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Abstract . . .

We present the first tree-based regressor whose con- s . .

vergence rate depends only on the intrinsic dimen- . ; .
sion of the data, namely its Assouad dimension. .| o ° .

The regressor uses the RPtree partitioning proce-
dure, a simple randomized variant/ofi trees.

(a) Dyadic tree (b) k-d tree (c) RPtree

Figure 1: Spatial partitioning induced by various splitin
1 Introduction rules. Two levels or the tree are shown for each.

Non-parametric learning algorithms tend to suffer from tvha
is referred to as the curse of dimensionality, namely thet pr  the usually shallow tree down to an appropriate cell. These
diction performance deteriorates dramatically as the rmimb methods are popular due to their ease of use and compu-
of features increases. This phenomenon is quantifiablesin th tational efficiency (e.g. CART, dyadic treek;d tree, see
case of regression algorithms: as initially shown by Stone [GNO5, SN06, DGL96]), but none has been shown to adapt
[Sto80, Sto82], if we only assume that the regression func- to intrinsic dimensionality in terms of their regressioskri
tion f(x) is Lipschitz! in RP, then no non-parametric esti- See Figure 1 for some examples.
mator can achieve a convergence rate fasterthan(>+2). The Random Projection tree (RPtree) is a hierarchical
In other words, the number of points required to attain a low partitioning procedure which recursively bisects the datece
risk may be exponential i, and this is infeasible even for ~ With random hyperplanes (see Figure 1(c)). Although RP-
moderate values adb. tree’s connections to intrinsic data dimensionality hasrbe
However, it is often the case that data which appears high studied in unsupervised settings ([DF08, GLZ08]), its use f
dimensional, actually conforms to a structure of low irgitn ~ regression has not been explored.
dimensionality (interpreted broadly). Examples of suth si Using RPtrees for regression requires a method for se-
uations are traditional continuous settings where the idata lecting a partition on which to learn the regresgpr Select-
close to a low dimensional submanifoldBf, and discrete  ing a good partition from the hierarchy is essential to bal-
settings such as when the data is sparse. These are all exancing the bias and variance of the regressor. Traditional
amples of data with low Assouad dimension (see definition methods use penalized empirical risk minimization over all
1); this notion of dimension thus offers a natural and broad possible partitions induced by the tree. Our approach can be
model of intrinsic data complexity. more efficient in practice. We grow the tree in careful steps
We show that, for any input data distribution, the risk of a that enable us to quickly identify a small set of candidate
regressor based on RPtree (a variarit-aftree) depends just ~ partitions. We then provide a couple of options for select-
on the unknown Assouad dimension of the data, regardlessing the final partition: one is to use cross-validation over t
of the ambient dimensiof. This is the first such result for ~ candidate partitions, another is a criterion which allows t

tree-based regression. automatically stop growing the tree when a good partition
is attained. The latter method is computationally cheaper,
1.1 Tree-based regression while the former method results in a slightly better risk. In

Tree-based regression consists of first building a hieyarch POth cases, the excess risk of the RPTree regressor depends

of nested partitions of the data space (the tree), and thenlUst on the unknown Assouad dimension of the input space,

learning a piecewise continuous functigp over the cells  for all distributions. _ _

of some chosen partition in the hierarchy. Future evalnatio On the technical side, RPtree regression requires novel

of f,(z) can be done in time jusb(logn) by navigating technques for analyzing the bias of the estimator. Estima-
tor bias is well understood to decrease with the diameters of

!Stone’s result concerns a much larger class of regression func-the partition’s cells. Unfortunately theghysical diameters
tions; here we focus on Lipschitz conditions. are hard to assess for RPtrees given the random and irregu-



lar shapes of the cells, and in fact they may not decrease at \
all. However, we can track the diameters of the data within 3
the cells, and we develop new techniques to relate these em- 7
pirical data diameterdo the estimator’s bias. We believe T

these techniques are of independent interest as they take fo !
cus away from the cells’ physical diameters, thus opening i
the door to richer partitioning rules whose cell diametees a (a) Sparse data set. (b) 2-d manifold.
hard to control.

12 Background and related work Figure 2: Examples of data with low Assouad dimension.
Since data often has low intrinsic dimensionality, various

techniques have been developed that transform datali®dm  in a balf of (unknown) diameten\x, and the output space
to a lower dimensional space where some information is pre-) ¢ R”" is contained in a ball of (unknown) diameté;.
served (see e.g. [RS00, BNO3, TSLOQ]). These techniques, ) ]

referred to as manifold learning, can be used as a preprocess2-1  Assouad dimension

ing step to regression: the regressor will then operatedn th we model the intrinsic dimensionality of the spateusing
lower dimensional space. Unfortunately, this approach hasthe notion of Assouad dimension defined below.
no theoretical guarantees for distribution free regressei-
tings. This raises the following question: can learninghmet  pefinition 1 The Assouad dimension (or doubling dimen-
ods such as regression adapt automatically to data that hasjon) of ¥ — RP” is the smallest! such that for any ball
low intrinsic dimensionality while operating in the origih B C RP, the setB N X can be covered bg? balls of half
spaceR”? the radius ofB.

This question was first answered by Bickel and Li [BLO6]
for the case of local kernel regressors. They show the exis-  The Assouad dimension has proved useful in capturing
tence of a bandwidth setting such that the asymptotic risk the intrinsic complexity of data spaces as shown in various
at a pointz € R” depends just on the manifold dimen- works on data analysis (see e.g. [INO7, KLO4, Cla05]).
sion and on the behavior of the kernel in a neighborhood |t coincides with the natural notions of dimension of vari-
of z. One then has to search for the appropriate bandwidth ous geometric objects: it is easy to see tthaimensional
setting, either by estimating the manifold dimension or by cubes, spheres, all have Assouad dimensgigd) (see e.g.
cross-validating over possible values of this dimensi@e (s [Cla05]). It also captures notions of data complexity thvat a
e.g. [BLO6, LWO7]). standard in the machine learning and statistics commashnitie

Kernel regressors can be expensive in practice: the kernelthis is stated in the following remarks for emphasis.
weights must be computed anew at each training point in
order to evaluate the regressor on a new data point. ThisRemark 1 A d-dimensional hyperplane iR” has Assouad
translates into an evaluation time @fn) which is often a  dimensionO(d) (see [Cla05]).
burden given large samples. Contrast this withdh&g n)
evaluation time of tree-based regressors. Remark 2 A d-dimensional Riemannian submanifoldiof

In the case of classification, a recent result by Scott and has Assouad dimensi@n(d), subject to a bound on its cur-
Nowak ([SNO6]) for dyadic decision trees is related: they vature (see Theorem 22 of [DF08]).
show that if the input data is drawn from an approximately
uniform measure on a manifold, and the Bayes decision bountkemark 3 A d-sparse data space R”, i.e. one where each
ary is sufficiently smooth, DDTs achieve classificationsate data point has at most non zero coordinates, has Assouad
that depend just on the manifold dimension. It is unclear dimensionO(dlog D): it can be described bﬁ) < D4
whether their result will apply in a distribution free regre  hyperplanes of dimensiah
sion setting.

The random regression graphs of Caponnetto and Smale
[CS07] are similar in spirit to RPtree regression since they 2.2 Notions of diameter

also partition space with random hyperplanes. The regres-| et A pe some partition at’. Traditionally, bias analysis re-
sion risk in [CS07] is given in terms of a quantity that re- yg|ves around thphysical diametera (A) = max ||z — /|
lates the regression function to the distribution of thedryp z,a' €A )
planes. They show this quantity to be finite when the regres-Of cells A € A (see e.g. [GNO5, SNO6, DGL96]). In this
sion function has bounded norm in the RKHS induced by Work we instead relate bias to tHata diametersf the cells,

a particular kernel, and the hyperplanes are uniformly sam-thatisA, (4) = = max [z — a'[lor0if ANX = 0.
pled. They do not establish a connection between this form  £qcysing on data diameter has the following advantage.
of regression and adaptivity to intrinsic dimensionality. We never need to evaluate the physical diameters of the cells

_ ) and these need not decrease. Consequently, we don’'t have to
2 Detailed overview of results constrain the partition to regular shaped cells (e.g. aais p

. . o allel hyper-rectangles) whose physical diameters ardyeasi
We’re given i.i.d training datdX,Y) = {(X;,Yi)}~, €

(X x )", where the input spac& C RP is contained 2We assume a Euclidedsn norm in this work.



CellAc A

controlled. In particular, it opens the door to richer parti

tioning rules such as RPtree which adapt better to the data

2.4 Choosing a good partition for regression

A tree-based regressor works in two phases. The partition-
ing phase returns a partitioA of the data spac&” and a
final regressor is learned as a piecewise continuous functio
over the cells ofA. In this work we’'ll consider a piecewise
constant regressor over the returned partitfordefined as
follows:

Forz € X, let A(x) be the cell ofA to whichz belongs. If
un(A(z)) > 0, the regressor is obtained as

L i Vi lxeaw
a0 == Ay

complexity at the expense of creating irregular cells. We ex otherwise use a default settirfg a (z) = yo € Y whenever

pand on this last point in the example below.
Consider a data space of the following form:

U#j{teiieej 1t e [—1, 1]}, 1,] € [D],forafixeda < 1.

This is an extreme case of a noisy sparse data set of Assoua

dimensionO(log D), depicted in Figure 2(a). We'd like to

partition this space in a way that reduces the data diame-
ters of the cells (for low estimator bias) while achieving a

small partition size (for low estimator variance). Axis par
allel splitting rules such ak-d trees or dyadic trees would
require a number of cells exponentialihin order to halve

the diameters. Yet, the set itself can be partitioned into at
most2D? cells of half its radius. The richness of random

splits allows us to achieve a partitioning just a bit lardrert

this, even in the worst case over distributions on the set. In Al

fact, given any data set of Assouad dimensipRPtrees are
guaranteed to achieve a partition of size at n26%f), such

that the data diameters of each cell is at most half of the di-
ameter of the full data set. We refer the reader to [DF08] for

a detailed analysis.

We'll soon see that, for low estimator bias, we don’t
need every cell of a partition to have small data diameter,
but rather that these diameters are small in an average.sense

Given a collectionA of disjoint subsets of’, we define the
following notion of average data diameter:

. ZAGA MR(A)A’?L (A) vz
AH(A) - ’
ZAeA pn(A)
wherey,, is the empirical measure ov&r (we’ll let 1 denote
the marginal measure ovéf).

2.3 Regression setup

We assume that the regression functjign) = E [V | X = z]
is A\-Lipschitz, for an unknown paramet&r

Vo2’ € X, || f(z) = f(@)]| < Az — "]

For any functiory(z) : X — ), thel, pointwise risk at
x satisfies

R(g(x)) = Ey |Y = g(2)|” = R(f(2)) + | f(2) — g(2)|,
and the integrated risk can then be written as

R(g) = Ex R(9(X)) = R(f) +Ex || f(X) = g(X)|*.
Thus, the pointwise excess risk gfz) over f(x) is simply

| f(z) — g(x)||*. In this paper we’ll be interested in the inte-
grated excess risk

If = gll* = R(g) = R(f) = Ex | f(X) = g(X)|*.

A(x) is empty of training points. We'll often refer to the
final regressor ag,,(-) as long as the partition used for the
estimate is clear from context.

ProcedureadaptiveRPtree makes calls to the the sub-

BrocedurecoreRPtree which implements the basic RPtree

splits. We defer the complete treatment of this subproce-
dure to section 5.1 since most of the analysis will concern
adaptiveRPtree. For now, note that the call ttoreRPtree
returns a subtree rooted Atwith the following property: let

A be the collection of subsets &” defined by the leaves
of this subtree, we havA,,(A) < A,,(A4)/2. Also, the im-
plementation otoreRPtree ensures that the final tree built
by adaptiveRPtree has height at mostlog n.
ProceduredaptiveRPtree grows the tree in steps?,

..., WhereA,, (A1) < A, (A) /2, and eventually
returns one of the partitionA® for somei. We present a
couple of options for selecting a good partition to returhe T
first option uses cross-validation: grow a large tree and@ru

it back by minimizing empirical risks over an i.i.d test sam-
ple (X’,Y’) of sizen. The other option is that of automatic
stopping: we return a partition as soon as some stopping con-
dition is met.

The two options for selecting the return partition are out-
lined in proceduredaptiveRPtree. The empirical risk in
the cross-validation option is defined as

1 2
R (9) = - SO = g(x)I”

1€[n]

The automatic stopping option returns one of two par-
titions and requires no test sample. It is a computationally
faster option and, as we’ll see, the resulting bounds ang onl
marginally worsened.

2.5 Main Results

Definition 2 Given a sampl&, we say thakdaptiveRPtree
attains a diameter decrease ratefobn X for k£ > d, if every
call to the subprocedureoreRPtree (A, A, (A) /2,6,1) in
the second loop of the procedure returns a tree rooted at
of depth at most.

Theorem 3 Assume that’ has Assouad dimensiah There
exist constant§’, C’ independent off and i(X'), such that
the following holds.

Suppose the cross-validation option is used. Define

a(n) = (log” n) loglog(n/d) + log(1/9),



Procedureadapt i veRPt r ee( sampleX, confidence paramete)
A0 — {X};
for i +— 1to co do ‘
foreachcell A € A~ do
/]l Create a subtree rooted at A:
[ — level (A) inthe currenttree// Root is at level 0
(subtree rooted at) < coreRPtree (A, A,(A)/2,6,1);
end
Al — partition of X' defined by the leaves of the current tree;
level (A") « max sca: level (4) ;
/1 At this point we have two options for stopping and returning a partition.
]Opti on 1: Cross-validati on‘
if A, (A?) =0orlevel (A?) > logn? then
Draw test sampl€X’, Y') of sizen and defineR/, (-) as the empirical risk over the test sample;
A — argmin R/n(fn,AJ');
AJE{AD,.. A}
return f, = fo a;
end
[Option 2:  Automatic stopping]
a(n) «— (log2 n) loglog(n/§) + log(1/6);
if level (A") >log (n - AZ (A%) /a(n)AZ (X)) then
A +—  argmin @ . |Aj| + Ai (Aj)>;
Aic{Ai-1 Ai} n

return f, = fo A
end
end

and assume > max {()\A)(/Ay)27a(n)} . With proba- The theorems are then proved_ in two parts. First we
bility at least1 —, the algorithm attains a diameter decrease 20Und the excess risk of the algorithm in terms of the ob-
rate of k < C’dlogd, and the excess risk of the regressor served diameter decrease rates in section 4 (Lemma 13 for
satisfies g a the cross -validation option, and Lemma 15 for the auto-
matic stopping). We subsequently argue that these decrease
A2 a(n))”(“’“) rates depend just on the intrinsic dimensionality of thexdat

fn = P < O (MAx)/ D ( (Corollary 17 of section 5).

" Theorem 3 results from Lemma 13 and Corollary 17,
LoA2 \/111 logn® +1n3/6 while Theorem 4 results from Lemma 15 and Corollary 17.
\ 2n '
3 Proof preliminaries: risk bound for f, a
Theorem 4 Assume that’ has Assouad dimensioh There | this section we develop the necessary tools to bound the
exist constante’, ¢ independent of and ('), suchthat  excess risk off,, 4, whereA is an RPtree partition, i.e\ is
the following holds. defined by the leaves of some subtree of the tree returned by

Suppose the automatic stopping option is used. Define adaptiveRPtree.

a(n) = (log2 n) loglog(n/d) + log(1/6).

With probability at least — 4, the algorithm attains a diam- o -
eter decrease rate of < C’dlogd, and the excess risk of e start the analysis with a standard decomposition of the
the regressor satisfies excess risk into bias and variance terms. Aebe any par-

tition of X. The following function ofx € X provides a

1fo — fHQ <c. (Ai n )\2) (AL + 1) (a(n))Q/(Hk) . gcr)lggfe between the regressfyr o and the regression func-

3.1 Generic decomposition of excess risk

n
Analysis outline fralr) = K foalw) = = 171/;(12(;))6“ .

Y|X
We start in section 3 by laying out the necessary tools for the _
rest of the analysis. if 1, (A(z)) # 0, otherwise we sef, A (z) =yo € V.




The pointwise excess risk can be bounded as
~ 2

I n.a () = Fa(@) = Foa @) H

fn A H

f@)* < 2

+2

We therefore proceed by bounding each term on the r.h.s sep-

arately in the following two lemmas.

Lemma 5 (Variance) Let A be a partition ofX, fix X and

let A € A such thatu, (A) > 0. The following inequality
holds for allzz € A, with probability at leasti — §’ over the
random choice o¥:

fnalz) — J?n,A(:zr)H2 < A3 w

i (A) @)

Proof: We'll considerY 4 = {Y; € Ys.t.X; € A}. Write:

T/)(YA) = fn A(l“) - an x H
_ HZ? 1(Yi — f(Xi))Lx,en
npn (A)

We can now apply McDiarmid’s inequality to(-), as it is
easy to verify that, changing one of theé values inY 4

changes the value af(-) by at most—=¥ ( 3- We then have
that,

In(|A}/d")
2n iy, (A)

with probability at least — ¢’/ | A| over the random choice
of Y4.
The expectation can be bounded as follows

(E )"

_ ( Hz F(X)x,ea
nun(A)

Y(Ya) SEP(Ya)+ Ay

Ey(Ya) <

2>1/2

<2?_1E 1 — £ nxieA> i

IN

(nn(A))?

(Z?:l AﬁzﬂxieA>1/2 Ay
(npin (A))2 Nt (A) .

The first inequality above is an application of Jensen’s in-
equality. The second inequality results from the fact that,

for independent random vectarswith null expectation, we
haveE |3, vi||> = 32, E ||vi||*; here we just take; to be
(i — F(X)Lx,ea/ (npan(A)).

Combining the above yields the desired bound¢k 4)
with probability at least — ¢’/ |A|. We then conclude with
a union bound over alll € A. ]

Lemma 6 (Bias) Let A be a partition of X, fix X and let
A € A suchthafu,(A) > 0. The following inequality holds
forall x € A:

Foa(z) — f(a:)H2 < X272 (4). 3)

(a) CoverB (b) PartitionA

(c) PartitionA’

Figure 3: We start with a covés of X with balls of different
size, next we see the data and obtain a partiigrwe then
substituteA with A’ by intersecting the cells ok with balls
of B.

Proof: Write

Font@)— 1) = HZ niﬂ(j)(x»HXH g
< (E (X Wn—( j)(x)ﬂ nxieA)Q
< (ZL A LiZ(A§|| 1lxieA)2
< %),

where the second inequality results from the Lipschitz con-
dition on f(+). |

In Lemma 6 above, the bias is bounded in terms of the
physical diameters\(A). However, for an RPtree partition
A (i.e. A is defined by the leaves of some subtree), the phys-
ical diameterd A(A4), A € A} could be as large a8 v, the
diameter of the whole space. As previously discussed, RP-
tree focuses on decreasing thata diametersh,,(A), and
we'll argue that this is sufficient to decrease the bias of the
estimator. For this purpose, we will replace RPtree partii
A with alternate partition®\” as explained in the next sec-
tion.

3.2 Alternate partitions

Given a partitionA built by RPtree, we will consider an al-
ternate partitionA’ which will serve to analyze the bias of
the regressof,, a (see above discussion of Lemma 6). Each
cell of A’ will either contain no data point, or has physical
diameter roughly the same as its data diameter. This is done
by intersecting the cells oA with balls or complements of
balls from a fixed collectio8 defined below (see Figure 3).
We'll see thatA’ approximately maintains key properties of
A, namely partition size and average data diameters.

Definition 7 We defing3 as the following collection of balls
inRP. Letl = |logn?/(2+4) |, Foreachi = 0to I, consider
aminimal (27*A x)-cover ofX; let B; be the set of all balls
B (z,27=2 Ay) centered at points in the cover. We set
B = Ul_,B;.

Every cellA € A such thatd N X # () will be replaced in
A’ by two cellsA/, A, obtained as follows. _
Consider the smalleste {0, ..., I} suchtha"Ay <

maX{An (A) 2_IAX}, ie. i = min{[, [logﬁ&ﬂ}_



There exists a balB € 5; which coversANX: pick anyz €
ANX, and pick the balB in B; whose centet is closest to
z; we havevz’ € ANX, that’ € B = B (2,27 ("2 Ay)
since by a triangle inequality
lz=2'll < flz—zl+llz -2 <27°Ax + Ay (4)
< 27 A +270TDA, <270 A,.

We defined] = BnAandA, = A\ A) forall A €
A, ANX # ; on the other hand we let] = A, A, = 0)
forall A € A, AnX = (). We finally defineA’ to be the
collection of all suchA], A} overA € A.

In the following lemma we relate diameters of cells of
A’ to the data diameters of cells &f.

Lemma 8 (Diameters ofA’) Let A be some partition of’
and letA’ as defined above. We have that

D un(A)AP(A) < 64A7 (A) + 2560/ DL AL
A’e A’

Proof: Let A € A, AN X # (. We haveu, (A}) = un(A)
and i, (A5) = 0. Also, given the smallest € {0,...,1}
such tha "Ay < max {A, (4),277Ax}, we have that

e A, (A)>2"TAy impliesA(A]) <2-270-2DA, <
8A, (4),

o A, (A) <27 TAy impliesA(A}) <2-27U-2A, <
16n=2/CF+d) L A .

Therefore, letA, = {A € A, A, (A) >27TAx}, we have
> nn(A)A%(A)

A’eA’
= > mARAD+ D pa(A)A%(AY)
AeA ACA\A
< ) 64 (A)AT (A)
AeA |
+ 0> 256, (AT A%
A€A\A

< 64A2 (A) + 2560 77 - A2,
u

The next lemma establishes the convergence of empirical
masses of cells oA’.

Lemma 10 (Mass of cells ofA’) With probability at least —
0" overX and the randomness in the algorithm, we have for
all RPtree partitionsA, for all A’ € A’ that

uA) < un<A'>+2\/un<A'>”“jf4/‘”
4%, where (5)
V < Ologn)(logn + loglog(1/2)).

Proof: Suppose w.l.0o.g that the RPtree is built by picking
random directions from a fixed collectiGhwithout replace-
ment. How big shoul@® be so we have enough directions to
choose from? The implementation @dreRPtree ensures
that |P| < 2nClog (6n?/4) is sufficient (see remark 4 of
section 5.1). Now fix such a collectidh and letH be the
union of {X'} and the class of half spaces®f defined by
hyperplanes normal to the directionsin For an RPtree par-
tition A, each cell ofA is the intersection of at mostlog n
elements of{p since the tree is guaranteed to have height at
most6log n (remark 4). Each cell oA’ is the intersection
of a ball or the complement of a ball i with a cell of A..

All such cells therefore belong to the following class of
subsets oR”:

6logn
C_{h:h_hom< N hl>,hoorhgisin8,hler}.
=1

We now proceed to bounding§ (C, 2n), the 2n-shatter
coefficient ofC as follows.

Given 2n sample points, every direction € P defines
at most2(2n + 1) equivalent choices of half-spacesi¥ .
We therefore have

S(C,2n) < 2|B|((4n+2)|P|+ 1)%le"
< 2(B| (n®(8n + 4)log (6n°/5) + 1)

6logn

SinceX has Assouad dimensiahwe haveB| < ZLO 241 <
20?4/ (2+d) The proof is completed by letting = log S (C, 2n)
[ |

In order to bound the integrated excess risk, we'll need for P fixed, and calling on Lemma 9.

the empirical mass of cells A’ to be close to their true
mass. In particular, this will allow us to effectively disda
cells that are empty of data since they will have little effec

on the integrated excess risk. The following lemma from VC

theory will come in handy.

Lemma 9 (Relative VC bounds [VC71]) Let C be a class
of subsets oR”, and let its2n-shatter coefficient be given
by S (C, 2n). With probability at least — §’ over the choice
of X, all A’ € C satisfy

uAy < un(A’)+2\/un(A’)
0S8 (€. 2n) + In(4/')

InS (C,2n) +1n(4/6")

(4)

Lemma 11 (Excess risk) There exists a constaudi; inde-
pendent ofd and (X) such that the following holds with
probability at leastl — §/3 over the choice ofX,Y) and
the randomness in the algorithm.

Definea(n) = (log” n) loglog(1/8) +log(1/5). LetA’
be the final partition reached bydaptiveRPtree. For all
partitionsA € {A7}_, we have

I fna —fI7 < O (A§,|A|O‘(”)

n

A2 (Ai (A) +nY <2+d>A2X) > :



Proof: Let the partitionA € {A’ }j‘:o and the sampl&X

be fixed. By Lemma 10 we have, with probability at least
1 — ¢, that equation (5) holds for all’ € A’ with V <
O(logn)(log n + loglog(1/9)).

The excess risk decomposes o¥€ras

o =512 = 3 [ o) = £ plda).

ATEA!
We next divide the cells oA’ into two groups:

L Vo4 n(4/d) }

AL = {A' € A in(A) 2

andA” = A"\ AL.
It's easy to see that from equation (4), we ha# <
AL, u(A) < T (A)), andvA’ € A, p(A’) < 7¥HRE/)
Integrating overA’_, we have

> /A Nna(@) = f@)] p(de)

A’€A

< Y A ()

ATeA

V4 1n(4/58")

< 2 g2 AT
< D Ay T——

A'eA

In(4/6'

< 7A§,-|A’|-7V+I;L( /%) (6)

For the integration oveA’, we first apply (1), and recall
Lemmas 6 and 5 to have that with probability at lelast ¢’
overyY,

= |, ar (@) = f(@)]| p(dex)
A'ezz:&; /A'
ST 2242 (4') - (A
A’eAl,
2+ 1In(|A'] /)
AN i il R A
+A;¥> RY nin (A7)
> 2X2A%(A) - T, (A
A’€Al

2+ 1In(]A'] /&)
+ 2A3,  F——— 2
A/ez;&; Y npin(A)

1N " (A)A% (A
A€l
/ /
143 a7 2E A1)
n

IN

(A"

IN

Tt (A/)

IN

(7)

Note that the terntn |A’| in (7) is at mosO(Inn) since
the entire tree has height at mdaslogn. Combining the
bounds in (6) and (7), we get that there exists a congtant

such that] f,, A — f1I? is at most

log? nloglog 1/8 + log(1/8")
n

Co <A§/ A

A7) pa(A)A? (A’)) 7
A'eA’
with probability at least — 24’.

Settingd’ = 4/361ogn, the lemma follows by a union

bound over at mosilogn partitions in{ AJ };:0, and then
calling on lemma 8. |

4 Risk of final regressorf,, = f, o

In this section we bound the excess risk of the final regressor
fn = fn,a interms of the diameter decrease rate attained
whenadaptiveRPtree Stops.

To see that the stopping criteria eventually hold, note that
the implementation ooreRPtree ensures that all cells at
some level down the hierarchy have a single data point in
them (see remark 4). In other words, we havg(A?) =0
eventually, forcing either stopping criterion to hold.

We now outline the arguments in this section. For sim-
plicity, assumeA y, Ay, and A are all1. Consider some
RPtree partitionA and letA,, (A) ~ ¢ for some scalac,
we then haveA| < ¢~* wherek is the diameter decrease
rate attained by the algorithm. From Lemma 11 above, we
roughly have||f,.a — fI° < ¢ %/n + ¢2, and the best
bound is obtained by setting ~ n~'/(2t%)_ Provided we
pick an appropriate partition which optimizés the final
bound would then take the forfly,, a — f||* < n=2/(+k),

4.1 Risk bound for cross-validation option

Lemma 12 (Existence of a good pruning)Suppose the cross-
validation option is used, anddaptiveRPtree attains a
diameter decrease rate éfon X. Define

a(n) = (log2 n) loglog(n/é) + log(1/6),

and¢ = (Ai‘“(”))l/(ﬂk). Letn > max { (’\AA—;)Q , a(n)},

)\2A2X-n
and fori > 0, let A’ as defined irndaptiveRPtree. Then
there exists, > 0 such thatA,, (A%) < 2¢ - A, (X) and
[AR| < ¢

Proof: Leti > 0. We have by definition thaf\,, (A7) <
27tA,, (X), while it follows from the assumption on diam-
eter decrease rate thiatel (A*) < ki. Now let A’ be the
last partition ofX achieved byadaptiveRPtree when the
stopping criteria holds. We have either tigt(A?) = 0 <
¢-A, (X)), or

ki > level (Ai) > logn? > klog n2/(k+2) > klog1/¢,

implying thatA,, (A7) <277 A, (X) < (- A, (X).
Now, letj € 1,...,i be the firstj such thatA,, (A7) <
¢ A, (X). We consider the following two cases:

e Eitherlevel (A7) < log(~*, and we getA| < (7*.



e Orlevel (A7) > log¢(~* in which case the following 4.2 Risk bound for automatic stopping option

must hold: Lemma 14 (Properties of A*) Suppose the automatic stop-
- A, (A77Y) <2¢-A, (X), sincekj > level (A7) > ping option is used, and thalaptiveRPtree attains a di-
klog1/¢, implying thatj — 1 > log(1/2¢). ameter decrease rate é#fon X. Define

— level (A771) < log (™", for otherwisej — 1 > = (loe? n) loe1 5
, = + log(1/9),
log 1/¢ implying thatA,, (A7) < ¢A, (X). It a(n) = (log"n) loglog(n/6) +log(1/9)

follows that| A7—1| < ¢(7* (2+k)

1/
and(¢ = a(") . Finally, assume: > «(n). Then,
Thus, eitherA’ or A7~! satisfies the claim. u the foIIowmg holds for the final partitios" retained for re-
gression:

Lemma 13 There exists a constanit independent off and
u(X), such that the following holds with probability at least (O‘(”) | A+ A2 (A*)> < (4A72¢ (X) + 1) 2.
1—26/3 over(X,Y) and the randomness in the algorithm. n B
Suppose the cross-validation option is used, and proce-
dure adaptiveRPtree attains a diameter decrease rate of Proof: Fori > 0, let A® as defined irndaptiveRPtree.

k > d onX. Define We have by definition thah\,, (A7) < 27¢A,, (X), while it
= (loe® 1) log 1 5+ log(1/5 follows from the assumption on diameter decrease rate that
a(n) = (log” n) loglog(n/d) +log(1/3), level (A7) < ki. Now for somei > 1, let A’ be the fi-

nal partition of ¥ achieved byadaptiveRPtree when the

2
and assume: > max {()‘AX/AJ’) ’O‘(n)}' The excess i 0ning criteria holds. We consider the following two case

risk of the regressor is then bounded as
e Eitherlevel (A?) < log (", and we have by the stop-

a(n) 2/(2+F) ; -
Ifn—fI7 < C- (AAX)Q’“/(”"') <A§, ) ping condition that:
n
, [Ilogn® +1n3/s A2 (AY) < ) grever(a”) A2 (X)
2n a(n) kA2 242
< SECRAL () = AL ().
Proof: LetA™ b L 12, g (23a00) /Y

r v inLemm = 5 . . . .

0% 1€ easinLemma 12, ar APA% n) e Orlevel (A%) > log (™", in which case the following
By applying Lemma 11 and then Lemma 12, we have W|th must hold:
probability at least — §/3 that _ '

) a(n) - A, (A1) <2¢-A, (X), sinceki > level (A7) >
lfuno —fI> < O (My 0] 20 klog(1/C), implying thati — 1 > log(1,/20).
— level (A"™1) < log (", for otherwise we would
122 (Ai (Aio) + n_4/(2+d)A%() ) have stopped at— 1. To see this, assume instead
thatlevel (A*"1) > log(~*: we have tha(i —
> 1
< (A2 - ka( ) +5A2C2AL, > 1) = log ¢ and subsequently that
< oA, AL(ATY) < 2OTIAY(X) < CAY(X)
To analyze the cross validation phase, we first fix the parti- = M TR A2 (X)
tion tree and consider the obtained partitions frAthto the n
final partition A* when the stopping criteria holds. We have < a(n) glevel(A™1) | A2 (X).
with probability at least — §/3 over the choice ofX’, Y’) - n "
thatj € {0,..., 1} In other words,
6 . .

R Juns) — B, ()] < 2321087 F12576 evel (A1) > log (122 (') fa(m)a ().
The above is obtained by applying McDiarmid’s to the em- In either case at least one &f° and A*~! has size at
pirical risk followed by a union bound over at maslog n most¢ —* and diameter at mo&t - A y. It follows that
regressorg, ai,j € {0,...,i}.

Let f,, = f..a be the empirical risk minimizer, we can min (O‘(”) . ]AJ" + A2 (AJ)) <
then conclude that je{i—1,i} n " -
6 aln)
I fn = FII? < CoA2AZC2 + 272 \/lnlog”;ln?’/‘s — TP AT () = (447 () +1) ¢,
n

with probability at least — 2§/3. ] which concludes the argument. |



Lemma 15 There exists a constant independent off and
w(X), such that the following holds with probability at least
1 —¢/3 over(X,Y) and the randomness in the algorithm.

Suppose the automatic stopping option is used; assum
adaptiveRPtree attains a diameter decrease rate/of> d
onX. Definea(n) = (log” n) loglog(n/§) +log(1/). The
excess risk of the regressor is then bounded as

fo = FI? < C- (A3 +22) (A% + 1) (04(71)

n

>2/(2+k)

Proof: Forn < a(n), the bound on the excess risk holds
vacuously. We assume henceforth that- «(n). Let{ =

a(m)\ V@R ] ]
( o . By first applying Lemma 11 then Lemma

14, we have with probability at least— 6/3 that

a(n)

A

| foae — fII° <

Cq <A§1 |A|

+A2 (A2 (&) + 0¥ EFDAL) )

a(n)

C1 (A3 +N?) <x|

+ (AEL (&) +n~Y <2+d>A3() >
C1 (A% +2%) ((48% +1)  +2A%)
C (A3 +0%) (A% +1) &,

which concludes the argument.

IN A

5 Core RPtree and diameter decrease rates

5.1 Core RPTree procedures

Procedurebasi cRPtree( Aqg C X, A, levell)
Ay —{Ao};
for i« 1toocodo
if A, (Ai—l) < A then
return ;
end
Choose a random directian~ N (0, % 1p)

Choose a random ~ U[—1,1]

foreachcell A € A;_; do
if (I 4 4) is oddthen
/1 Noisy splits.
t — media{z "v:z e XN A} + T
else
/1 Median splits.
t «— mediafz'v:z € XN A},
end
At — {r € A, xTv < t};
Aright — A \ Aleft;
end
A,; — partition of Ay defined by the leaves of the
current tree;
end

Procedurecor eRPtree( Aqg C X, A, 9, levell)

Callbasi cRPt r ee( Ag, A,l) log (6n?/6) times
and return the shortest tree.

RPtree consists of hierarchically bisecting the data space
with random hyperplanes. basicRPtree we alternate be-
tween two types of bisections: we split exactly at the median
in order to balance the tree, while we split at the median +
noise to improve the rate at which the data diameters are re-
duced down the tree. Notice that for the “noisy” split we use
the same hyperplane to bisect all nodes A;_;.

The procedureoreRPtree serves to boost the probabil-
ity that we get a small tree. The many call$txsicRPtree
can be done in parallel so that we don’t keep growing the
trees that are to be discarded once the smallest tree is-ident
fied.

Remark 4 Given the implementation aforeRPtree, the
tree returned byadaptiveRPtree has the following prop-
erties:

e Any node at leve log n has at most data point: the
data is split at the exact median at every other level
so that the number of points per nodes decreases ex-
ponentially from the root down. If were a power of
2, we'd need at mos2logn levels to get tol point
per node. For generah, notice that the number of
points in a node at level > 2 is at most% of that of
its ancestor at level — 2. In other words we need at
most2logn/log(4/3) < 6logn levels to get down to
1 point per node.

e As a consequence, the entire tree reaches depth at most
6log n under either stopping criteria, and therefore has
at most2n’ nodes.

e Another consequence is that at mast log(6n2/9)
random directions are required to build the entire tree.

5.2 Worst case decrease rates

In this section we consider worst case bounds for the diam-
eter decrease rates attainable by the algorithm over stgppor
of low intrinsic dimension.

The following theorem, adapted from Dasgupta and Fre-
und [DFO08], is the core of the argument.

Theorem 16 Let A ¢ R and supposel N X has Assouad
dimensiond. There exists a constat’ independent of the
sampleX andd, with the following property. We have with
probability at Ieast% that the tree rooted atl returned by
the call basicRPtree(4, A, (A)/2,1) has depth at most
C'dlogd.

Proof Idea: The proof is a direct consequence of Lemma 9
of [DFO08] applied to the “noisy” splits at alternating lesel
in proceduréasicRPtree.

Letr = A, (A)/512v/d and consider am-cover of A;
now consider pairs of ball® = B(z,r), B = B(2/,r),
wherez, 2’ are in the cover anflz — 2/|| > 1A, (4) — 2r.
Notice thatbasicRPtree stops if for all such pairs, no leaf
of the tree contains points from bothN X and B’ N X.

Fix such a pailB andB’. By Lemma 9 of [DF08], every
“noisy” split has a constant probability of separatiBgh X
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