for Algorithm 1.
A (L,Q,hY), h=¥),6) = ; if
Theorem 3 [Han07] Let &, be the classifier returned by Al-
2 (v) (—y) gorithm 1 when allowed label requests, using the boundy
P+ (\/eTLUQ(h )+ \/eTLUQ(h )) - G and confidence parametér € (0,1/2). Then there exists a
finite universal constant such that, with probability> 1 — ¢,
whereg,, = |/HEmmiVSC2m?/8) angs(C,2m) isthe  Vn €N,
shatter coefficient (e.g., [DGL96]); this suggestion isdzhsn - 202 dlog L n -
a confidence bound they derive, and they prove the correstnes ¢ (fn) =¥ <c\/—— g3 log g iogT sexp{—y/zg5q }-
of the algorithm with this definition. For now we will focus ¢

on the first return value (the classifier), leaving the otHers Similarly, the key to improvements from Algorithm 2 is

Section 5, where they will be useful for chaining multipleex  that asm increases, we only need to request the labels of those

cutions together. examples in the region of disagreement of the set of classifie
with near-optimal empirical error rates. Thus, if the regio

4 Convergence Rates of disagreement of classifiers with excess eror shrinks

ase decreases, we expect the frequency of label requests to
In both of the above cases, one can prove fallback guaran-shrink asm increases. Since we are careful not to discard the
tees stating that neither algorithm is ever significantlyseo  pest classifier, and the excess error rate of a classifier ean b
than passive learning by empirical risk minimization [BE.0  pounded in terms of tha,,, function, we end up with a bound
DHMO7]. However, it is even more interesting to discuss sit- o, the excess error which is converginginthe number ofin-
uations in which one can prove error rate guarantees foethes |apeledexamples processed, even though we request a number
algorithms significantlybetter than those achievable by pas-  of |apels growing slower tham. When this situation occurs,
sive learning. In this section, we begin by reviewing known \ve expect Algorithm 2 will provide an improved convergence
results on these potential improvements, stated in terrtfseof  [4ie compared to passive learning. Using the disagreement ¢

disagreement_coefficient; we then proceed to digcuss New reefficient, [DHMO7] prove the following convergence rate gua
sults for Algorithm 1 and a novel variant of Algorithm 2, and gptee.

describe the convergence rates achieved by these methods in . .
terms of the disagreement coefficient and Tsybakov's noise Theorem 4 [DHMO7] Let h,, be the classifier returned by Al-

conditions? gorithm 2 when allowed label requests, using the threshold
(3), and confidence parametére (0,1/2). Then there exists
4.1 Known Results on Convergence Rates for Agnostic a finite universal constantsuch that, with probability> 1 — 4,
Active Learning vn eN, er(hy) —v <
3; log

We will now describe the known results for agnostic active ., /»?0dlog 5 log 5,5 + /dlogl ,exp{_\/T}' o
learning algorithms, starting with Algorithm 1. The key to n 0 chdlog® 5

the potential convergence rate improvements of Algorithis 1
that, as the region of disagreeméhtiecreases in measure, the
error differencer(h|R)—er(R'|R) of any classifieré, h’ € V
under theconditionalsampling distribution (giverk) can be-
come significantly larger (by a factor B ) ~') thaner(h) —

Note that, among other changes, this bound improves the
dependence on the disagreement coefficiénompared to
the bound for Algorithm 1. In both cases, for certain ranges
of 6, v, andn, these bounds can represent significant improve-
ments in the excess error guarantees, compared to the corre-
mthe presentation, for the remainder of this pape §p0nd|ng guarantees possible for passive learning. Haweve
will restrict the discussion to situations with> 0 (and thereforeC in both cases, thn >0 thesg bolunds have @symptotic
with d > 0 too). Handling the extra case 6f= 0 is a trivial matter, dependence on of ©(n~'/2), which is no better than the con-

sinced = 0 would imply that any proper learning algorithm achieves vergence rates achievable by passive learning (e.g., byremp
excess errob for all values ofn. ical risk minimization). Thus, there remains the questién o



whether either algorithm can achieve asymptotic convargen Theorem 5 Leth,, be the classifier returned by Algorithm 1
rates strictly superior to passive learning for distribas with when allowed: label requests, using the boun@g and con-
nonzero noise rates. This is the topic we turn to next. fidence parametes € (0,1/2). Suppose further thabxy
satisfies Condition 1. Then there exists a finitke &nd u-
4.2 Adaptation to Tsybakov’s Noise Conditions gﬁi'?;';dim) 5C0n3tamSUCh that, for any: € N, with proba-
It is known that for most nontriviaC, for anyn andv > 0,
for every active learning algorithm there is some distiitut . exp {—m} ,  whens =1
with noise ratev for which we can guarantee excess error no er(hn) —v < 462 10g2(n/5) | 752 :
better thanx vn—1/2 [K06]; that is, then~1/2 asymptotic de- ¢ ( ) , Whenk > 1
pendence om in the above bounds matches the correspond- o
ing minimax rate, and thus cannot be improved as long as the
bounds depend o®xy only via v (andf). Therefore, if  proof: We will proceed by bounding thiabel complexity or
we hope to discover situations in which these algorithm&hav  sjze of the label budget that is sufficient to guarantee, with

strictly superior asymptotic dependencerarwe will need to  high probability, that the excess error of the returnedsifes
allow the bounds to depend on a more detailed description ofi|| be at moste (for arbitrarye > 0); with this in hand, we

n

the noise distribution than simply the noise rate can simply bound the inverse of the function to get the résult
As previously mentioned, one way to describe a noise dis- terms of a bound on excess error.
tribution using a more detailed parameterization is to use T First note that, by Lemma 2 and a union bound, on an event

bakov’s noise conditions (Condition 1). In the context o§pa  of probability 1 — ¢, (2) holds withé’ = §/n for every set
sive learning, this allows one to describe situations inclvhi @, relative to the conditional distribution given the redpec
the rate of convergence is between' andn—'/2, even when R set for that iteration, for any value of. For the remain-
v > 0. This raises the natural question of how these active der of this proof, we assume that this- § probability event
learning algorithms perform when the noise distributiotr sa occurs. In particular, this means that for evéryc C and
isfies this condition with finitg: and x parameter values. In  everyQ set in the algorithmLB(h,Q,d/n) < er(h|R) <
many ways, it seems active learning is particularly weltesit ~ UB(h,Q,d/n), for the setR thatQ is sampled under. Thus,
to exploit these more favorable noise conditions, sincg itine we always have the invariakty > 0,{h € V : er(h) —v <
ply that as we eliminate suboptimal classifiers, the dianmte 7} # 0, and therefore also that, er(h;) — v = (er(h|R) —
the version space decreases; thus, for séhalues, the region  infycy er(h|R))P(R) < ;. We will spend the remainder of
of disagreement should also be decreasing, allowing ustsfo  the proof bounding the size of sufficient to guarantee some
the samples in a smaller region and accelerate the convagen 5; < e.

Focusing on the special case of learning one-dimensional . Recalling the definition of thée!*! sequence (from Defini-
threshold classifiers under a certain uniform marginalridist ~tion 1), note that after stefy

bution, [CN06] studied conditions related to Condition © | {h € V : limsup, P(h(X) # A (X)) > @}
particular, they studied a threshold-learning algorithat tun-

!lke the algorithms described :)e;e' igeasmput, and found _Jiev. limsup,, P(h(X) # k¥ (X)) K N P(R)\"
its convergence rate to e ( & whenx > 1, and I 210
exp{—cn} for some (i-dependent) constant whenx = 1. diam(er(h) — v;C)\ " P(R)\"

Note that this improves over the =7 rates achievable in € {h€V: ( P ) > (m) }

passive learning [CNOG, Tsy04]. Furthermore, they proet th

a valuex n~ %2 (or exp{—c'n}, for somec, whens = 1) {he cer(h) — v > <@) }
is also dower boundon the minimax rate. Later, in a personal 2u0

N
<

communication, Langford and Castro claimed that Algorithm ) , 1 .
1 also achieves this near-optimal rate (up to log factonsife heV :er(h|R) — inf er(K'|R) > P(R)™(210) }
same learning problem (one-dimensional threshold classifi

under a uniform marginal distribution), leading to spetiola CheV :UB(h,Q,5/n)— min LB(KW,Q,5/n)
that perhaps these improvements are achievable in theajener h'ev
case as well (under conditions on the disagreement coeitfjcie > P(R)"! (2M9)_”}
Other than the one-dimensional threshold learning prob-
lem, it was not previously known whether Algorithm 1 or Algo- = {he V' : LB(h,Q,0/n) — min UB(K,Q,5/n)
rithm 2 generally achieve convergence rates that exhibgeh eV
types of improvements. > ]P’(R)“_l(2u0)_” —4G(Q], 5/n)},

By definition, everyh € V hasLB(h,Q,d/n) <

ming ey UB(W,Q,5/n), so for this last set to be nonempty
The above observations open the question of whether these alafter stegr, we must hav@(R)*~1(2u0)~" < 4G(|Q|,§/n).
gorithms, or variants thereof, improve this asymptoticetep ~ Onthe other hand, ifh € V : lim sup, P(h(X) # hlF (X)) >
dence om. It turns out this is indeed possible. Specifically, P(R)/(20)} = 0, thenP(DIS(V)) < P(DIS({h € C :
we have the following result for Algorithm 1. limsup, P(h(X) # hlF (X)) < P(R)/(20)}))

4.3 Adaptive Rates in Active Learning



< liminf, P(DIS({h € C: P(h(X) # hlF (X)) <
P(R)/(20)})) < liminfy 6,258 = B o that we will
definitely satisfy the condition in step on the next round.
Since|Q| gets reset td upon reaching step, we have that
after every execution of step P(R)*~1(2uf) "~ < 4G(|Q| —
1,6/n).

If P(R) < SGUQT=T57) 2_G(|QE|76/71)' then certainly
B¢ < e. So on any round for whicl®, > ¢, we must have
P(R) > Combined with the above observa-

<

€
2G(|QI-1,6/n)" X
o

tions, on any round witj¥; > e, (m) (2uf)~" <
4G(|Q| — 1,6/n), which implies (by simple algebra)

2k—2

QI < () = (6p0)*(In3 + (d+1)In(n)) + 1.

Since we need to reach stB@t most[log(1/e)] times before
we are guaranteed sorge < e (P(R) is at least halved each
time we reach step), any

n =1+ <(%)2R—f(6u9)2 (ln % + (d+1) ln(n)) +1> log, %

(4)
suffices to guarantee somig < e. This implies the stated
result by basic inequalities to bound the smallest value of
satisfying (4) for a given value of. |

If the disagreement coefficient is small, Theorem 5 can rep-
resent a significant improvementin convergence rate cozdpar
to passive learning, where we typically expect rates of orde
n—r/(26=1) IMT99, Tsy04, CNO6]; this gap is especially no-
table wherx is small. In particular, the bound matches (up to
log factors) the form of the minimax ratewer boundproven
by [CNO6] for threshold classifiers (whefe= 2). Note that,
unlike the analysis of [CN06], we do not require the algarith
to be given any extra information about the noise distrdmti
so that this result is somewhat stronger; it is also morergdéne
as this bound applies to an arbitrary hypothesis class.

Note that, Theorem 5 is somewhat surprising, since the
boundsU B and LB used to define the sé&f and the bounds
[, are not themselves adaptive to the noise conditions. Also
note that, as before, gets divided by)? in the rates achieved
by Algorithm 1. It is not clear whether any modification to the
definitions ofU B and L B can reduce this exponent érirom
2to 1. As such, itis natural to investigate the rates achieved by
Algorithm 2 under Condition 1, hoping that as before, it ikeab
to reduce the exponent 6f Unfortunately, we do not presently
know whether the original definition of Algorithm 2 achieves
this improvement. However, we now present a slight modifica-
tion of the algorithm, and prove that it does indeed provide t
desired improvement in dependencefrwhile maintaining
the improvements in the asymptotic dependence.oBpecifi-
cally, consider the following definition for the threshofdAl-
gorithm 2.

A (L, QW WY, 6) = 38c(LUQ,8:L),  (5)
whereéc (-, ;) is defined in Appendix A, based on a notion of
local Rademacher complexity studied by [Kol06]. Unlike the

previous definitions, these definitions are known to be adap-

tive to Tsybakov’'s noise conditions, so that we would expect

them to be asymptotically tighter and therefore allow thgmal
rithm to more aggressively prune the set of candidate hypoth
ses. Using these definitions, we have the following theorem;
its proof is included in Appendix B.

Theorem 6 Supposé,, is the classifier returned by Algorithm
2 with threshold as ir{5), when allowed: label requests and
given confidence parametére (0,1/2). Suppose further that
Dxy satisfies Condition 1. Then there exists a finiteaid
1 -dependent) constantsuch that, with probability> 1 — ¢,

Vn € N,
1 n
A _,exp{_\/?}, whenr = 1
c (w) e whenk > 1
<&

Note that this does indeed improve the dependence, on
reducing its exponent from to 1; we do lose some in that
there is now a square root in the exponent of the 1 case,
but it is likely that this can be removed with a refined defoniti
of &, and therefore is not of fundamental significance. The
bound in Theorem 6 is stated in terms of the VC dimensgion
However, for certain nonparametric function classes (iith
d = o0), it is sometimes preferable to quantify the complexity
of the class in terms of a constraint on #r&ropy(with brack-
eting) of the class (see e.g., [vdVW96, Tsy04, Kol06, CNO7])
Specifically, fore € [0, 1], define
we(m,e) =

E [(er(h1) — erm(h1)) — (er(ha) — erm(h2))|.
h1,h2€C:
P{h1(X)#h2(X)}<e

Condition 2 There exist finite constants> 0 andp € (0, 1)

s.t.vYm € Nande € [0,1], we(m, €) < ae=2m~1/2. o

In particular, as noted by [Kol06], the entropy with bracket
ing condition used in the original minimax analysis of [T4y0
implies Condition 2. In passive learning, it is known that-em
pirical risk minimization achieves a rate of order”/ (25+,—1)
under Conditions land 2 [Kol06], and that this is sometimes
tight [Tsy04]. The following theorem gives a bound on the
rate of convergence of the same version of Algorithm 2 as in
Theorem 6, this time in terms of the entropy with bracketing
condition which, as before, is faster than the passive iegrn
rate when the disagreement coefficient is small. The proof of
this is included in Appendix B.

Theorem 7 Supposé,, is the classifier returned by Algorithm
2 with threshold as in{5), when allowed label requests and
given confidence parametére (0,1/2). Suppose further that
Dxy satisfies Conditions 1 and 2. Then there exists a finite (
1, o and p -dependent) constartsuch that, with probability
>1-46,VneN,

) 2m+~p*2

er(hn) —v <c <
Although this result is stated for Algorithm 2, it is concalble
that, by modifying Algorithm 1 to use definitions &f and j;

based orﬁC(Q, d;0), an analogous result may be possible for
Algorithm 1 as well.

flog*(n/d)
n
o



5 Model Selection Theorem 8 Supposé.,, is the classifier returned by Algorithm
3, when allowed» label requests and confidence parameter
d € (0,1/2). Suppose further th&P xy satisfies Condition 3.
Then there exist finites{ and 11; -dependent) constantés such

that, with probability> 1 — §, Vn € N, er(hy,) — veo <

While the previous sections address adaptation to the dise
tribution, they are still restrictive in that they deal omljth fi-

nite complexity hypothesis classes, where it is often uistia

to expect convergence to the Bayes error rate to be achevabl

We address this issue in this section by developing a general

algorithm for learning with a sequence of nested hypothesis % - exp {— /W} , ifr;=1

classes of increasing complexity, similar to the settingtofic- 3 i (u; — 1. )+ aan s

tural Risk Minimization in passive learning [Vap82]. Thart iel o [ 4t log? 25 | 22 i > 1

ing point for this discussion is the assumption of a struetur ‘ n ’ ’

C, in the form of a sequence of nested hypothesis classes. R
CicCocC---

Each class has an associated noiseuate infj,cc, er(h), and In particular, if we are so lucky as to have = v* for some

we definev,, = lim v;. We also le¥); andd; be the disagree- finite ¢, then the above algorithm achieves a convergence rate
mentcoeﬁicien{;r(fa VC dimension, respectively, for thecset not significantly worse than that guaranteed by Theorem 6 for

We are interested in an algorithm that guarantees conveegen applying Algorithm 2 directly, with hypothesis clags.

in probability of the error rate to.,. We are particularly inter- Asin the_ case of finite-complexity, We can also Sh(.)\.N a
ested in situations where, — v*, a condition which s real- variant of this result when the complexities are quantified i

istic in this setting sinc&; can be defined so that it is always (€rMs of the entropy with bracketing. Specifically, conside
satisfied, under mild conditions ati (see e.g., [DGL96]). Ad- Fhe following condition and theorem. Again, this represein
ditionally, if we are so lucky as to have some— v*, then we improvement over known results for passive learning when th
would like the convergence rate achieved by the algorithm to disagreement coefficient is small.

be not significantly worse than running one of the above agnos

tic active learning algorithms with hypothesis cla&salone. ~ Condition 4 For eachi € N, there exist finite constants >
In this context, we can define a structure-dependent veddion 0 andp; € (0,1) s.t. vm € Nande € [0,1], we,(m,€) <
Tsybakov’s noise condition as follows. ai;;”i m-—1/2. o

Condition 3 For some nonempty C N, for each: € I, . -~ )
there exist constants; > 0 andx; > 1, such thatve > Theorem 9 Supposé,, is the classifier returned by Algorithm

. L h 3, when allowed» label requests and confidence parameter
0, diam(e; C;) < pexi. o

d € (0,1/2). Suppose further th& yy satisfies Conditions 3

In passive learning, there are several methods for this type@nd 4. Then there exist finite:{ 1.;, a; and p; -dependent)
of model selection which are known to preserve the conver- constants:; such that, with probability> 1 — 4, vn € N,
gence rates of each cla§s under Condition 3 (e.g., [Tsy04, "y
Kol06]). In particular, [KolO6] develops a method that per- . ) 0, log® % 2ritei=2
forms this type of model selection; it turns out we can modify er(hn) — Voo < 3min(y; — veo) + ¢ — .

S : . icl
Koltchinskii's method to suit our present needs in the ceirié '
active learning; this results in a general active learnirggiet o
selection method that preserves the types of improveddates
cussed in the previous section. This modification, heremede In addition to these theorems for this structure-dependent

to as Algorithm 3, is presented below, based on using Algo- yersion of Tsybakov’s noise conditions, we also have the fol
rithm 2 as a subroutine. (It should also be possible to define a lowing result for a structure-independent version.

analogous method using Algorithm 1 as a subroutine instead.

The functioné.(-, -;-) referred to in Algorithm 3 is defined in Theorem 10 Supposefzn is the classifier returned by Algo-

Appendix A. , rithm 3, when allowed, label requests and confidence param-
This method can be shown to correctly converge in proba- gter 5 ¢ (0,1/2). Suppose further that there exists a con-

bility to an error rate of,, at a rate never significantly worse  giant,, ~ 0 such that for all measurablg : X — {-1,1},
than the original passive learning method of [Kol06], as de- er(h) — v* > uP{h(X) # h*(X)}. Then there exists a finite

sired. Additionally, we have thg_following guarantee on the (u-dependent) constantsuch that, with probabilitg> 1 — 4,
rate of convergence under Condition 3. The proof of thisltesu v, < N, -

and the others in this section, are similar in style to Kaleh

skii's original proofs, though some care is needed due to the
altered sampling distribution and the constraint/sgt. How- er(ﬂn) —v* < emin(y; —v*) +expl — +
ever, these issues are addressed nicely by the several #mma €N cd;f; log %
we have generated from the proofs of the previous section (in
Appendix B). The details of these proofs are included in Ap- o
pendix B.2.
The case wherer(h) —v* > uP{h(X) # h*(X)}"forx > 1
can be studied analogously, though the rate improvemeats ov
passive learning are more subtle.



Algorithm 3
Input: nested sequence of clas$€s}, label budget:, confidence parametér

Output: classifiefr,,
0. Fori = |\/n/2],|[/n/2| —1,|\/n/2] —2,...,1
1. LetL;, and@);, be the sets returned by Algorithm 2 run with and the
threshold in (5), allowingn/(2i?)] label requests, and confidenté2i?)
2. Leth;, «— LEARNCi (Uljziﬁjna Qm)
3. Ifhy, AgandVjsti<j<|[v/n/2],
A er,,0Q (hin) = €12,,00,. (hin) < 2E¢, (LinUQjn, 3/(25%); Lin)
4. hn e hin
5. Returnh,,

6 Conclusions where, for our purposes, we can take= 752, andé = 3/2,

, . . . . though there seems to be room for improvement in these con-
Under Tsybakov’'s noise conditions, active learning caeroff

improved asymptotic convergence rates compared to passivétants‘ We also defirte: (0, 3; C, £) = co by convention.

learning when the disagreement coefficient is small. Itse al .

possible to preserve these improved convergence rates whe|$ Main Proofs

learning with a nested structure of hypothesis classesgusi | et g(c(m ) = g(c(gm’5 (). For eachm € N, let E;ﬁn =

an algorithm that adapts to both the noise conditions and the,rg mm erm(h) be the empirical risk minimizer it for the
eC

complexity of the optimal classifier. i
piextty P truelabels of the firsin examples.

A Definition of & Fore > 0, defineC(e) = {h € C : er(h) — v < €}. For
m € N, let
For any functionf : X — R, and{y, &, ... asequence of inde- _
pendent random variables with distribution uniforndia, +1}, € (m€) _IE‘] :fg’c(!)(edhl)_erm(hl)) — (ertha)—erm (h2))],
define theRademacher proce$sr f under a finite sequence of ’
labeled example® = {(X/,Y/)} as - . ———
p e@ {( i 1q )} U(C(m, €, 6) - K (¢C(m’ EE) + sm (8)diam(ce;C) + sm(é))’

RU:Q) = iy 3 (XD, : ’

The¢; should be thought of as internal variables in the learning
algorithm, rather than as fundamental to the learning jembl _ ~
For any two sequences of labeled examples {(X/,Y/)} where, for our purposes, we can take= 8272 and¢ = 3.

2 K3

andQ = {(X/,Y/")}, defineC[£] = {h € C : erz(h) = 0}, We also defin€c(0,8) = oc. The following lemma is crucial
. to all of the proofs that follow.
Clg L,Q)={heC[L] :erg(h) — hm([i:I[lL erg(h’) < e},
'e

Ec(m,6) = inf {e >0:Vj € Ze,Uc(m, 27, 6) < 2-7'—4},

] Lemma 11 [Kol06] There is an evenE s with P(Ec ) >
Q| 1 — 4/2 such that, on evenkc s, Vm € N,VYh € C,Vr €
letDe(e; £,Q) = sup &y, z [h1 (X7 # ho(X1)], (0,1/m),Vh" € C(7),
h1,heeC(e;£,Q) =1 , “
and definejc(e; £,Q) = 3 sup R(h1 — h2; Q). Let er(h) — v < max { erm(h) = erm(W) + 1), €c(m, 6)}
h1,h2eC(e;£,Q) 3
2 m(h) — erm, h <z 8 0
0 € (O’ 1]' m € N, and def|nem(5) =1n w er ( ) er ( ) 5 Inax {(67’( ) ) (C(m )}
LetZ. = {j € Z : 27 > ¢}, and for any sequence of Ec(m,8) < Ec(m,d),
_ I U H . ~
labeled example@/— {(x1,Y; )}; define . and for anyj € Z with 279 > E¢(m, d),
Qm = {(X1, YY), (X3,Y3), ..., (X5, Vi) b sup  |(erm(h1) — er(hy)) — (erm (he) — er(hy))]
We use the following notation of Koltchmsku [Kol06] with  h1,h2€C(29) R
only minor modifications. For € [0, 1], define < Uc(27,6;0, Zp). o
UC(Ev 57 La Q) =

This lemma essentially follows from details of the proof of
Koltchinskii’s Theorem 1, Lemma 2, and Theorem 3 [Kof6]
(|5)> We do not provide a proof of Lemma 11 here. The reader is
referred to Koltchinskii's paper for the detalils.

o NN s 5D, ce; L,Q s
K<c<ce;£,Q)+ 2 DD EED )t

é@(Q, 0, L) = 0our rgi‘%‘ modification to Koltchinskii's version ofc(m, ) is
not a problem, sinc ,¢€) and 22%) are nonincreasing functions
m“iﬁn|mf{6>0 Vi€ L Ue(246; £, Qm) <271 of Bl ¢) and=y 9



B.1 Proofs Relating to Section 4
For? € NU {0}, let £ andQ® denote the set§ andQ,

respectively, in step 4 of Algorithm 2, when — 1 = /; if this
never happens during execution, defitlé = §, Q¥ = z,.
Lemma 12 On eventEc 5, V¢ € NU {0},

Ec(QVULO® §;LO) = Ec(L,0)

and Ve > &c(£,6), hi e Co(e; £O) C Cole; 0). o

Letting 7 — 0, and noting thatarg(fz;‘nn) = 0 (Lemma 12)
implieser,, . (hn) = erpm, (h%, ), we have

)
er(ﬁn) —v< éc(mn,5) < é@(mn,é),

where the last inequality is also due to Lemma 11. Note that

thisEc (m.,, §) represents an interesting data-dependent bound.
To get the bound on the number of label requests, we pro-

ceed as follows. For amy: € N, and nonnegative integer

¢ < m, letI, be the indicator for the event that Algorithm 2 re-

guests the labeY,, ; and letN,, = ;”:51 I,. Additionally,

Proof:[Lemma 12 Throughoutthis proof, we assume the event let I; be independent Bernoulli random variables with

Ec s occurs. We proceed by induction éywith the base case
of ¢ = 0 (which clearly holds). Suppose the statements are true

forall ¢/ < ¢. The casec”) = () is trivial, so assum& ) 7 0.
For the inductive step, supposec C,(Ec (¥, d);0). Then for
all ¢/ < ¢, we haveer,(h) —ery(h}) < Ec(,6). In particular,
by Lemma 11, this implies

er(h) — v < max {2(67‘@(]1) —ere(h})), Ec(t, 6)}

< 28¢(0,6), and thus for any’ € C, erp (h) — erp (h') <
erp (h) —ere (hy) < 3 max {er(h) —v,&c(l, 5)}

< 38c(0,6) = 3Ec(QU),5;£1)). Thus, we must have

ers(h) = 0, and thereforer € Cy(Ec(£,6); £1). Since
this is the case for all suodh we must have that

Co(Ec(6,0);£1) 2 Cu(Ec(t, 5); 0). (6)

In particular, this implies thatic(&c(4,6),6; £, QW) >
Uc(Ec(£,0),8:0,2) > =Ec(¢,6), where the last inequal-
ity follows from the definition oféc(é, d), (which is a power
of 2). Thus, we must havéc (Q¥) U £1) 5; £D) > Ec(¢, ).
The relation in (6) also implies thag € C,(Ec(f, 6); £LO),
and thereforere > Ec(0,6), Ci(e; £O) C Cy(e; 0), which
impliesVe > Ec(£,6), Uc(e,8; L0, QW) < Ucl(e, 5;0, Z).
But this meansc(Q) U L1, 5; £D) < &c(4,6). There-

fore, we must have equality. Thus, the lemma follows by the

principle of induction. |

Lemma 13 Suppose for any. € N, h,, is the classifier re-
turned by Algorithm 2 with threshold as (&), when allowed
n label requests and given confidence paraméter 0, and
suppose further that:,, is the value ofQ| + |£| when Algo-
rithm 2 returns. Then there is an evdiit ;s such thafP(Hc sN

E(C,(;) > 1 — ¢, such that odcs N Ec,5,Vn €N,

er(ﬁn) —v< é@(mn, 9),

and

2 my—1 B
n < min {mn,logQ 4?" + 4ef Z diam(28c(€,6);(C)} :
=0

<

Proof:[Lemma 13 Once again, assume evdrit s occurs. By
Lemmallyvr > 0,

er(hn)—v< Inax{2(e7’mn (hn)—€Tm., (hyy )+T), Ec(mn, 5)}

P, =1] =P {DIS(«:(zéC(e, 5)))} .
Let N/, = 37", ' I}. We have that
P[{I, = 1} N Ec.)
<P{Xr1€DIS(C(Ec(Q® U L5 £(); L))} E
<P [{XM € DIS(Cy(Ec(t,5);0))} N Em}
<P [DJS(@(QEC(A 5)))} — P} = 1].

The second inequality is due to Lemmas 12 and 11, while the
third inequality is due to Lemma 11. Note that

EIN,) = Y Bl = 1] = Y B{DIS(CCE(t.0)} )
=0 =0

Let us name this last quantigy,. Thus, by union and Chernoff
bounds,

]

4m?
< Z P | < Ny, > max 4 2eqpm, gm + 1ogy v NEc,s

meN

, 4m?
< D P |{ Ny > max S 2, gm + logs ——

meN
) 6
< — < —.
<Xz
meN

4m?
P |<ImeN: N, >max < 2eqm, ¢m+1logy —— N Ec,s

For anyn, we known < m, < 2". Therefore, we have that
on an event (which includeB¢ s) occuring with probability
>1-—4, foreveryn € N,

n < max{N,,, ,logs my}

4m?
< max < 2eqm,, , ¢m,, +10g, 5

myp—1

+2¢ > P{DIS(C(2Ec(£,0)))}

£=0

2
4msz

< log,

mp—1
+2e0 Y diam(2Ec(¢,6); C).

£=0

2
dmz

S 10g2 6




Lemma 14 On eventH¢ s N Ec s (of Lemmas 11 and 13), un-
der Condition 1¥n € N,

1 / i —
g.exp{— W}, |f/{—1

c (7‘%) 1°g2(nd/6))m ) ifk>1

n

g:(C (mnv 5) <

)

for some finite constant (depending onx and 1), and under
the additional Condition 2yn € N,

910g2(n/6)) Zto—2

n

é(c(mn, d) <c (
for some finite constant(depending om, u, p, anda).

Proof:[Lemma 14 We begin with the first case (Condition 1
only).
We know that

edlog %

welmye) < K
m

for some constank (see e.g., [MNO6]). Noting thatc (m, ¢)
< we(m, diam(e; C)), we have that

- . diam(ée; C)dlog -——2——
Uc(m,€,6) < K <K\/ diam (EeC)
m

N \/sm((s)dizlm(&e;(C) n Smn§5)>

< K'max el/ﬁdlog% v/ sm(0)er/* s (9)
- m ’ m " m '

dlog &\ 2r
m

Taking anye > K" ( ', for some constarft”’ > 0,

suffices to make this latter quantity 7. So for some appro-

priate constani (depending o andk), we must have that
dlog 3 T

— .

Ec(m,8) < K ( @)

Plugging this into the query bound, we have that

2 mn—1 dlog &\ 7T
47:;" + 264 (2 +/ u(2K')* < o8 5> )
1 x
- (8)

If £ > 1, (8) is at mostK”fmz" " dlog %=, for some
constantK” (depending ork and ). This impliesm,, >

K3 (m) *7* for some constank ®). Plugging this

n < log,

into (7) and using Lemma 13 completes the proof for this case.

On the other hand, i = 1, (8) is at mostk”d log” =,
for some constank” (depending orx and ). This implies
m,, > dexp {K® /7 }, for some constank®. Plugging
this into (7), using Lemma 13, and simplifying the expressio
with a bit of algebra completes this case.

Forthe bound in terms gf, [Kol06] provesthat¢(m, d) <

K’ max mfﬂ-fpf_l log% e <K' log% Feret
) m — m Y

)

for some constank (depending onu, «, andx). Plugging
this into the query bound, we have that

Am?2 mp—1 log £\ ZeFs=1
nglogz%—i—QeH <2+/ p(2K')* (%) ’
1

2k+p—2 )
< K"0my™"~" log %=, for some constank” (depending on

2k+p—1

%, 11, o, andp). This impliesm,, > K©®) (#) 7 for

some constark ®). Plugging this into (9) and using Lemma 13
completes the proof of this case. ]

Proof;[Theorem 6 andTheorem 7] These theorems now fol-
low directly from Lemmas 13 and 14. |

B.2 Proofs Relating to Section 5

To simplify the notation in this section, defi&);, = L;, U
Qin foranyi e Nyn € N.

Lemma 15 Fori € N, letd; = §/(2i%) andm;, = |Lin| +
|Qin| (fori > \/n/2, definel;, = Qi, = ). For eachn, let
i, denote the smallest indésatisfying the condition oh;,, in
step 3 of Algorithm 3. Let, = 2~ and define

it =min{i €N:Vi’ >i,Vj >i',Vhe Cy (1), erg,, (h) =0},
and

g = arvgminu; +&c, (mj. ).

o0
Then on the evenff) Eg, s,
i=1

Vn € Nymax {1y, i, ¢ < .

{inin} < .
Proof:[Lemma 15 Continuing the notation from the proof of
Lemma 12, for € NU{0}, let Ll(.fl) andQEfl) denote the sets
andq@), respectively, in step 4 of Algorithm 2, whem— 1 = ¢,
when run with classC;, label budget n/(2i?)|, confidence
parameted;, and threshold as in (5); if: — 1 is never/ during
execution, then defing”) = ¢ and@!") = z,.

oo
Assume the evenf) Eg, s, occurs. Suppose, for the sake

=1
of contradiction, thaj = j* < iy for somen € N. Then there
is somei > ¥ — 1 such that, for somé < m,,,, we have some
K e (Cijb—l(Tn) n {h eC;: €T 1(0) (h) = 0} but

ere(h') — }?é%l ere(h) > ere(h') — min ere(h)

hGCiieTE@) (h)ZO
i L4)) = 3, (£.6:),

where the last equality is due to Lemma 12. Lemma 11 implies
this will not happen for = ¢} — 1, so we can assume> i .
We therefore have (by Lemma 11) that

> 38c, (29 uQY

in

N . N
3¢, (f’ 61) < eTZ(h ) }{Ié%i erg(h)

3 o
< §maX{Tn+Vi;§_1 —Vi,e(ci(f,éi)}.



In particular, this implies that in this last line, and using the definition of, we have that
er(hy) — Vs IS @t most

3E¢c; (Min, 0;) < 3E¢, (¢, 6;)

3 3 Vip = Voot

§(Tn+yz*71_yz)SE(Tn‘FVj_Vi)- 3. N

max {2 (55@; (£Qjzn, 5j;?£j;n)> €y (Mn, 5]‘:)}
Therefore, .
. . = Vjr — Voo +3Ec,. (Myxn,djx) (Lemma 12)
Ec;(Mjn,65) +v; < Ec;(Min, 6i) + v t o
< 3min (v — vee + &c,(min, ) (by definition ofj;)

[NeR

-
< —(Tn—i—l/j—ui)—i—yig?n—i—yj.

IN

3 min (yi — Voo + éci (min, 61-)) (Lemma 11).
This would imply that&c (Mjn,0;) < /2 < m— (due to '
the second return condition in Algorithm 2), which by defi- u
nition is not possible, so we have a contradiction. Thersfor
we must have that every > . In particular, we have that
Vn € N, hj, # 9.

Now pick an arbitraryi € N with ¢ > j = j*, and let

We are now ready for the proof of Theorems 8 and 9.
Proof:;[Theorem 8andTheorem 9 These theorems now fol-
low directly from Lemmas 16 and 14. That is, Lemma 16

h' € C;(r,). Then gives a bound in terms of thé quantities, holding on event
ercQin (h n) = ercq,, (hin) = erm,, (hjn) — erm,, (hin) N FEc, s, and Lemma 14 bounds thegguantities as desired,
1=1
< ermy (hjn) = heg, €lmin () onevent() Hg, s, N Eg, s,- Noting that, by the union bound,
3 . . i=1
< 5 max {er(hjn) — 4, Ec, (Min, 51')} (Lemma 11) P {ﬂ Hc, 5, NEc,5,| > 1-2,8; > 1 — & completes the
3 R i=1
= gmax {er(hjn) — v +v; — v, Ec, (Min, 51)} proof. [ ]
2(erm;, (hjn) — erm,, (B') + ) + v — v )
< 5 max é(c (Mjn, 85) + v — v; Definition 17 Define¢ = ¢+ 1, D(e) = lim diam(e; C;),
j—00
c:(Min, 01) Uc,(m, e, )
3 &c, (mjn, ;) +v; —vi S
= Zmax{ .7 W 7o (sincej > i) B . ND(é ,
2 {8 (Min, ;) = & | we, (m, D) + Sm(03)D(ce) n $m(0;)
3 R m m
= ESQ (M, ;) (by definition ofj;)
3. and
= =&c(Lin U Qin, 0 Lin) (by Lemma 12) , . , .
2 &c.(m,o;) = inf {e >0:Vj € Ze,Uc,(m,29,6;) < 247—4} .
|
<
Lemma 16 On the even{ Eg,s,, Vn € N, Lemma 18 Foranym, i € N,
=1 ~ o
) &c;(m,d;) < max {&Ci (m,d;),v; — uoo} .
- )= Voo < 3min (v — (Min, 6;) ) -
er(hlnn) Voo < 3%%1 (1/1 Voo + Ec; (Miin, (51)) R
Proof:[Lemmal€ Leth;, € Cj-(7,)form, €(0,27"),n€N. Proof:[Lemma 18 Fore > v; — v,
er(hy) = er(h; ) Uc,(m, €, d;)
= Vjx + er(h%nn) — Vjx - K <¢C»(m, 56) + [ 8m (8;)diam(&e;C;) + Sm (84 )>
< 2(ermj*n(h€nn) - e/rmj*n(h/;l) + Tn)
= Vi hmax Ec, (Myjzn, 5jz) < K(wci (m, diam/(@e; Cy))+/ 2 (0diamEaCe) | om0 ))
2(errco.. (hs —erro.. (hixp)) + Tn .
< +max{ (erea;;., (B, n) £Qs5n (Rizm) + ) Butdiam(ée; C;) < D(Ge+ (v —v)) < D(é¢), so the above

&c (mj:;nv 53’;;) line is at most

The first inequality follows from Lemma 11. The second in- o o S (84 ) ) (é€) sm(6 ) °
equality is due to Lemma 15 (i.ej; > i). Lettingr, — 0 K (‘”Ci (m, D(¢e))+ + =Uci(m, €, 5).




In particular, this implies that

Ec,(m,d;)

— inf {e >0:Vj € Ze,Ug,(m,29,6;) < 2]‘—4}

< inf {6 > (V; — Vo) @ Vj € Ze, U@i(m, 2-7,61-) < 2j_4}
< inf{e> (Vi — Vo) 1 Vj eze,ﬁci(m, 27.6;) §2j74}
. hﬁ{e>O:Vj€ZﬂﬁQ0m2%&)§2T4}

max {

max {é@i (m,6;),v; — 1/00} )

Vi = Vo

Proof:;[Theorem 1( By the same argument that lead to (7),
we have that

: d; log i
Ec,;(m,d;) < K2&7
m

for some constank’, (depending omn).
Now assume the evefi},~, Hc,,s, N Ec, s, occurs. In par-
ticular, Lemma 16 implies thati, n € N,

er(hy) — v*

< min{l,?)r_réiél (Q(I/i—voo)-i-é(ci(mm,éi))}
d; log Mint
< Ksmin <(Vi—y*)+min{1,&}> 7
€N Min

for some constank’s.
Now takei € N. The label request bound of Lemma 13,
along with Lemma 18, implies that

[n/(2i%)] <

2 2 M —1
+K40; | 2+ / max
1

inl
< Kx0; max {(Vi — U )Ymyp, d; logQ(min) log 5

Let%(n) = /W Then

log

d; log miT”i
< K (v = v) 5B + dilog & (14 74(n) e=2(),
Thus,min {1, dilos = }

< min {1, K, ((Vl —v*)+d; 1og§ (1+7(t)) e’cﬂi(”))}.

The result follows from this by some simple algebra. B
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