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Abstract

We study the problem of predicting the labelling of
a graph. The graph is given and a trial sequence of
(vertex,label) pairs is then incrementally revealed
to the learner. On each trial a vertex is queried
and the learner predicts a boolean label. The true
label is then returned. The learner’s goal is to min-
imise mistaken predictions. We propose minimum
p-seminorm interpolation to solve this problem. To
this end we give a p-seminorm on the space of
graph labellings. Thus on every trial we predict us-
ing the labelling which minimises the p-seminorm
and is also consistent with the revealed (vertex, la-
bel) pairs. When p = 2 this is the harmonic en-
ergy minimisation procedure of [22], also called
(Laplacian) interpolated regularisation in [1]. In
the limit as p → 1 this is equivalent to predicting
with a label-consistent mincut. We give mistake
bounds relative to a label-consistent mincut and a
resistive cover of the graph. We say an edge is
cut with respect to a labelling if the connected ver-
tices have disagreeing labels. We find that min-
imising the p-seminorm with p = 1 + ε where
ε → 0 as the graph diameter D → ∞ gives a
bound of O(Φ2 logD) versus a bound of O(ΦD)
when p = 2 where Φ is the number of cut edges.

1 Introduction
We study the problem of predicting the labelling of a graph
in the online learning framework. Consider the following
game for predicting the labelling of a graph: Nature presents
a graph; nature queries a vertex vi1 ; the learner predicts the
label of the vertex ŷ1 ∈ {−1, 1}; nature presents a label y1;
nature queries a vertex vi2 ; the learner predicts ŷ2; and so
forth. The learner’s goal is to minimise the total number of
mistakes M = |{t : ŷt 6= yt}|. If nature is adversarial,
the learner will always mispredict, but if nature is regular or
simple, there is hope that a learner may make only a few mis-
predictions. Thus, a central goal of on-line learning is to de-
sign algorithms whose total mispredictions can be bounded
relative to the complexity of nature’s labelling.

In previous work [11, 9] we used a norm induced by the
graph Laplacian to predict the labelling of a graph with algo-
rithms such as the Perceptron. In [15] it was shown that the

perceptron, “online SVM”s and similar algorithms applied to
the problem of learning sparse linear classifiers, suffer from
the limitation that there exist example sequences such that
these algorithms incur mistakes linearly in the dimension of
the examples. These lower bounds should be contrasted to
upper bounds of algorithms such as Winnow [18] and the p-
norm Perceptron [8, 7] which are only logarithmic in the di-
mension of the examples. An analogous observation for the
graph labelling problem [10] demonstrated that there exists
an n-vertex graph with a single cut edge for which Laplacian
2-seminorm interpolation incurs θ(

√
n) mistakes.

Inspired by the results for the p-norm perceptron’s ability
to learn sparse concepts in IRn, we consider a similar idea for
building classifiers on graphs. We thus introduce a family of
seminorms defined on the vertices of a graph – we term them
Laplacian p-seminorms which include the smoothness func-
tional of [1, 22] and the label-consistent graph cut [2] as lim-
iting cases. We present an online algorithm for learning con-
cepts defined on graphs based upon minimum p-seminorm
interpolation. We derive a mistake bound for this algorithm
in which the graph cut of a labelling is the measure of the
complexity of the learning task. In the graph setting the dual
seminorm gives rise to a generalisation of the notion of re-
sistance between graph vertices [16, 6], which we term p-
resistance. The p-resistance is a natural measure of similar-
ity between graph vertices and it features as the “structural”
term in our mistake bound. We give a brief survey of its
fundamental properties by extending a well-known analogy
with resistive networks.

We demonstrate that, in natural cases, the optimal choice
for the parameter p results in an algorithm which lies be-
tween the mincut (p = 1) of [2] and the method of min-
imising the smoothness functional (p = 2) of [1, 22]. In a
further parallel with the behaviour of the p-norm Perceptron
we demonstrate that we can choose the parameter p (using
only information available a-priori to the learner) to ensure
a performance guarantee which is logarithmic with regard to
graph diameter. The bound also decreases with the edge con-
nectivity of the graph or clusters thereof as a consequence of
the p-resistance term.

2 Background and preliminaries

If z ∈ IRn then let ‖z‖p := p
√∑n

i=1 |zi|p denote the p-
norm when p ∈ [1,∞). More generally, if Ψ : IRn → IRm
is any linear map we define the associated (Ψ, p)-seminorm



as ‖u‖Ψ,p := ‖Ψu‖p. If {0} = {u ∈ IRn : Ψu = 0}
then ‖·‖Ψ,p defines a norm since we have a unique minimal
vector. Given a seminorm ‖·‖ : IRn → IR the dual seminorm
‖·‖∗ : IRn → IR ∪ {+∞} is defined on the vector space of
linear functionals Z : IRn → IR as

‖Z‖∗ :=sup
w∈IRn

{
|Z(w)|
‖w‖

}
= [ inf

w∈IRn
{‖w‖ : Z(w) = 1}]−1.

(1)
We immediately recover the useful inequality

|Z(w)| ≤ ‖Z‖∗‖w‖ . (2)

The canonical basis vectors of IRn we denote as e1, . . . , en
with corresponding functionals Ei(w) := e>i w.

Given a set X ⊆ X , a cover of X is a collection C =
{Xi}ki=1 of subsets Xi ⊆ X such that X ⊆ ∪ki=1Xi. For
a given symmetric discrepancy function d : X × X → IR
(d(x, y) = d(y, x)) and any ρ > 0, the covering number
N (X, ρ, d(·, ·)) of X is the cardinality of the smallest cover
C such that for each Xi ∈ C we have d(x, x′) ≤ ρ if x, x′ ∈
Xi.

A graph G = (V,E) is a collection of vertices V =
{v1, . . . , vn} joined by connecting (possibly weighted) edges.
Denote i ∼ j whenever vi and vj are connected by an edge.
We consider undirected graphs so that E := {(i, j)|i ∼ j} is
the set of unordered pairs of adjacent vertex indexes. Asso-
ciated with each edge (i, j) ∈ E is a weight Aij , so that A
is the (weighted) symmetric adjacency matrix. We say that
G is unweighted if Aij = 1 ∀(i, j) ∈ E and 0 otherwise.

We say G′ is a subgraph of G whenever V ′G ⊆ VG and
E′G ⊆ EG and we write G′ ⊆ G. If V ′G ⊆ VG then the
induced subgraph is (V ′G , E

′
G) with E′G := {(i, j) ∈ EG :

vi, vj ∈ V ′G}.
A path graphP is a graph of the form VP = {v0, v1...vn},

EP = {(0, 1), (1, 2)...(n − 1, n)} and we define the length,
`(P), of any path P by `(P) =

∑
(i,j)∈EP

1
Aij

. The dis-
tance between any two vertices vi, vj ∈ VG is the length of
the shortest path containing vi and vj ,

δ(i, j) = min
{P⊆G:vi,vj∈VP}

`(P)

and is equal to∞ if no path exists. We define the diameter
of G, D(G) = maxi,j δ(i, j). In this paper, we generally
consider connected graphs (that is, graphs in which a path
connects any two vertices).

A labelling u ∈ IRn of an n-vertex graph G is viewed
as a function u : VG → IR defined on the vertices of G
whereby ui corresponds to the label of vi. If G = (V,E =
{(i1, j1), . . . , (im, jm)}) is a graph then an associated edge
map (weighted oriented incidence matrix) ΨG : IRn → IRm
(with p implicit) is a linear map such that

ΨGu = (A
1
p

i1j1
(ui1 −uj1), . . . , A

1
p

imjm
(uim −ujm))> . (3)

When p = 2, the n × n matrix G = Ψ>GΨG is the well-
known graph Laplacian. We introduce a class of Laplacian
p-seminorms defined on the space of graph labellings: if u ∈
IRn then

‖u‖G,p := ‖u‖ΨG ,p =

 ∑
(i,j)∈EG

Aij |ui − uj |p
 1

p

. (4)

These seminorms generalise the commonly used “smooth-
ness functional” uTGu [1, 22] and as such measure the
complexity of graph labellings. When the labelling is re-
stricted to u ∈ {−1, 1}n we say that edge (i, j) is cut if
ui 6= uj and we define the weighted cut size of u as

ΦG(u) :=
1
2p
‖u‖pG,p =

1
2p

∑
(i,j)∈E

Aij |ui − uj |p . (5)

The cut-size is independent of p and if the graph is unweighted
it is just the number of cut edges.

We will use the dual norm ‖·‖∗G,p to give a discrepancy
rG,p(·, ·) between vertices by identifying vertices vi and vj
with the functionals Ei and Ej so that

rG,p(i, j) =
(
‖Ei − Ej‖∗G,p

)p
.

When p = 2 there is an established natural connection [6] be-
tween graphs and resistive networks where each edge (i, j) ∈
EG is viewed as a resistor with resistance 1

Aij
. The effective

resistance rG(i, j) = rG,2(i, j) is the potential difference
needed to induce a unit current flow between vi and vj . The
p-resistance (diameter) of a graph G is defined Rp(G) :=
max{vi,vj∈VG} rG,p(i, j) (R(G) = R2(G)). In this paper the
notion of (effective) p-resistance will be a key to our bounds
and is further developed in Section 4.1.

2.1 Previous work
The problem of learning a labeling of a graph is a natural
problem in the online learning setting, as well as a foun-
dational technique for a variety of semi-supervised learning
methods [2, 17, 22, 1]. One practical application of graph
labelling is found in the image segmentation problem. Here
for example we are given an image and we distinguish the
foreground from the background. The user may select a set
of vertices (“pixels”) and the system should then return a
segmentation, i.e. a classification of every pixel into fore-
ground or background. The graph’s topology corresponds
to pixel connectivity and the edges are weighted according
to interpixel similarity (e.g., color). Such a system based
on p-seminorm interpolation was considered in [21]. For an-
other example, in the online setting, consider a system which
serves advertisements on web pages. The web pages may be
identified with the vertices of a graph and the edges as links
between pages. The online prediction problem is then that,
at a given time t the system may receive a request to serve an
advertisement on a particular web page. For simplicity, we
assume that there are two alternatives to be served: either
advertisement “A” or advertisement “B”. The system then
interprets the feedback as the label and then may use this
information in responding to the next request to predict an
advertisement for a requested web page.

The problem of predicting the labelling of a graph in the
online framework was first considered in [12] and a mis-
take bound for the kernel perceptron was given in [11, The-
orem 4.2 (with b = R(G); c = 0)] of

|M| ≤ 8ΦG(u)R(G) + 2, (6)
where u is any labelling consistent with the trial sequence.

In [9] the Pounce on-line prediction technique was de-
veloped to exploit any cluster structure in a graph. The algo-
rithm achieves the mistake bound

|M| ≤ N (X, ρ,
√
rG) + 4ΦG(u)ρ2 + 1, (7)



for any ρ > 0. Here, u ∈ IRn is any labelling consistent with
the trial sequence, X = {vi1 , vi2 , . . . viT } ⊆ V is the set of
inputs and the covering number N (X, ρ,

√
rG) is the mini-

mum number of vertex sets of resistance diameter no greater
than ρ2 required to cover X (see Section 2). The Pounce
algorithm therefore captures the notion of cluster structure
through a graph cover of low resistance vertex sets.

In [10] a limitation of existing methods for predicting the
labelling of a graph (including an online version of the com-
mon and well-motivated method of minimising the smooth-
ness functional given by (4) when p = 2) was identified;
n-vertex graph constructions exist for which the algorithms
incur (at least) θ(

√
ΦG(u)n) mistakes. It was demonstrated

that any unweighted graph can be embedded into a path graph
in such a way that an efficient Bayes optimal classifier used
to predict the labelling of the embedding (and, therefore, of
the underlying graph) obtains a mistake bound which grows
only logarithmically in the size of the graph

|M| ≤ 2ΦG(u) max
[
0, log2

(
n− 1

2ΦG(u)

)]
+

2ΦG(u)
ln 2

+ 1.

(8)

This algorithm, however, involves the corruption of the graph
structure resulting in a drawback: the method does not ex-
ploit graph connectivity – in fact the mistake bound (8) im-
proves if the graph is replaced by any spanning tree – and is
therefore not demonstrably suitable for the case of dense or
clustered data. A further algorithm to utilise an embedding
of G into a simpler structure was presented in [4] and here
the reduction is to a tree T . A mistake bound of

|M| ≤ O(ΦT (u) logD(C))

is derived, where here ΦT (u) is the cut size of the true la-
belling u on T and D(C) is the maximum diameter of any
cluster (unitarily labelled) of vertices which T is partitioned
into by u.

A goal of research in this area is to present an algo-
rithm which fully exploits cluster structure and connectivity
in graphs and obtains a logarithmic performance guarantee.
In this paper we present an algorithm with a mistake bound in
terms of a revealing resistance feature and demonstrate that
this is upper bounded by a logarithmic function of the graph
diameter. The algorithm therefore exploits cluster structure
and connectivity but is also suitable in the case in which a
graph exhibits a sparse structure or large diameter.

3 Minimum (Ψ, p)-seminorm interpolation
Given the problem of predicting a labelling of a set of ob-
jects, a natural approach is to specify a norm on the labelling
of those objects and to choose a labelling which is then both
consistent and minimal in norm; this approach is known as
minimum norm interpolation. Recalling Section 2, in this
paper we investigate interpolation with (Ψ, p)-seminorms,
‖·‖Ψ,p, which are specified by choosing a linear map Ψ :
IRn → IRm and a p ∈ (1, 2]. In the case when p = 2
and when Ψ has a rank of n this is equivalent to using us-
ing the Euclidean norm induced by the kernel matrix K =
(Ψ>Ψ)−1. The intention is that Ψ is chosen so that the
(Ψ, p)-seminorm captures the geometry of the problem in

question, and in our application it will capture the geometry
of a graph.

Given a (Ψ, p)-seminorm and a sequence of online trials
t ∈ {1, 2, 3, ...} in which (index,label) pairs (it, yt) are re-
vealed, our algorithm (see Figure 1) maintains a weight vec-
tor wt ∈ IRn such that sgn(e>itwt) is the hypothesised label
for indexed object it at trial t. On trial t, the weight vector is
updated by choosing that vector consistent with all previous
examples1 which attains the least (Ψ, p)-seminorm, if there
are multiple minimisers an arbitrary vector is chosen2.

Parameters: A linear map Ψ : IRn → IRm and p ∈ (1, 2]
Initialization: w1 = 0; M = {}
Input: {(it, yt)}`t=1 ∈ (INn × {−1, 1})`
for t = 1, . . . , ` do

Receive: it ∈ {1, . . . , n}
Predict: ŷt = sign(e>itwt)
Receive: yt
if ŷt 6= yt thenM =M∪ {t}
wt+1 = argminu∈IRn{‖u‖Ψ,p : ui1 = y1, . . . , uit = yt}

end

Figure 1: Minimum (Ψ, p)-seminorm interpolation

In the case when Ψ is an edge map, the indices naturally
correspond to the vertices on a graph. We bound the mistakes
of our interpolation algorithm in the following theorem.

Theorem 1 The number of mistakes, |M|, incurred by mini-
mum (Ψ, p)-seminorm interpolation, for any ρ > 0, is bounded
by

|M| ≤ N (X, ρ, dΨ,p) +
ρ2 ‖u‖2Ψ,p
p− 1

(9)

where u ∈ IRn is any labelling such that uit = yt ∀t ≤ `,
and N (X, ρ, dΨ,p) is the covering number of the input set
X = {i1, i2, ..., i`} relative to the distance

dΨ,p(i, j) := ‖Ei − Ej‖∗Ψ,p. (10)

The bound above is for the general case, a proof is given
in Appendix A. In the following we will study the case cor-
responding to prediction of the labelling of a graph where
‖u‖2Ψ,p will correspond to a function of the cut size (see (5))
of the labelling u and dΨ,p(i, j) will be identified with a
measure closely related to resistance in an electrical network.

4 Interpolation on a graph
We proceed to our intended application of predicting the la-
belling of a given graph G by choosing Ψ to be an edge map
ΨG of G (recall (3)). If we denote the adjacency of G by A,
(ΨG , p)-seminorm interpolation on G is therefore the pro-
cess of choosing the labelling u of G which minimises the
seminorm (recalling (4))

‖u‖ΨG ,p =

 ∑
(i,j)∈EG

Aij |ui − uj |p
 1

p

1The conservative version of the algorithm where a vector is
chosen consistent with only the “mistaken” examples obtains the
same bound as Theorem 1.

2If Ψ is the edge map of a connected graph this will never occur.



subject to the constraints imposed by the revealed vertex la-
bels. The dual norm term (10) of our mistake bound for
(Ψ, p)-seminorm interpolation now corresponds to the fol-
lowing generalization of effective resistance.

Definition 2 Given a graph G, we define the (effective) p-
resistance between any two vertices va, vb ∈ VG as

rG,p(a, b) = (||Ea − Eb||∗G,p)p. (11)

Thus when p = 2 this is the usual effective resistance and as
p → 1 then rG,p(s, t) → 1

“st-mincut” . We will see that for
1 < p ≤ 2 effective p-resistance provides a natural measure
of similarity between vertices on a graph.

Rewriting Theorem 1 with the substitution (11) we now
have the following corollary, which is our main result.

Corollary 3 After ` trials we have, for any ρ > 0,

|M| ≤ N (X, ρ, rG,p) +
ρ

2
p ‖u‖2G,p
p− 1

(12)

where u ∈ IRn is any labelling of G such that uit = yt ∀t ≤
`, p ∈ (1, 2], andN (X, ρ, rG,p) is the covering number of the
input set X = {vi1 , vi2 , ...vi`} relative to the p-resistance
rG,p.

We proceed to develop an interpretation of the bound (12) to
culminate in Corollary 11. The norm of the classifier ‖u‖2G,p
is relatively simple to interpret while the properties of the
p-resistance measure rG,p are less immediate. We therefore
now establish an instructive theory of the p-resistance which
will both clarify the bound above and provide guidance on
the tuning of the parameter p.

4.1 Theory of p-resistive networks
We now build on a popular connection between the graph la-
belling problem and the problem of identifying the potential
at the nodes of an electric network derived from the graph
[22, 6]. We describe the notion of a network as parallel to a
partially labelled graph, in which each edge is a resistive con-
duit along which electric charge flows between vertices. The
label ui of a vertex vi is equivalent to it’s electric potential
(or voltage). A partial labelling constrains the potential on
the corresponding subset of vertices in the network, through
which current then flows along edges according to the laws
of the electric network theory. The foundation of our theory
here differs from standard theory in a single respect – energy
is produced in resistors according to a purely hypothetical
formulation of power. This results in changes to other famil-
iar key concepts, such as Ohm’s law.

A p-resistive network C = (G,S, p) consists of an n-
vertex weighted connected graph G = (V,E) with adja-
cency A, a set S = {(vi1 , y1), . . . , (vi` , y`)} ∈ (VG × IR)`
of 0 ≤ ` ≤ n feasible potential constraints and a constant
p ∈ (1, 2]. The potential constraints can be viewed as (the ef-
fect of) voltage sources applied to the relevant vertices. De-
note by VS the set of constrained vertices. The resistance
of an edge, πij := 1

Aij
∈ (0,∞), measures the resistance

of (i, j) to current flow and is constant. Given a network C a
state is an assignment of potentials u ∈ IRn to VG . In the fol-
lowing we will additionally define for any network, a power

P (C, ·) : IRn → [0,∞), a current I(C) : V × V → IR satis-
fying Iij = −Iji, and Iij = 0 whenever Aij = 0, and when
G is clear from the context we will abbreviate the effective
p-resistance rG,p to rp.

4.1.1 Fundamental properties
To draw a parallel with our graph labelling problem we de-
fine the power of potential state u as

P (u) :=
∑

(i,j)∈E

|ui − uj |p

πij
. (13)

and the corresponding power of any edge (i, j) as

Pij(u) :=
|ui − uj |p

πij
. (14)

The standard electric network theory corresponds to the choice
p = 2, and all other choices result in hypothetical theories.
Determining the labelling with minimal p-seminorm (4) sub-
ject to certain boundary constraints is equivalent to determin-
ing the potential state which minimises (13) under the same
boundary constraints. Given a network C = (G,S, p), if the
potential constraints S = {(vi1 , y1), . . . , (vi` , y`)} 6= ∅ then
let w(C) denote the unique minimiser

w(C) = argmin
u∈IRn

{P (u) : ui1 = y1, . . . , ui` = y`}. (15)

A p-resistive network operates according to the principal of
minimising (13) and so a set of potential constraints S in-
duces the minimal potential state w(C) on the network. The
power of a network C is therefore defined as the power of the
minimal feasible state

P (C) := min
u∈IRn

{P (u) : ui1 = y1, . . . , ui` = y`}.

At the minimum we have

∂P (u)
∂ui

∣∣∣
u=w

= 0 vi 6∈ VS∑
j:j∼i

|wi − wj |p−1sgn(wi − wj)
πij

= 0 vi 6∈ VS . (16)

We define the current from vertex vi to vj of a network

Iij(C) :=
|wi − wj |p−1sgn(wi − wj)

πij
(17)

(if p = 2 this is Ohm’s law) and the net current from vertex
vi as

Ii :=
∑
j:j∼i

Iij .

Since πij ≥ 0 we see that current flows from vertices with
high potential to those with low potential. We see that (16)
is Kirchoff’s current law for I

0 = Ii vi 6∈ VS (18)

and that we can alternatively express power via Joule’s law

Pij(w) = (wi − wj)Iij . (19)



Lemma 4 Given a network C = (G,S, p), suppose the po-
tential at any two vertices va, vb ∈ VG is constrained (and all
other vertices are unconstrained) so that S = {(va, ya), (vb, yb)},
then

P (C) = (wa − wb)Ia (20)

where w and I are the minimal potential state and the cur-
rent induced by S.

Proof:∑
(i,j)∈E

(wi − wj)Iij =
∑
i

∑
j:j<i

wiIij −
∑
j

∑
i:i>j

wjIij

=
∑
i

∑
j:j<i

wiIij +
∑
i

∑
j:j>i

wiIij

=
∑
j

waIaj +
∑
j

wbIbj +
∑
i:i 6=a,b

∑
j

wiIij

and the result follows since Ia =
∑
j Iaj = −

∑
j Ibj and∑

j Iij = 0 ∀i 6= a, b.

We now demonstrate that the construction (11) can in-
deed naturally be interpreted as a resistance feature in our
electric network analogy, via an identity similar to Ohm’s
Law relating potential, current and effective p-resistance.

Lemma 5 Given a network C = (G,S, p), suppose the po-
tential at any two vertices va, vb ∈ VG is constrained (and all
other vertices are unconstrained) so that S = {(va, ya), (vb, yb)},
for any ya, yb ∈ [0,∞) not both zero, then

rp(a, b) =
|wa − wb|p−1sgn(wa − wb)

Ia
, (21)

and

P (C) =
|wa − wb|p

rp(a, b)
, (22)

where w and I are the minimal potential state and the cur-
rent induced by S.

Proof: We have, by Lemma 4, the following identity for
power:

(wa − wb)Ia = P (C)

= min
u∈IRn

{
‖u‖pG,p : ua = ya, ub = yb

}
= |ya − yb|p min

u∈IRn

{
‖u‖pG,p : ua − ub = 1

}
.

We have that (21) then follows by noting that wa = ya and
wb = yb, and by recalling (11) and (1). Finally, (22) follows
from Lemma 4.

4.1.2 Bounding the p-resistance
Blackbox principles in electric circuit theory are useful tools
that allow the simplification of complex networks. In the
p-resistive framework we give analogues of the classic “se-
ries” (Lemma 6) and “parallel” laws (Lemma 7). The fact
that we can chain together sequential applications of these
laws is guaranteed by the seemingly intuitive Thevenin-type
theorem (Theorem 8).

Lemma 6 (Resistors in series) Consider a path graph P ,
with VP = {v1, v2...vn}, EP = {(1, 2), (2, 3)...(n − 1, n)}
and edge resistance πij for each i ∼ j. Then

rp(1, n) =

(
n−1∑
i=1

π
1

p−1
i,i+1

)p−1

.

Proof: Given a network C = (P,S, p) with potential con-
straints S = {(v1, y1), (vn, yn)} letw and I denote the min-
imal potential state and current induced on C. We have, from
Lemma 5 and (17)

w1 − wn =
n−1∑
i=1

wi − wi+1

|I1|
1

p−1 rp(1, n)
1

p−1 =
n−1∑
i=1

|Ii,i+1|
1

p−1π
1

p−1
i,i+1

and the result follows since, by (18), we have that I1 = Ii,i+1

for i < n.

Lemma 7 (Resistors in parallel) Consider a multigraph G
with two vertices VG = {va, vb} joined by m resistive edges
with resistances {πk}mk=1. Then

rp(a, b) =

(
m∑
k=1

1
πk

)−1

Proof: Given a network C = (G,S, p) with potential con-
straints S = {(va, ya), (vb, yb)} let w denote the minimal
potential state on C. Then by (22) we have the following
identity for the power P (C)

|wa − wb|p

rp(a, b)
=

m∑
k=1

|wa − wb|p

πk

and the result follows immediately.

We first define the notion of a resistive unit U = (VU , EU )
as any combination of resistors and vertices with two termi-
nal vertices V TU = {va, vb} ⊆ VU . We refer to the non-
terminal vertices V IU = VU\V TU as the interior vertices. Any
unit U can be treated as a component in a larger graph G =
(VG , EG), such that U ⊆ G and whenever v ∈ VU , v

′ ∈
VG\VU and v ∼ v′ then v ∈ V TU .

Theorem 8 (Thevenin) Any resistive unit U with two termi-
nals va and vb and with effective p-resistance rU,p(a, b) is
electrically identical to a single edge with p-resistance πab =
rU,p(a, b). In particular, in any given network in which U is
a component and V IU is unconstrained we can “black box”
U , and replace it with a single edge of p-resistance rU,p(a, b)
without affecting current or potential in the external network.

Proof: Consider a network C = (G,S, p) in which U is a
component of an n-vertex graph G = (VG , EG) with adja-
cency A. Suppose that the non-empty potential constraints
S are defined on a subset of vertices VS ⊆ VG\V IU not in the
interior of U . Denote byw and I the minimal feasible poten-
tial state and current, and by P (C) the induced power. Define



the power produced across U by potential state u ∈ IRn as
PU (u) =

∑
(i,j)∈EU (ui − uj)Iij .

Consider a second network C′ = (G′,S, p) formed by
replacing U with a single edge (a, b); VG′ = VG\V IU , EG′ =
(EG\EU ) ∪ {(a, b)}. Let πab = rU,p(a, b), |VG′ | = n′ and
denote the adjacency of G′ byA′. Letw′ denote the minimal
feasible potential state induced by S on C′.

The potential at no vertex v ∈ V IU is constrained by S
and so PU (w) is equal to the power produced across U when
it is considered as an isolated circuit with the terminal ver-
tices constrained to {(va, wa), (vb, wb)}. Since such a circuit
satisfies the conditions for Lemma 5 we have

PU (w) =
|wa − wb|p

rU,p(a, b)

=
|wa − wb|p

πab
. (23)

Thus PU (w) is always identical to the power produced ac-
cross a single edge with resistance πab = rU,p(a, b) and

P (C′) = min
u∈IRn′

{
∑

(i,j)∈EG′

|ui − uj |pA′ij : S}

= min
u∈IRn′

{
∑

(i,j)∈EG\EU

|ui − uj |pAij +
|ua − ub|p

πab
: S}

= min
u∈IRn′

{
∑

(i,j)∈EG\EU

|ui − uj |pAij +
|ua − ub|p

rU,p(a, b)
: S}

= min
u∈IRn

{
∑

(i,j)∈EG

|ui − uj |pAij : S}

= P (C)

It is then sufficent to notice thatw′ must be identical tow on
VG\V IU since by (23) they then produce the same (minimal)
power: PC(w) = PC′(w′). That current on the external
circuits is identical follows from (17).

We demonstrate that the effective p-resistance satisfies
an equivalent of Rayleigh’s monotonicity law – suppose that
the weighting of some edge of G is increased (equivalently,
its resistance is decreased) or a new edge created, then the
effective p-resistance between any two vertices of G does not
increase.

Lemma 9 (Rayleigh’s Monotonicity Principal) Let G be an
arbitrary (not necessarily connected) graph with positive edge
weights and adjacency A. Let G′, with adjacency A′, be
identical to G except for a single increase in the weight of
one arbitrary edge, so that A′ab = Aab + δ for δ > 0 (and
likewise A′ba = Aba + δ), and A′ij = Aij otherwise. Then
rG,p(i, j) ≥ rG′,p(i, j) ∀ i, j.

Proof: Given any vi, vj ∈ VG , let

w = argmin
u
{‖u‖pG,p : ui − uj = 1}.

Suppose that we can find a labellingw′ of G′ such that w′i −
w′j = 1 and ‖w′‖pG′,p < ‖w‖

p
G,p, then note that∑

(k,`)∈EG

|w′k − w′`|pAk`

=
∑

(k,`)∈EG′

|w′k − w′`|pA′k` − |w′a − w′b|pδ

≤
∑

(k,`)∈EG′

|w′k − w′`|pA′k`

<
∑

(k,`)∈EG

|wk − w`|pAk`

which contradicts the minimality of w. Hence

min
u
{‖u‖pG′,p : ui − uj = 1} ≥ ‖w‖pG,p

from which (11) implies

rG′,p(i, j) ≤ rG,p(i, j).

Corollary 10 Let T be a spanning tree of a graph G, then
rG,p(i, j) ≤ rT ,p(i, j) for all pairs of vertices vi, vj .

4.2 Analysis of the mistake bound
We are now better equipped with an understanding of effec-
tive p-resistance to analyse the mistake bound, Corollary 3.
We see, through Lemmas 6 and 7, that p-resistance is a dis-
crepancy measure which captures both connectivity and dis-
tance. Since it is difficult to evaluate the behaviour of (12)
through p-resistance directly, we choose a more tractable ap-
proximation: we generalize the notion of graph diameter to
that of (unweighted) wide diameter [13]. This approximation
captures connectivity in the graph structure.

The k-wide distance δk(i, j) is the minimum value ` such
that there exists k edge disjoint paths each containing vi and
vj of length no more than ` (and δk(i, j) = ∞ if no such k
paths exist). We then define the k-wide diameter ∆k(G) :=
maxi,j(δk(i, j)). Thus ∆1(G) is just the usual diameter and
if

Φ0
G := min

u∈{−1,1}n
{ΦG(u) : ΦG(u) ≥ 1}

then by Menger’s theorem [5] then there exists Φ0
G edge-

disjoint paths between all pairs of vertices. Thus if k ≤ Φ0
G

then ∆k(G) ≤ n. We can now bound the p-resistance diam-
eter of an unweighted graph G by

Rp(G) ≤ ∆k(G)p−1

k
. (24)

This follows immediately from application of resistors in
parallel and series laws (Lemmas 6 and 7) to the set of k edge
disjoints paths determined by the wide diameter ∆k(G) and
an application of Rayleigh’s monotonicity principle (Lemma 9).
We observe that (24) becomes tight as p→ 1 hence,

lim
p→1

Rp(G) =
1

Φ0
G
.

In the following we use the upper bound (24) to inves-
tigate the mistake bound (12). In [10] it was demonstrated



that the case p = 2 (which is an online version of the har-
monic energy minimisation of [22, 1]) suffers a limitation –
there exist graphs for which the algorithm makes θ(

√
|VG |)

mistakes. It has been demonstrated that simple online al-
gorithms with a logarithmic mistake bound exist [10, 4]. In
Section 4.2.2 we will demonstrate that it is possible to choose
p to ensure that (ΨG , p)-seminorm interpolation achieves a
logarithmic guarantee.

4.2.1 The choice of p
A natural question arises: how does the behaviour of the
(ΨG , p)-seminorm interpolation algorithm differ for various
choices of p? To begin an investigation into this question we
first deduce a mistake bound for the unweighted graph case
in terms of a graph’s wide diameter, and consider a simple
tuning of p for unweighted graphs. For any vertex set parti-
tion V1∪. . .∪VN = VG with induced subgraphsG1, . . . , GN
of maximum wide diameter ∆k := max{∆k(Gi) : i =
1, . . . , N} we have as an immediate consequence of Corol-
lary 3

|M| ≤ N +
4∆2

k

p− 1

(
Φ(u)
k∆k

) 2
p

, (25)

for any u ∈ {−1, 1}n correct on all trials. For the purpose of
investigating the dependence of the bound (25) on the param-
eter p, we consider the hypothetical situation in which the
graph cut Φ(u) is known to the learner a-priori and consider
tuning (25) with regard to p. Note that, for k∆k > e2Φ(u)

the quantity 1
p−1

(
Φ(u)
k∆k

) 2
p

is minimised when

p= p∗ = log
( k∆k

Φ(u)

)
−

√(
log
( k∆k

Φ(u)

))2

−2 log
( k∆k

Φ(u)

)
and we have that 1 < p∗ < 2. Of course, the value of k∆k

is dependent upon the (optimal) choice of graph partition.
Very generally, when the diameter of a graph is large relative
to the cut, lower values of p optimise (25). The situation is
not simple, however, due to the connectivity element; below
we demonstrate a dense, clustered graph for which a small
choice of p is equally reasonable.

4.2.2 A simple tuning
We now give a simpler tuning (near-optimal) which will be
used to evaluate the behaviour of p-seminorm interpolation
in instructive cases. In a parallel with the logarithmic be-
haviour of the p-norm Perceptron, we show that it is possible
to choose p (using information known to the learner a-priori)
to ensure a performance guarantee which is logarithmic in
the graph diameter.

Corollary 11 Given the task of predicting the labelling of
any unweighted, connected graph G = (V,E) in the on-
line framework, the number of mistakes, |M|, incurred by
minimum (ΨG , p)-seminorm interpolation with p := c

c−1 is
bounded by

|M| ≤

{
N + 4e2Φ2(u)[log(k∆k)−log(bΦ)−1]

k2
k∆kbΦ > e2

N + 4Φ(u)∆k

k
k∆kbΦ ≤ e2

where c = min(log[k∆kbΦ ], 2) and V1 ∪ . . . ∪ VN = VG is
any vertex set partition with induced subgraphsG1, . . . , GN
of maximum wide diameter ∆k := max{∆k(Gi) : i =
1, . . . , N}, Φ̂ is any constant 1 ≤ Φ̂ ≤ Φ(u) and u ∈
{−1, 1}n is any labelling consistent with the trial sequence.

Note immediately that by choosing k = 1, Φ̂ = 1, for
∆1 = maxiD(Gi) > e2, we recover a mistake bound which
is a logarithmic function of the graph diameter. In the fol-
lowing we consider three examples with varying degrees of
connectivity. The tree is minimally connected with k = 1,
the 2m-vertex dense barbell has connectivity k = m − 1,
and finally the mD-vertex cylinder has an intermediate con-
nectivity k = m. This intermediate case more generally in-
cludes graphs with spatially extended clusters whose internal
connectivity equals or exceeds the cut between clusters. The
bounds for these intermediately connected graphs uniformly
improve on the results in [9, 10, 4].

Tree graph
Consider a tree. We take N = 1, k = 1,∆k = D =
maxiD(Gi) in Corollary 11. For DbΦ > e2 the first tuning
(p < 2) in Corollary 11 is preferred and we derive

|M| ≤ 1 + 4e2Φ2(u)[log(D)− log(Φ̂)− 1].

For DbΦ ≤ e2 we derive, from the second tuning (p = 2)

|M| ≤ 1 + 4Φ(u)D.

Barbell graph
Consider the unweighted thick barbell graph: two m-cliques
joined by Φ connecting cut edges. We take N = 2,∆k =
2, k = m − 1 in Corollary 11. For 2(m−1)bΦ > e2 the first
tuning (p < 2) in Corollary 11 is preferred and we derive

|M| ≤ 2 +
4e2Φ2(u)[log(2(m− 1))− log(Φ̂)− 1]

(m− 1)2
.

(26)

For 2(m−1)bΦ ≤ e2 we derive, from the second tuning (p = 2)

|M| ≤ 2 +
8Φ(u)
m− 1

. (27)

Note that a bound of 2 is optimal for this barbell graph la-
belling problem.

Cylinder graph
Consider the “cylindrical” graph that is the cartesian product
of anm-clique with a path graph ofD vertices. This cylinder
may be visualized as D “aligned” cliques. We assume the
cylinder is labeled with two classes by an m-edge cut that
partitions into two cylinders. Assuming D > e2 − 1 then
choosing p = 1 + 1

log(D+1)−1 (with N = 1, k = m, and
∆k = D + 1) and substituting into Corollary 11 we derive

|M| ≤ 4e2 log(D + 1) . (28)

If instead we tune with p = 2 we have |M| ≤ 5 + 4D.
Further this bound improves on the “spine” method in [10]
which has a bound of O(k logD) for this problem.



5 Discussion
We have presented an algorithm for predicting the labelling
of a graph which achieves bounds of a similar form to those
of the p-norm perceptron [8]. The framework of graph la-
belling allowed a more detailed accounting of the geome-
try of the input space. As in [8] a direct argument gives
bounds which scale logarithmically with the dimension (n)
of the input space. However, the graph framework enabled
the refinement of “O(log n)” bounds to “O(logD)” bounds.
Second, we extended the cover bounds developed in [9] to
the p-norm framework. We would like to note the following
open problem. As discussed for trees we obtain a bounds of
O(Φ2 logD). In [10] and in [4] efficient online algorithms
were proposed with mistake bounds of O(Φ log n

Φ + Φ) and
O(Φ logD) respectively. The drawbacks of these algorithms
are that they are not able to fully exploit additional connec-
tivity in non-tree graphs as typified by barbell or cylinder
graphs. This leaves as an open problem the discovery of an
algorithm that can obtain O(Φ logD) on trees but also ex-
ploit edge-connectivity as typified by Corollary 11.
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A Mistake bound analysis (Theorem 1)
We introduce the Bregman divergence in Section A.1 then
in A.2 we show that the minimum p-seminorm interpolation
algorithm is equivalent to successive projections with regard
to a Bregman divergence and we complete our proof in A.3.

A.1 Bregman divergence
Bregman [3] introduced the Bregman divergence for convex
programming.

Definition 12 Let F : IRn → IR be a C 2 convex function.
Denote by DF (u,v) the Bregman divergence w.r.t. F ;

DF (u,v) = F (u)− F (w)− (u−w) ·∇F (w). (29)

http://ttic.uchicago.edu/~shai/papers/KakadeShalevTewari09.pdf
http://ttic.uchicago.edu/~shai/papers/KakadeShalevTewari09.pdf


The Bregman divergence is generally defined in terms of a
strictly convex potential function F where “strictness” en-
sures the uniqueness of a projection. In our application we
will use the nonstrictly convex potential F (v) = ‖v‖2Ψ,p and
thus projection (see (30)) will not necessarily be unique. The
Bregman divergence is nonnegative as the convexity of F
guarantees that the first order approximationF (u) ≈ F (w)+
(u − w) ·∇F (w) is not an overestimate. We will use the
following notation Dp := D‖·‖2p and DΨ,p := D‖·‖2Ψ,p

.
We define the projection ofw onto a non-empty set U ⊆

IRn with respect to DF as

PF (U ;w) := argmin
u∈U

DF (u,w) . (30)

We note that the argmin is not necessarily unique.

Lemma 13 If U ⊆ IRn is a nonempty affine set and w ∈
IRn, then PΨ,p(U ;w) is non-empty.

Proof: We recall that a direction of recession of a convex
function is any direction in which the function is non-increasing
[19, p. 69]. We observe that any direction of recession
x of DΨ,p(·,w) is exactly one such that Ψx = 0 and in
these directions DΨ,p(·,w) is constant. It then follows that
PΨ,p(U ;w) is non-empty by [19, Theorem 27.3] which in
particular guarantees that a continuous convex function on
IRn attains its minima on a given affine constraint set if the
function is constant in every common direction of recession
between the function and the constraint set.

The following is the well-known pythagorean equality
for Bregman divergences.

Lemma 14 If w′ ∈ IRn is a projection of w ∈ Rn to the
affine set U ⊆ IRn with regard to the Bregman divergence
DF , then ∀u ∈ U we have

DF (u,w) = DF (w′,w) +DF (u,w′). (31)

Proof: Let U = ∩ki=1{u : u · xi = yi}. By expanding DF

in (31) we obtain the equivalent form

(∇F (w)−∇F (w′)) · (u−w′) = 0. (32)

Recalling the method of Lagrange multipliers to compute
w′, we note that the unconstrained minimum of the Lagrangian

L(λ,v) = DF (v,w) +
k∑
i=1

λi(xi · v − yi) (33)

occurs at v = w′. Thus

0 = ∇vL(λ,v) |v=w′

= ∇F (w′)−∇F (w) +
k∑
i=1

λixi (34)

Thus

(∇F (w)−∇F (w′)) · (u−w′) = (
k∑
i=1

λixi) · (u−w′)

= 0

as required.

We build on the following lemma, which requires the lin-
earity of Ψ, to prove the important Lemma 16.

Lemma 15 Given a linear map Ψ then

DΨ,p(u,w) = Dp(Ψu,Ψw). (35)

Proof: As ‖z‖Ψ,p = ‖Ψz‖p we have, by applying the chain
rule,

DΨ,p(u,w)=‖u‖2Ψ,p−‖w‖2Ψ,p−(u−w)·∇z ‖z‖2Ψ,p
∣∣∣
z=w

= ‖Ψu‖2p − ‖Ψw‖2p − (u−w) ·∇z ‖Ψz‖2p
∣∣∣
z=w

= ‖Ψu‖2p − ‖Ψw‖2p −Ψ(u−w) ·∇z′ ‖z′‖
2
p

∣∣∣
z′=Ψw

= Dp(Ψu,Ψw)

The following lemma is inspired directly by arguments
upper bounding the quadratic remainder term in the Taylor’s
series expansion of the squared p-norm in [8]. We will need
only the first inequality.

Lemma 16

(p− 1)‖w′ −w‖2Ψ,p ≤ DΨ,p(w′,w) p ∈ (1, 2] (36)

DΨ,p(w′,w) ≤ (p− 1)‖w′ −w‖2Ψ,p p ∈ [2,∞) (37)

Proof: We first recall the Hölder inequality. If a, b ∈ IRn
and 1

r + 1
s = 1, then

n∑
i=1

|aibi| ≤ ‖a‖r‖b‖s r ∈ (1,∞) (38)

Now, if ξ = w′ − w then, for p ≥ 2 by Taylor’s theorem
there is some point ζ ∈ IRn such that:

||w′||2p−||w||2p−∇‖z‖
2
p |z=w ·ξ =

1
2

∑
ij

∂2‖z‖2p
∂zi∂zj

∣∣∣∣∣
z=ζ

ξiξj

Dp(w′,w) =
1
2

∑
ij

∂2(‖z‖2p)
∂zi∂zj

∣∣∣∣∣
z=ζ

ξiξj

We have

∂(||z||2p)
∂zi

= 2||z||2−pp zp−1
i sgn(zi) ,

and for i 6= j,

∂2(||z||2p)
∂zi∂zj

=
∂

∂zj

(
2||z||2−pp zp−1

i sgn(zi)
)

= 2(2− p)||z||2−2p
p (zizj)p−1sgn(zizj) ,

and,

∂2(||z||2p)
∂z2
i

= 2(2−p)‖z‖2−2p
p |zi|2p−2+2(p−1)‖z‖2−pp |zi|p−2 .



Thus,

Dp(w′,w) = (2− p)||ζ||2−2p
p

n∑
i,j=1

ξiξj(ζiζj)p−1sgn(zizj)

+ (p− 1)‖ζ‖2−pp

n∑
i=1

ξ2
i |ζi|p−2

= (2− p)||ζ||2−2p
p

[
n∑
i=1

ξiζ
p−1
i

]2

+ (p− 1)‖ζ‖2−pp

n∑
i=1

ξ2
i |ζi|p−2.

For p ≥ 2 the first term here is not positive while the second
term is bounded above with equation (38) with r = p

2 , s =
p
p−2 giving,

Dp(w′,w) ≤ (p− 1)‖ξ‖2p p ≥ 2. (39)
This is equivalent to the (p − 1)-strong smoothness of the
function 1

2 || · ||
2
p with respect to the norm || · ||p (for a discus-

sion of strong smoothness and strong convexity see [14, 20]).
This function has Fenchel conjugate 1

2 || · ||
2
q , where 1

p + 1
q =

1, and by the duality of strong convexity and strong smooth-
ness [14] we therefore have that 1

2 || · ||
2
q is (q − 1)-strongly

convex w.r.t. || · ||q , and so
Dp(w′,w) ≥ (p− 1)||ξ||2p 1 < p ≤ 2. (40)

Finally, since ‖z‖Ψ,p = ‖Ψz‖p an application of Lemma 15
to (39, 40) gives the result.

A.2 Successive Bregman projection and interpolation
We prove that minimum (Ψ, p)-seminorm interpolation is
equivalent to the sequential composition of Bregman projec-
tions in Corollary 18. First we show that Bregman projec-
tions to affine sets compose using the following well-known
lemma.

Lemma 17 If U1 and U2 are affine sets and U2 ⊆ U1 then
PΨ,p(U2;w0) = PΨ,p(U2;PΨ,p(U1;w0)) (41)

Proof: Let w1 = PΨ,p(U1;w0) and w2 = PΨ,p(U2;w1).
We have the following string of inequalities which hold for
every u ∈ U2,
D(w1,w0) = D(u,w0)−D(u,w1), (42)
D(w2,w1) = D(u,w1)−D(u,w2), (43)
D(w1,w0)+D(w2,w1)=D(u,w0)−D(u,w2), (44)
D(w2,w0) = D(u,w0)−D(u,w2), (45)

where equations (42) and (43) follow from the pythagorean
theorem (Lemma 14) equation (45) then follows from setting
u = w2 in (42) then substituting into (44). Equation (45)
implies w2 is the projection of w0 onto U2.

Since ∇||u||2Ψ,p|u=0 = 0, we have the following corol-
lary.

Corollary 18 If w0 := 0 and we recursively define
wt+1 := argmin

u∈IRn

{DΨ,p(u,wt) : uis = ys ∀s ≤ t}. (46)

then
w` = argmin

u∈IRn

{‖u‖Ψ,p : uis = yis ∀s ≤ `} (47)

A.3 Proof of Theorem 1
In Corollary 18 we noted that the minimum (Ψ, p)-seminorm
interpolation algorithm is identical to a successive Bregman
projection algorithm. We prove a bound for the latter. Let
u ∈ IRn be such that uit = yt for all trials t ≤ `. From (31)
we have∑̀
t=1

DΨ,p(wt+1,wt) = DΨ,p(u,w1)−DΨ,p(u,w`+1)

(48)
Using Lemma 16 we lower bound Dp(wt+1,wt)

(p− 1)‖wt+1 −wt‖2Ψ,p ≤ DΨ,p(wt+1,wt). (49)
Note that there is a mistake, by convention, on the first trial
since w1 = 0. Now, for each mistaken trial t ∈ M with
t ≥ 2, recalling Section 2 we define the linear functional
Zt = Eit − Eηit

, where

ηit = argmin
is

{‖Eit − Eis‖
∗
Ψ,p : s ∈M, s < t} ,

so that
1 ≤ |Zt(wt+1)− Zt(wt)| t ≥ 2

= |Zt(wt+1 −wt)| t ≥ 2
≤ ‖Zt‖∗Ψ,p‖wt+1 −wt‖Ψ,p t ≥ 2

≤ ‖Zt‖∗
2

Ψ,p‖wt+1 −wt‖2Ψ,p t ≥ 2 (50)
thus on a mistaken trial t ≥ 2 combining (49) and (50) gives

p− 1
‖Zt‖∗

2

Ψ,p

≤ Dp(wt+1,wt) t ≥ 2 (51)

We follow a technique introduced in [9]. Recalling Sec-
tion 2, consider any cover C = ∪kXk which covers X =
{i1, i2, . . . , i`} with regard to the distance

dΨ,p(i, j) := ‖Ei − Ej‖∗Ψ,p ,
withN (X, ρ, dΨ,p) covering sets of diameter no greater than
ρ. Let F be the set of trials in which a mistake first occurred
on a cover set F = ∪k{min{t : it ∈ Xk}}. Setting w1 = 0
we deduce from (48, 51)∑

t∈M\F

1
‖Zt‖∗

2

Ψ,p

≤
∑

t∈M\{1}

1
‖Zt‖∗

2

Ψ,p

≤ 1
p− 1

∑
t∈M\{1}

DΨ,p(wt+1,wt)

≤ 1
p− 1

∑̀
t=1

DΨ,p(wt+1,wt)

≤
‖u‖2Ψ,p
p− 1

(52)

Recall that
‖Zt‖∗Ψ,p = dΨ,p(it, ηit) .

Hence for any t ∈ M\F we have ‖Zt‖∗Ψ,p ≤ ρ. Hence as
|F| ≤ N (X, ρ, dΨ,p)∑

t∈M−F
1 ≤

ρ2‖u‖2Ψ,p
p− 1

|M| ≤ N (X, ρ, dΨ,p) +
ρ2‖u‖2Ψ,p
p− 1

.


