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Abstract

We present the first tree-based regressor whose con-
vergence rate depends only on the intrinsic dimen-
sion of the data, namely its Assouad dimension.
The regressor uses the RPtree partitioning proce-
dure, a simple randomized variant ofk-d trees.

1 Introduction

Non-parametric learning algorithms tend to suffer from what
is referred to as the curse of dimensionality, namely that pre-
diction performance deteriorates dramatically as the number
of features increases. This phenomenon is quantifiable in the
case of regression algorithms: as initially shown by Stone
[Sto80, Sto82], if we only assume that the regression func-
tion f(x) is Lipschitz1 in R

D, then no non-parametric esti-
mator can achieve a convergence rate faster thann−2/(2+D).
In other words, the number of points required to attain a low
risk may be exponential inD, and this is infeasible even for
moderate values ofD.

However, it is often the case that data which appears high
dimensional, actually conforms to a structure of low intrinsic
dimensionality (interpreted broadly). Examples of such sit-
uations are traditional continuous settings where the datais
close to a low dimensional submanifold ofR

D, and discrete
settings such as when the data is sparse. These are all ex-
amples of data with low Assouad dimension (see definition
1); this notion of dimension thus offers a natural and broad
model of intrinsic data complexity.

We show that, for any input data distribution, the risk of a
regressor based on RPtree (a variant ofk-d tree) depends just
on the unknown Assouad dimension of the data, regardless
of the ambient dimensionD. This is the first such result for
tree-based regression.

1.1 Tree-based regression

Tree-based regression consists of first building a hierarchy
of nested partitions of the data space (the tree), and then
learning a piecewise continuous functionfn over the cells
of some chosen partition in the hierarchy. Future evaluations
of fn(x) can be done in time justO(log n) by navigating

1Stone’s result concerns a much larger class of regression func-
tions; here we focus on Lipschitz conditions.

(a) Dyadic tree (b) k-d tree (c) RPtree

Figure 1: Spatial partitioning induced by various splitting
rules. Two levels or the tree are shown for each.

the usually shallow tree down to an appropriate cell. These
methods are popular due to their ease of use and compu-
tational efficiency (e.g. CART, dyadic trees,k-d tree, see
[GN05, SN06, DGL96]), but none has been shown to adapt
to intrinsic dimensionality in terms of their regression risk.
See Figure 1 for some examples.

The Random Projection tree (RPtree) is a hierarchical
partitioning procedure which recursively bisects the dataspace
with random hyperplanes (see Figure 1(c)). Although RP-
tree’s connections to intrinsic data dimensionality has been
studied in unsupervised settings ([DF08, GLZ08]), its use for
regression has not been explored.

Using RPtrees for regression requires a method for se-
lecting a partition on which to learn the regressorfn. Select-
ing a good partition from the hierarchy is essential to bal-
ancing the bias and variance of the regressor. Traditional
methods use penalized empirical risk minimization over all
possible partitions induced by the tree. Our approach can be
more efficient in practice. We grow the tree in careful steps
that enable us to quickly identify a small set of candidate
partitions. We then provide a couple of options for select-
ing the final partition: one is to use cross-validation over the
candidate partitions, another is a criterion which allows to
automatically stop growing the tree when a good partition
is attained. The latter method is computationally cheaper,
while the former method results in a slightly better risk. In
both cases, the excess risk of the RPTree regressor depends
just on the unknown Assouad dimension of the input space,
for all distributions.

On the technical side, RPtree regression requires novel
techniques for analyzing the bias of the estimator. Estima-
tor bias is well understood to decrease with the diameters of
the partition’s cells. Unfortunately thesephysical diameters
are hard to assess for RPtrees given the random and irregu-



lar shapes of the cells, and in fact they may not decrease at
all. However, we can track the diameters of the data within
the cells, and we develop new techniques to relate these em-
pirical data diametersto the estimator’s bias. We believe
these techniques are of independent interest as they take fo-
cus away from the cells’ physical diameters, thus opening
the door to richer partitioning rules whose cell diameters are
hard to control.

1.2 Background and related work

Since data often has low intrinsic dimensionality, various
techniques have been developed that transform data fromR

D

to a lower dimensional space where some information is pre-
served (see e.g. [RS00, BN03, TSL00]). These techniques,
referred to as manifold learning, can be used as a preprocess-
ing step to regression: the regressor will then operate in the
lower dimensional space. Unfortunately, this approach has
no theoretical guarantees for distribution free regression set-
tings. This raises the following question: can learning meth-
ods such as regression adapt automatically to data that has
low intrinsic dimensionality while operating in the original
spaceRD?

This question was first answered by Bickel and Li [BL06]
for the case of local kernel regressors. They show the exis-
tence of a bandwidth setting such that the asymptotic risk
at a pointx ∈ R

D depends just on the manifold dimen-
sion and on the behavior of the kernel in a neighborhood
of x. One then has to search for the appropriate bandwidth
setting, either by estimating the manifold dimension or by
cross-validating over possible values of this dimension (see
e.g. [BL06, LW07]).

Kernel regressors can be expensive in practice: the kernel
weights must be computed anew at each training point in
order to evaluate the regressor on a new data point. This
translates into an evaluation time ofΩ(n) which is often a
burden given large samples. Contrast this with theO(log n)
evaluation time of tree-based regressors.

In the case of classification, a recent result by Scott and
Nowak ([SN06]) for dyadic decision trees is related: they
show that if the input data is drawn from an approximately
uniform measure on a manifold, and the Bayes decision bound-
ary is sufficiently smooth, DDTs achieve classification rates
that depend just on the manifold dimension. It is unclear
whether their result will apply in a distribution free regres-
sion setting.

The random regression graphs of Caponnetto and Smale
[CS07] are similar in spirit to RPtree regression since they
also partition space with random hyperplanes. The regres-
sion risk in [CS07] is given in terms of a quantity that re-
lates the regression function to the distribution of the hyper-
planes. They show this quantity to be finite when the regres-
sion function has bounded norm in the RKHS induced by
a particular kernel, and the hyperplanes are uniformly sam-
pled. They do not establish a connection between this form
of regression and adaptivity to intrinsic dimensionality.

2 Detailed overview of results

We’re given i.i.d training data(X,Y) = {(Xi, Yi)}ni=1 ∈
(X × Y)n, where the input spaceX ⊂ R

D is contained

(a) Sparse data set. (b) 2-d manifold.

Figure 2: Examples of data with low Assouad dimension.

in a ball2 of (unknown) diameter∆X , and the output space
Y ⊂ R

D′

is contained in a ball of (unknown) diameter∆Y .

2.1 Assouad dimension

We model the intrinsic dimensionality of the spaceX using
the notion of Assouad dimension defined below.

Definition 1 The Assouad dimension (or doubling dimen-
sion) ofX ⊂ R

D is the smallestd such that for any ball
B ⊂ R

D, the setB ∩ X can be covered by2d balls of half
the radius ofB.

The Assouad dimension has proved useful in capturing
the intrinsic complexity of data spaces as shown in various
works on data analysis (see e.g. [IN07, KL04, Cla05]).
It coincides with the natural notions of dimension of vari-
ous geometric objects: it is easy to see thatd-dimensional
cubes, spheres, all have Assouad dimensionO(d) (see e.g.
[Cla05]). It also captures notions of data complexity that are
standard in the machine learning and statistics communities;
this is stated in the following remarks for emphasis.

Remark 1 A d-dimensional hyperplane inRD has Assouad
dimensionO(d) (see [Cla05]).

Remark 2 Ad-dimensional Riemannian submanifold ofR
D

has Assouad dimensionO(d), subject to a bound on its cur-
vature (see Theorem 22 of [DF08]).

Remark 3 Ad-sparse data space inRD, i.e. one where each
data point has at mostd non zero coordinates, has Assouad
dimensionO(d logD): it can be described by

(
D
d

)
≤ Dd

hyperplanes of dimensiond.

2.2 Notions of diameter

LetA be some partition ofX . Traditionally, bias analysis re-
volves around thephysical diameters∆(A)

.
= max

x,x′∈A
‖x− x′‖

of cellsA ∈ A (see e.g. [GN05, SN06, DGL96]). In this
work we instead relate bias to thedata diametersof the cells,
that is∆n(A)

.
= max

x,x′∈A∩X

‖x− x′‖ or 0 if A ∩X = ∅.
Focusing on data diameter has the following advantage.

We never need to evaluate the physical diameters of the cells,
and these need not decrease. Consequently, we don’t have to
constrain the partition to regular shaped cells (e.g. axis par-
allel hyper-rectangles) whose physical diameters are easily

2We assume a Euclideanl2 norm in this work.



Cell A ∈ A

∆(A) ∆n(A)

controlled. In particular, it opens the door to richer parti-
tioning rules such as RPtree which adapt better to the data
complexity at the expense of creating irregular cells. We ex-
pand on this last point in the example below.

Consider a data space of the following form:

∪i6=j{tei± εej : t ∈ [−1, 1]}, i, j ∈ [D], for a fixedε << 1.

This is an extreme case of a noisy sparse data set of Assouad
dimensionO(logD), depicted in Figure 2(a). We’d like to
partition this space in a way that reduces the data diame-
ters of the cells (for low estimator bias) while achieving a
small partition size (for low estimator variance). Axis par-
allel splitting rules such ask-d trees or dyadic trees would
require a number of cells exponential inD in order to halve
the diameters. Yet, the set itself can be partitioned into at
most2D2 cells of half its radius. The richness of random
splits allows us to achieve a partitioning just a bit larger than
this, even in the worst case over distributions on the set. In
fact, given any data set of Assouad dimensiond, RPtrees are
guaranteed to achieve a partition of size at most2

eO(d), such
that the data diameters of each cell is at most half of the di-
ameter of the full data set. We refer the reader to [DF08] for
a detailed analysis.

We’ll soon see that, for low estimator bias, we don’t
need every cell of a partition to have small data diameter,
but rather that these diameters are small in an average sense.
Given a collectionA of disjoint subsets ofX , we define the
following notion of average data diameter:

∆n(A)
.
=

(∑
A∈A

µn(A)∆2
n (A)∑

A∈A
µn(A)

)1/2

,

whereµn is the empirical measure overX (we’ll let µ denote
the marginal measure overX ).

2.3 Regression setup

We assume that the regression functionf(x) = E [Y |X = x]
is λ-Lipschitz, for an unknown parameterλ:

∀x, x′ ∈ X , ‖f(x)− f(x′)‖ ≤ λ ‖x− x′‖ .
For any functiong(x) : X 7→ Y, thel2 pointwise risk at

x satisfies

R(g(x))
.
= EY ‖Y − g(x)‖2 = R(f(x)) + ‖f(x)− g(x)‖2 ,

and the integrated risk can then be written as

R(g)
.
= EX R(g(X)) = R(f) + EX ‖f(X)− g(X)‖2 .

Thus, the pointwise excess risk ofg(x) overf(x) is simply
‖f(x)− g(x)‖2. In this paper we’ll be interested in the inte-
grated excess risk

‖f − g‖2 .
= R(g)−R(f) = EX ‖f(X)− g(X)‖2 .

2.4 Choosing a good partition for regression

A tree-based regressor works in two phases. The partition-
ing phase returns a partitionA of the data spaceX and a
final regressor is learned as a piecewise continuous function
over the cells ofA. In this work we’ll consider a piecewise
constant regressor over the returned partitionA defined as
follows:
Forx ∈ X , let A(x) be the cell ofA to whichx belongs. If
µn(A(x)) > 0, the regressor is obtained as

fn,A(x)
.
=

∑n
i=1 Yi · 1Xi∈A(x)

n · µn(A(x))
,

otherwise use a default settingfn,A(x) = y0 ∈ Y whenever
A(x) is empty of training points. We’ll often refer to the
final regressor asfn(·) as long as the partition used for the
estimate is clear from context.

ProcedureadaptiveRPtree makes calls to the the sub-
procedurecoreRPtree which implements the basic RPtree
splits. We defer the complete treatment of this subproce-
dure to section 5.1 since most of the analysis will concern
adaptiveRPtree. For now, note that the call tocoreRPtree
returns a subtree rooted atA with the following property: let
A be the collection of subsets ofR

D defined by the leaves
of this subtree, we have∆n(A) ≤ ∆n(A)/2. Also, the im-
plementation ofcoreRPtree ensures that the final tree built
by adaptiveRPtree has height at most6 log n.

ProcedureadaptiveRPtree grows the tree in stepsA0,
A

1, . . ., where∆n

(
A

i+1
)
≤ ∆n

(
A

i
)
/2, and eventually

returns one of the partitionsAi for somei. We present a
couple of options for selecting a good partition to return. The
first option uses cross-validation: grow a large tree and prune
it back by minimizing empirical risks over an i.i.d test sam-
ple (X′,Y′) of sizen. The other option is that of automatic
stopping: we return a partition as soon as some stopping con-
dition is met.

The two options for selecting the return partition are out-
lined in procedureadaptiveRPtree. The empirical risk in
the cross-validation option is defined as

R′
n(g)

.
=

1

n

∑

i∈[n]

‖Y ′
i − g(X ′

i)‖
2
.

The automatic stopping option returns one of two par-
titions and requires no test sample. It is a computationally
faster option and, as we’ll see, the resulting bounds are only
marginally worsened.

2.5 Main Results

Definition 2 Given a sampleX, we say thatadaptiveRPtree
attains a diameter decrease rate ofk onX for k ≥ d, if every
call to the subprocedurecoreRPtree (A,∆n (A) /2, δ, l) in
the second loop of the procedure returns a tree rooted atA
of depth at mostk.

Theorem 3 Assume thatX has Assouad dimensiond. There
exist constantsC, C ′ independent ofd andµ(X ), such that
the following holds.

Suppose the cross-validation option is used. Define

α(n)
.
=
(
log2 n

)
log log(n/δ) + log(1/δ),



ProcedureadaptiveRPtree(sampleX, confidence parameterδ)
A

0 ← {X};
for i← 1 to∞ do

foreachcellA ∈ A
i−1 do

// Create a subtree rooted at A:
l← level (A) in the current tree ;// Root is at level 0
(subtree rooted atA)← coreRPtree (A, ∆n(A)/2, δ, l);

end
A

i ← partition ofX defined by the leaves of the current tree;
level

(
A

i
)
← maxA∈Ai level (A) ;

// At this point we have two options for stopping and returning a partition.

Option 1: Cross-validation

if ∆n

(
A

i
)

= 0 or level
(
A

i
)
≥ log n2 then

Draw test sample(X′,Y′) of sizen and defineR′
n(·) as the empirical risk over the test sample;

A
∗ ← argmin

Aj∈{A0,...,Ai}
R′

n(fn,Aj );

return fn
.
= fn,A∗ ;

end
Option 2: Automatic stopping

α(n)←
(
log2 n

)
log log(n/δ) + log(1/δ);

if level
(
A

i
)
≥ log

(
n ·∆2

n

(
A

i
)
/α(n)∆2

n (X )
)

then

A
∗ ← argmin

Aj∈{Ai−1, Ai}

(
α(n)

n
·
∣∣Aj

∣∣+ ∆2
n

(
A

j
))

;

return fn
.
= fn,A∗ ;

end
end

and assumen ≥ max
{

(λ∆X /∆Y)
2
, α(n)

}
. With proba-

bility at least1−δ, the algorithm attains a diameter decrease
rate of k ≤ C ′d log d, and the excess risk of the regressor
satisfies

‖fn − f‖2 ≤ C · (λ∆X )
2k/(2+k)

(
∆2

Y · α(n)

n

)2/(2+k)

+2∆2
Y

√
ln log n6 + ln 3/δ

2n
.

Theorem 4 Assume thatX has Assouad dimensiond. There
exist constantsC, C ′ independent ofd andµ(X ), such that
the following holds.

Suppose the automatic stopping option is used. Define

α(n)
.
=
(
log2 n

)
log log(n/δ) + log(1/δ).

With probability at least1− δ, the algorithm attains a diam-
eter decrease rate ofk ≤ C ′d log d, and the excess risk of
the regressor satisfies

‖fn − f‖2 ≤ C ·
(
∆2

Y + λ2
)
(∆2

X + 1) ·
(
α(n)

n

)2/(2+k)

.

Analysis outline

We start in section 3 by laying out the necessary tools for the
rest of the analysis.

The theorems are then proved in two parts. First we
bound the excess risk of the algorithm in terms of the ob-
served diameter decrease rates in section 4 (Lemma 13 for
the cross -validation option, and Lemma 15 for the auto-
matic stopping). We subsequently argue that these decrease
rates depend just on the intrinsic dimensionality of the data
(Corollary 17 of section 5).

Theorem 3 results from Lemma 13 and Corollary 17,
while Theorem 4 results from Lemma 15 and Corollary 17.

3 Proof preliminaries: risk bound for fn,A

In this section we develop the necessary tools to bound the
excess risk offn,A, whereA is an RPtree partition, i.e.A is
defined by the leaves of some subtree of the tree returned by
adaptiveRPtree.

3.1 Generic decomposition of excess risk

We start the analysis with a standard decomposition of the
excess risk into bias and variance terms. LetA be any par-
tition of X . The following function ofx ∈ X provides a
bridge between the regressorfn,A and the regression func-
tion f :

f̃n,A(x)
.
= E

Y|X
fn,A(x) =

∑n
i=1 f(Xi)1Xi∈A(x)

nµn(A(x))
,

if µn(A(x)) 6= 0, otherwise we set̃fn,A(x) = y0 ∈ Y.



The pointwise excess risk can be bounded as

‖fn,A(x)− f(x)‖2 ≤ 2
∥∥∥fn,A(x)− f̃n,A(x)

∥∥∥
2

+2
∥∥∥f̃n,A(x)− f(x)

∥∥∥
2

. (1)

We therefore proceed by bounding each term on the r.h.s sep-
arately in the following two lemmas.

Lemma 5 (Variance) Let A be a partition ofX , fix X and
let A ∈ A such thatµn(A) > 0. The following inequality
holds for allx ∈ A, with probability at least1− δ′ over the
random choice ofY:

∥∥∥fn,A(x)− f̃n,A(x)
∥∥∥

2

≤ ∆2
Y ·

2 + ln(|A| /δ′)
nµn(A)

. (2)

Proof: We’ll considerYA
.
= {Yi ∈ Y s.t.Xi ∈ A}. Write:

ψ(YA)
.
=

∥∥∥fn,A(x)− f̃n,A(x)
∥∥∥

=

∥∥∥∥
∑n

i=1(Yi − f(Xi))1Xi∈A

nµn(A)

∥∥∥∥ .

We can now apply McDiarmid’s inequality toψ(·), as it is
easy to verify that, changing one of theY values inYA

changes the value ofψ(·) by at most ∆Y

nµn(A) . We then have
that,

ψ(YA) ≤ Eψ(YA) + ∆Y ·
√

ln(|A| /δ′)
2nµn(A)

with probability at least1 − δ′/ |A| over the random choice
of YA.

The expectation can be bounded as follows

Eψ(YA) ≤
(
E (ψ(YA))

2
)1/2

=

(
E

∥∥∥∥
∑n

i=1(Yi − f(Xi))1Xi∈A

nµn(A)

∥∥∥∥
2
)1/2

≤
(∑n

i=1 E ‖Yi − f(Xi)‖2 1Xi∈A

(nµn(A))
2

)1/2

≤
(∑n

i=1 ∆2
Y1Xi∈A

(nµn(A))
2

)1/2

=
∆Y√
nµn(A)

.

The first inequality above is an application of Jensen’s in-
equality. The second inequality results from the fact that,
for independent random vectorsvi with null expectation, we
haveE ‖∑i vi‖2 =

∑
i E ‖vi‖2; here we just takevi to be

(Yi − f(Xi))1Xi∈A/ (nµn(A)).
Combining the above yields the desired bound onψ(YA)

with probability at least1− δ′/ |A|. We then conclude with
a union bound over allA ∈ A.

Lemma 6 (Bias) Let A be a partition ofX , fix X and let
A ∈ A such thatµn(A) > 0. The following inequality holds
for all x ∈ A:

∥∥∥f̃n,A(x)− f(x)
∥∥∥

2

≤ λ2∆2 (A) . (3)

(a) CoverB (b) PartitionA (c) PartitionA′

Figure 3: We start with a coverB of X with balls of different
size, next we see the data and obtain a partitionA, we then
substituteA with A

′ by intersecting the cells ofA with balls
of B.

Proof: Write
∥∥∥f̃n,A(x)− f(x)

∥∥∥
2

=

∥∥∥∥
∑n

i=1(f(Xi)− f(x))1Xi∈A

nµn(A)

∥∥∥∥
2

≤
(∑n

i=1 ‖f(Xi)− f(x)‖1Xi∈A

nµn(A)

)2

≤
(∑n

i=1 λ ‖Xi − x‖1Xi∈A

nµn(A)

)2

≤ λ2∆2 (A) ,

where the second inequality results from the Lipschitz con-
dition onf(·).

In Lemma 6 above, the bias is bounded in terms of the
physical diameters∆(A). However, for an RPtree partition
A (i.e. A is defined by the leaves of some subtree), the phys-
ical diameters{∆(A), A ∈ A} could be as large as∆X , the
diameter of the whole space. As previously discussed, RP-
tree focuses on decreasing thedata diameters∆n(A), and
we’ll argue that this is sufficient to decrease the bias of the
estimator. For this purpose, we will replace RPtree partitions
A with alternate partitionsA′ as explained in the next sec-
tion.

3.2 Alternate partitions

Given a partitionA built by RPtree, we will consider an al-
ternate partitionA′ which will serve to analyze the bias of
the regressorfn,A (see above discussion of Lemma 6). Each
cell of A′ will either contain no data point, or has physical
diameter roughly the same as its data diameter. This is done
by intersecting the cells ofA with balls or complements of
balls from a fixed collectionB defined below (see Figure 3).
We’ll see thatA′ approximately maintains key properties of
A, namely partition size and average data diameters.

Definition 7 We defineB as the following collection of balls
in R

D. LetI = ⌊log n2/(2+d)⌋. For eachi = 0 to I, consider
a minimal

(
2−i∆X

)
-cover ofX ; let Bi be the set of all balls

B
(
z, 2−(i−2)∆X

)
centered at pointsz in the cover. We set

B .
= ∪I

i=0Bi.

Every cellA ∈ A such thatA ∩X 6= ∅ will be replaced in
A

′ by two cellsA′
1, A

′
2 obtained as follows.

Consider the smallesti ∈ {0, . . . , I} such that2−i∆X ≤
max

{
∆n (A) , 2−I∆X

}
, i.e. i = min

{
I, ⌈log ∆X

∆n(A)⌉
}

.



There exists a ballB ∈ Bi which coversA∩X: pick anyx ∈
A∩X, and pick the ballB in Bi whose centerz is closest to
x; we have∀x′ ∈ A ∩X, thatx′ ∈ B = B

(
z, 2−(i−2)∆X

)

since by a triangle inequality

‖z − x′‖ ≤ ‖z − x‖+ ‖x− x′‖ ≤ 2−i∆X + ∆n (A)

≤ 2−i∆X + 2−(i−1)∆X ≤ 2−(i−2)∆X .

We defineA′
1 = B ∩ A andA′

2 = A \ A′
1 for all A ∈

A, A ∩X 6= ∅; on the other hand we letA′
1 = A, A′

2 = ∅
for all A ∈ A, A ∩X = ∅. We finally defineA′ to be the
collection of all suchA′

1, A
′
2 overA ∈ A.

In the following lemma we relate diameters of cells of
A

′ to the data diameters of cells ofA.

Lemma 8 (Diameters ofA′) LetA be some partition ofX
and letA′ as defined above. We have that
∑

A′∈A′

µn(A′)∆2(A′) ≤ 64∆2
n (A) + 256n−4/(2+d) ·∆2

X .

Proof: LetA ∈ A, A ∩X 6= ∅. We haveµn(A′
1) = µn(A)

andµn(A′
2) = 0. Also, given the smallesti ∈ {0, . . . , I}

such that2−i∆X ≤ max
{
∆n (A) , 2−I∆X

}
, we have that

• ∆n (A) > 2−I∆X implies∆(A′
1) ≤ 2 · 2−(i−2)∆X ≤

8∆n (A) ,

• ∆n (A) ≤ 2−I∆X implies∆(A′
1) ≤ 2 · 2−(I−2)∆X ≤

16n−2/(2+d) ·∆X .

Therefore, letA+ = {A ∈ A,∆n (A) > 2−I∆X }, we have
∑

A′∈A′

µn(A′)∆2(A′)

=
∑

A∈A+

µn(A)∆2(A′
1) +

∑

A∈A\A+

µn(A)∆2(A′
1)

≤
∑

A∈A+

64µn(A)∆2
n (A)

+
∑

A∈A\A+

256µn(A)n−
4

2+d ·∆2
X

≤ 64∆2
n (A) + 256n−

4
2+d ·∆2

X .

In order to bound the integrated excess risk, we’ll need
the empirical mass of cells ofA′ to be close to their true
mass. In particular, this will allow us to effectively discard
cells that are empty of data since they will have little effect
on the integrated excess risk. The following lemma from VC
theory will come in handy.

Lemma 9 (Relative VC bounds [VC71]) Let C be a class
of subsets ofRD, and let its2n-shatter coefficient be given
byS (C, 2n). With probability at least1− δ′ over the choice
of X, all A′ ∈ C satisfy

µ(A′) ≤ µn(A′) + 2

√
µn(A′)

lnS (C, 2n) + ln(4/δ′)

n

+ 4
lnS (C, 2n) + ln(4/δ′)

n
. (4)

The next lemma establishes the convergence of empirical
masses of cells ofA′.

Lemma 10 (Mass of cells ofA′) With probability at least1−
δ′ overX and the randomness in the algorithm, we have for
all RPtree partitionsA, for all A′ ∈ A

′ that

µ(A′) ≤ µn(A′) + 2

√
µn(A′)

V + ln(4/δ′)

n

+ 4
V + ln(4/δ′)

n
, where (5)

V ≤ O(log n)(log n+ loglog(1/δ)).

Proof: Suppose w.l.o.g that the RPtree is built by picking
random directions from a fixed collectionP without replace-
ment. How big shouldP be so we have enough directions to
choose from? The implementation ofcoreRPtree ensures
that |P| ≤ 2n6 log

(
6n2/δ

)
is sufficient (see remark 4 of

section 5.1). Now fix such a collectionP and letHP be the
union of{X} and the class of half spaces ofR

D defined by
hyperplanes normal to the directions inP. For an RPtree par-
tition A, each cell ofA is the intersection of at most6 log n
elements ofHP since the tree is guaranteed to have height at
most6 log n (remark 4). Each cell ofA′ is the intersection
of a ball or the complement of a ball inB with a cell ofA.

All such cells therefore belong to the following class of
subsets ofRD:

C =

{
h : h = h0 ∩

(
6 log n⋂

l=1

hl

)
, h0 or hC

0 is inB, hl ∈ HP

}
.

We now proceed to boundingS (C, 2n), the 2n-shatter
coefficient ofC as follows.

Given 2n sample points, every directionv ∈ P defines
at most2(2n + 1) equivalent choices of half-spaces inR

D.
We therefore have

S (C, 2n) ≤ 2 |B| ((4n+ 2) |P|+ 1)
6 log n

≤ 2 |B|
(
n6(8n+ 4) log

(
6n2/δ

)
+ 1
)6 log n

.

SinceX has Assouad dimensiond, we have|B| ≤∑I
i=0 2di ≤

2n2d/(2+d). The proof is completed by lettingV = logS (C, 2n)
for P fixed, and calling on Lemma 9.

Lemma 11 (Excess risk)There exists a constantC1 inde-
pendent ofd and µ(X ) such that the following holds with
probability at least1 − δ/3 over the choice of(X,Y) and
the randomness in the algorithm.

Defineα(n)
.
=
(
log2 n

)
loglog(1/δ) + log(1/δ). LetAi

be the final partition reached byadaptiveRPtree. For all

partitionsA ∈
{
A

j
}i

j=0
, we have

‖fn,A − f‖2 ≤ C1

(
∆2

Y |A|
α(n)

n

+λ2
(
∆2

n (A) + n−4/(2+d)∆2
X

))
.



Proof: Let the partitionA ∈
{
A

j
}i

j=0
and the sampleX

be fixed. By Lemma 10 we have, with probability at least
1 − δ′, that equation (5) holds for allA′ ∈ A

′ with V ≤
O(log n)(log n+ loglog(1/δ)).

The excess risk decomposes overA
′ as

‖fn,A − f‖2 =
∑

A′∈A′

∫

A′

‖fn,A(x)− f(x)‖2 µ(dx).

We next divide the cells ofA′ into two groups:

A
′
>
.
=

{
A′ ∈ A

′, µn(A′) ≥ V + ln(4/δ′)

n

}
,

andA
′
<
.
= A

′ \A′
>.

It’s easy to see that from equation (4), we have∀A′ ∈
A

′
>, µ(A′) ≤ 7µn(A′), and∀A′ ∈ A

′
<, µ(A′) ≤ 7V+ln(4/δ′)

n .
Integrating overA′

<, we have

∑

A′∈A′
<

∫

A′

‖fn,A(x)− f(x)‖2 µ(dx)

≤
∑

A′∈A′
<

∆2
Y · µ(A′)

≤
∑

A′∈A′
<

∆2
Y · 7
V + ln(4/δ′)

n

≤ 7∆2
Y · |A′| · V + ln(4/δ′)

n
. (6)

For the integration overA′
>, we first apply (1), and recall

Lemmas 6 and 5 to have that with probability at least1− δ′
overY,

∑

A′∈A′
>

∫

A′

‖fn,A(x)− f(x)‖2 µ(dx)

=
∑

A′∈A′
>

∫

A′

‖fn,A′(x)− f(x)‖2 µ(dx)

≤
∑

A′∈A′
>

2λ2∆2 (A′) · µ(A′)

+
∑

A′∈A′
>

2∆2
Y ·

2 + ln(|A′| /δ′)
nµn(A′)

· µ(A′)

≤
∑

A′∈A′
>

2λ2∆2 (A′) · 7µn(A′)

+
∑

A′∈A′
>

2∆2
Y ·

2 + ln(|A′| /δ′)
nµn(A′)

· 7µn(A′)

≤ 14λ2
∑

A′∈A′
>

µn(A′)∆2 (A′)

+14∆2
Y |A′| · 2 + ln(|A′| /δ′)

n
. (7)

Note that the termln |A′| in (7) is at mostO(lnn) since
the entire tree has height at most6 log n. Combining the
bounds in (6) and (7), we get that there exists a constantC0

such that‖fn,A − f‖2 is at most

C0

(
∆2

Y · |A|
log2 n loglog 1/δ + log(1/δ′)

n

+λ2
∑

A′∈A′

µn(A′)∆2 (A′)

)
,

with probability at least1− 2δ′.
Settingδ′ = δ/36 log n, the lemma follows by a union

bound over at most6 log n partitions in
{
A

j
}i

j=0
, and then

calling on lemma 8.

4 Risk of final regressorfn

.
= fn,A∗

In this section we bound the excess risk of the final regressor
fn

.
= fn,A∗ in terms of the diameter decrease rate attained

whenadaptiveRPtree stops.
To see that the stopping criteria eventually hold, note that

the implementation ofcoreRPtree ensures that all cells at
some level down the hierarchy have a single data point in
them (see remark 4). In other words, we have∆n

(
A

i
)

= 0
eventually, forcing either stopping criterion to hold.

We now outline the arguments in this section. For sim-
plicity, assume∆X , ∆Y , andλ are all 1. Consider some
RPtree partitionA and let∆n (A) ≈ ζ for some scalarζ,
we then have|A| . ζ−k wherek is the diameter decrease
rate attained by the algorithm. From Lemma 11 above, we
roughly have‖fn,A − f‖2 . ζ−k/n + ζ2, and the best
bound is obtained by settingζ ≈ n−1/(2+k). Provided we
pick an appropriate partition which optimizesζ, the final
bound would then take the form‖fn,A∗ − f‖2 . n−2/(2+k).

4.1 Risk bound for cross-validation option

Lemma 12 (Existence of a good pruning)Suppose the cross-
validation option is used, andadaptiveRPtree attains a
diameter decrease rate ofk onX. Define

α(n)
.
=
(
log2 n

)
log log(n/δ) + log(1/δ),

andζ
.
=
(

∆2
Y ·α(n)

λ2∆2
X
·n

)1/(2+k)

. Letn ≥ max

{(
λ∆X

∆Y

)2

, α(n)

}
,

and for i ≥ 0, let Ai as defined inadaptiveRPtree. Then
there existsi0 ≥ 0 such that∆n

(
A

i0
)
≤ 2ζ · ∆n (X ) and∣∣Ai0

∣∣ ≤ ζ−k.

Proof: Let i ≥ 0. We have by definition that∆n

(
A

i
)
≤

2−i∆n (X ), while it follows from the assumption on diam-
eter decrease rate thatlevel

(
A

i
)
≤ ki. Now let Ai be the

last partition ofX achieved byadaptiveRPtree when the
stopping criteria holds. We have either that∆n(Ai) = 0 <
ζ ·∆n (X ), or

ki ≥ level
(
A

i
)
≥ log n2 ≥ k log n2/(k+2) ≥ k log 1/ζ,

implying that∆n

(
A

i
)
≤ 2−i ·∆n (X ) ≤ ζ ·∆n (X ).

Now, letj ∈ 1, . . . , i be the firstj such that∆n

(
A

j
)
≤

ζ ·∆n (X ). We consider the following two cases:

• Eitherlevel
(
A

j
)
≤ log ζ−k, and we get

∣∣Aj
∣∣ ≤ ζ−k.



• Or level
(
A

j
)
> log ζ−k in which case the following

must hold:

– ∆n

(
A

j−1
)
≤ 2ζ·∆n (X ), sincekj ≥ level

(
A

j
)
≥

k log 1/ζ, implying thatj − 1 ≥ log(1/2ζ).
– level

(
A

j−1
)
< log ζ−k, for otherwisej − 1 ≥

log 1/ζ implying that∆n

(
A

j−1
)
≤ ζ∆n (X ). It

follows that
∣∣Aj−1

∣∣ ≤ ζ−k

Thus, eitherAj or Aj−1 satisfies the claim.

Lemma 13 There exists a constantC independent ofd and
µ(X ), such that the following holds with probability at least
1− 2δ/3 over(X,Y) and the randomness in the algorithm.

Suppose the cross-validation option is used, and proce-
dure adaptiveRPtree attains a diameter decrease rate of
k ≥ d onX. Define

α(n)
.
=
(
log2 n

)
log log(n/δ) + log(1/δ),

and assumen ≥ max
{

(λ∆X /∆Y)
2
, α(n)

}
. The excess

risk of the regressor is then bounded as

‖fn − f‖2 ≤ C · (λ∆X )
2k/(2+k)

(
∆2

Y ·
α(n)

n

)2/(2+k)

+2∆2
Y

√
ln log n6 + ln 3/δ

2n
.

Proof: LetAi0 be as in Lemma 12, andζ
.
=
(

∆2
Y ·α(n)

λ2∆2
X
·n

)1/(2+k)

.

By applying Lemma 11 and then Lemma 12, we have with
probability at least1− δ/3 that

∥∥fn,Ai0 − f
∥∥2 ≤ C1

(
∆2

Y
∣∣Ai0

∣∣ α(n)

n

+λ2
(
∆2

n

(
A

i0
)

+ n−4/(2+d)∆2
X

))

≤ C1

(
∆2

Y · ζ−kα(n)

n
+ 5λ2ζ2∆2

X

)

≤ C2λ
2∆2

X ζ
2.

To analyze the cross validation phase, we first fix the parti-
tion tree and consider the obtained partitions fromA

0 to the
final partitionA

i when the stopping criteria holds. We have
with probability at least1− δ/3 over the choice of(X′,Y′)
that∀j ∈ {0, . . . , i}
∣∣R
(
fn,Aj

)
−R′

n

(
fn,Aj

)∣∣ ≤ ∆2
Y

√
ln log n6 + ln 3/δ

2n
.

The above is obtained by applying McDiarmid’s to the em-
pirical risk followed by a union bound over at most6 log n
regressorsfn,Aj , j ∈ {0, . . . , i}.

Let fn
.
= fn,A∗ be the empirical risk minimizer, we can

then conclude that

‖fn − f‖2 ≤ C2λ
2∆2

X ζ
2 + 2∆2

Y

√
ln log n6 + ln 3/δ

2n

with probability at least1− 2δ/3.

4.2 Risk bound for automatic stopping option

Lemma 14 (Properties ofA∗) Suppose the automatic stop-
ping option is used, and thatadaptiveRPtree attains a di-
ameter decrease rate ofk onX. Define

α(n)
.
=
(
log2 n

)
log log(n/δ) + log(1/δ),

andζ
.
=
(

α(n)
n

)1/(2+k)

. Finally, assumen ≥ α(n). Then,

the following holds for the final partitionA∗ retained for re-
gression:
(
α(n)

n
· |A∗|+ ∆2

n (A∗)

)
≤
(
4∆2

n (X ) + 1
)
ζ2.

Proof: For i ≥ 0, let Ai as defined inadaptiveRPtree.
We have by definition that∆n

(
A

i
)
≤ 2−i∆n (X ), while it

follows from the assumption on diameter decrease rate that
level

(
A

i
)
≤ ki. Now for somei ≥ 1, let A

i be the fi-
nal partition ofX achieved byadaptiveRPtree when the
stopping criteria holds. We consider the following two cases:

• Either level
(
A

i
)
≤ log ζ−k, and we have by the stop-

ping condition that:

∆2
n

(
A

i
)
≤ α(n)

n
2level(Ai) ·∆2

n (X )

≤ α(n)

n
ζ−k∆2

n (X ) = ζ2∆2
n (X ) .

• Or level
(
A

i
)
> log ζ−k, in which case the following

must hold:

– ∆n

(
A

i−1
)
≤ 2ζ·∆n (X ), sinceki ≥ level

(
A

i
)
≥

k log(1/ζ), implying thati− 1 ≥ log(1/2ζ).

– level
(
A

i−1
)
< log ζ−k, for otherwise we would

have stopped ati − 1. To see this, assume instead
that level

(
A

i−1
)
≥ log ζ−k: we have that(i −

1) ≥ log 1
ζ and subsequently that

∆2
n

(
A

i−1
)
≤ 2−2(i−1)∆2

n (X ) ≤ ζ2∆2
n (X )

=
α(n)

n
· ζ−k ·∆2

n (X )

≤ α(n)

n
2level(Ai−1) ·∆2

n (X ) .

In other words,

level
(
A

i−1
)
≥ log

(
n∆2

n

(
A

i−1
)
/α(n)∆2

n (X )
)
.

In either case at least one ofA
i andA

i−1 has size at
mostζ−k and diameter at most2ζ ·∆X . It follows that

min
j∈{i−1, i}

(
α(n)

n
·
∣∣Aj

∣∣+ ∆2
n

(
A

j
))
≤

α(n)

n
· ζ−k + 4ζ2 ·∆2

n (X ) =
(
4∆2

n (X ) + 1
)
ζ2,

which concludes the argument.



Lemma 15 There exists a constantC independent ofd and
µ(X ), such that the following holds with probability at least
1− δ/3 over(X,Y) and the randomness in the algorithm.

Suppose the automatic stopping option is used; assume
adaptiveRPtree attains a diameter decrease rate ofk ≥ d
onX. Defineα(n)

.
=
(
log2 n

)
log log(n/δ)+log(1/δ). The

excess risk of the regressor is then bounded as

‖fn − f‖2 ≤ C ·
(
∆2

Y + λ2
)
(∆2

X + 1) ·
(
α(n)

n

)2/(2+k)

.

Proof: For n ≤ α(n), the bound on the excess risk holds
vacuously. We assume henceforth thatn > α(n). Let ζ

.
=(

α(n)
n

)1/(2+k)

. By first applying Lemma 11 then Lemma

14, we have with probability at least1− δ/3 that

‖fn,A∗ − f‖2 ≤ C1

(
∆2

Y |A∗| α(n)

n

+λ2
(
∆2

n (A∗) + n−4/(2+d)∆2
X

))

≤ C1

(
∆2

Y + λ2
)(
|A∗| α(n)

n

+
(
∆2

n (A∗) + n−4/(2+d)∆2
X

))

≤ C1

(
∆2

Y + λ2
) ((

4∆2
X + 1

)
ζ2 + ζ2∆2

X
)

≤ C
(
∆2

Y + λ2
) (

∆2
X + 1

)
ζ2,

which concludes the argument.

5 Core RPtree and diameter decrease rates

5.1 Core RPTree procedures

ProcedurebasicRPtree(A0 ⊂ X , ∆, levell)
A0 ← {A0};
for i← 1 to∞ do

if ∆n (Ai−1) ≤ ∆ then
return ;

end
Choose a random directionv ∼ N

(
0, 1

D ID
)
;

Choose a randomτ ∼ U [−1, 1] · 6√
D

∆n(A0);

foreachcellA ∈ Ai−1 do
if (l + i) is oddthen

// Noisy splits.
t← median{z⊤v : z ∈ X ∩A0}+ τ ;

else
// Median splits.
t← median{z⊤v : z ∈ X ∩A};

end
Aleft ← {x ∈ A, x⊤v ≤ t};
Aright← A \Aleft;

end
Ai ← partition ofA0 defined by the leaves of the
current tree;

end

ProcedurecoreRPtree(A0 ⊂ X , ∆, δ, levell)
Call basicRPtree(A0,∆, l) log

(
6n2/δ

)
times

and return the shortest tree.

RPtree consists of hierarchically bisecting the data space
with random hyperplanes. InbasicRPtree we alternate be-
tween two types of bisections: we split exactly at the median
in order to balance the tree, while we split at the median +
noise to improve the rate at which the data diameters are re-
duced down the tree. Notice that for the “noisy” split we use
the same hyperplane to bisect all nodesA ∈ Ai−1.

The procedurecoreRPtree serves to boost the probabil-
ity that we get a small tree. The many calls tobasicRPtree

can be done in parallel so that we don’t keep growing the
trees that are to be discarded once the smallest tree is identi-
fied.

Remark 4 Given the implementation ofcoreRPtree, the
tree returned byadaptiveRPtree has the following prop-
erties:

• Any node at level6 log n has at most1 data point: the
data is split at the exact median at every other level
so that the number of points per nodes decreases ex-
ponentially from the root down. Ifn were a power of
2, we’d need at most2 log n levels to get to1 point
per node. For generaln, notice that the number of
points in a node at leveli ≥ 2 is at most34 of that of
its ancestor at leveli − 2. In other words we need at
most2 log n/ log(4/3) ≤ 6 log n levels to get down to
1 point per node.

• As a consequence, the entire tree reaches depth at most
6 log n under either stopping criteria, and therefore has
at most2n6 nodes.

• Another consequence is that at most2n6 log(6n2/δ)
random directions are required to build the entire tree.

5.2 Worst case decrease rates

In this section we consider worst case bounds for the diam-
eter decrease rates attainable by the algorithm over supports
of low intrinsic dimension.

The following theorem, adapted from Dasgupta and Fre-
und [DF08], is the core of the argument.

Theorem 16 LetA ⊂ R
D and supposeA ∩X has Assouad

dimensiond. There exists a constantC ′ independent of the
sampleX andd, with the following property. We have with
probability at least12 that the tree rooted atA returned by
the call basicRPtree(A,∆n (A) /2, l) has depth at most
C ′d log d.

Proof Idea: The proof is a direct consequence of Lemma 9
of [DF08] applied to the “noisy” splits at alternating levels
in procedurebasicRPtree.

Let r = ∆n(A)/512
√
d and consider anr-cover ofA;

now consider pairs of ballsB = B(z, r), B′ = B(z′, r),
wherez, z′ are in the cover and‖z − z′‖ ≥ 1

2∆n(A) − 2r.
Notice thatbasicRPtree stops if for all such pairs, no leaf
of the tree contains points from bothB ∩X andB′ ∩X.

Fix such a pairB andB′. By Lemma 9 of [DF08], every
“noisy” split has a constant probability of separatingB ∩X



Figure 4: Hilbert space filling curve, balls of smaller ra-
dius have lower Assouad dimension. Image obtained from
[DF08].

andB′ ∩ X. Thus, the probability that some cell at leveli
contains points from bothB ∩ X andB′ ∩ X goes down
exponentially withi. A union bound over at most(O(d)d)
such pairs yields the theorem.

Corollary 17 SupposeX has Assouad dimensiond. Let
C ′ be as in Theorem 16. FixX. With probability at least
1 − δ/3 over the randomness in the algorithm, the proce-
dure adaptiveRPtree attains a diameter decrease rate of
k ≤ C ′d log d onX.

Proof: Consider a subtree rooted atA returned by the call
coreRPtree(A,∆n (A) /2, δ, l) in the second loop of pro-
cedureadaptiveRPtree. SinceX has Assouad dimension
d,A∩X has Assouad dimension at mostd by definition; we
can therefore apply Theorem 16.

ProcedurecoreRPtree callsbasicRPtree as many as
log
(
6n2/δ

)
times and returns the smallest tree; thus the prob-

ability that the subtree rooted atA has depth overC ′d log d
is at mostδ/6n2. Now, under both stopping conditions,
coreRPtree is only called on nodes at level at mostlog n2;
a union bound over all such nodes (at most2n2) yield a prob-
ability of failure at mostδ/3.

6 Final remarks

We have shown in this paper that an RPtree regressor will
perform well in a scenario where the data spaceX has low
Assouad dimensiond << D.

Our results are easily extended to other settings. We can
for example consider a scenario where the data has low As-
souad dimensiond at small resolution but “fills” up space at
higher resolution. One may think for instance of a Hilbert
space filling curve where balls of small enough radius have
low Assouad dimension relative to the entire space. (see Fig-
ure 4). RPtree in this case would initially decrease diameter
at a slow rate till it arrives at small enough neighborhoods,
at which time the diameter decrease rates speed up. Even
in this case, the complexity of the data in larger regions of
space has little effect on the final excess risk, providedn is
large enough for the tree to arrive at well populated regions
with sufficiently small diameter.
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