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Abstract

This paper addresses the general problem of do-
main adaptation which arises in a variety of appli-
cations where the distribution of the labeled sam-
ple available somewhat differs from that of the test
data. Building on previous work by Ben-David
et al. (2007), we introduce a novel distance be-
tween distributionsdiscrepancy distangehat is
tailored to adaptation problems with arbitrary loss
functions. We give Rademacher complexity bounds
for estimating the discrepancy distance from finite
samples for different loss functions. Using this
distance, we derive new generalization bounds for
domain adaptation for a wide family of loss func-
tions. We also present a series of novel adaptation
bounds for large classes of regularization-based al-
gorithms, including support vector machines and
kernel ridge regression based on the empirical dis-
crepancy. This motivates our analysis of the prob-
lem of minimizing the empirical discrepancy for
various loss functions for which we also give sev-
eral algorithms. We report the results of prelimi-
nary experiments that demonstrate the benefits of
our discrepancy minimization algorithms for do-
main adaptation.
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many other areas. Quite often, little or no labeled data is
available from thetarget domain but labeled data from a
source domaisomewhat similar to the target as well as large
amounts of unlabeled data from the target domain are at one’s
disposal. The domain adaptation problem then consists of
leveraging the source labeled and target unlabeled data to
derive a hypothesis performing well on the target domain.

A number of different adaptation techniques have been
introduced in the past by the publications just mentioned
and other similar work in the context of specific applica-
tions. For example, a standard technique used in statistica
language modeling and other generative models for part-of-
speech tagging or parsing is based on the maximum a pos-
teriori adaptation which uses the source data as prior knowl
edge to estimate the model parameters (Roark & Bacchiani,
2003). Similar techniques and other more refined ones have
been used for training maximum entropy models for lan-
guage modeling or conditional models (Pietra et al., 1992;
Jelinek, 1998; Chelba & Acero, 2006; Daumé IIl & Marcu,
2006).

The first theoretical analysis of the domain adaptation
problem was presented by Ben-David et al.(2007), who gave
VC-dimension-based generalization bounds for adaptation
in classification tasks. Perhaps, the most significant con-
tribution of this work was the definition and application of
a distance between distributions, tig distance, which is
particularly relevant to the problem of domain adaptation
and can be estimated from finite samples for a finite VC di-
mension, as previously shown by Kifer et al. (2004). This
work was later extended by Blitzer et al. (2008) who also

In the standard PAC model (Valiant, 1984) and other the- gave a bound on the error rate of a hypothesis derived from
oretical models of learning, training and test instances ar a weighted combination of the source data sets for the spe-
assumed to be drawn from the same distribution. This is a cific case of empirical risk minimization. A theoretical gju
natural assumption since, when the training and test distri of domain adaptation was also presented by Mansour et al.
butions substantially differ, there can be no hope for gen- (2009), where the analysis deals with the related but distin

eralization. However, in practice, there are several atuci

case of adaptation with multiple sources, and where the tar-

scenarios where the two distributions are more similar and get is a mixture of the source distributions.

learning can be more effective. One such scenario is that of

domain adaptationthe main topic of our analysis.
The problem of domain adaptation arises in a variety of the work of Ben-David et al. (2007) and extends it in sev-
applications in natural language processing (Dredze gt al. eral ways. We introduce a novel distance, thiscrepancy
2007; Blitzer et al., 2007; Jiang & Zhai, 2007; Chelba & distance that is tailored to comparing distributions in adap-
Acero, 2006; Daumé Il & Marcu, 2006), speech processing tation. This distance coincides with tidg distance for 0-1

(Legetter & Woodland, 1995; Gauvain & Chin-Hui, 1994;

This paper presents a new theoretical and algorithmic
analysis of the problem of domain adaptation. It builds on

classification, but it can be used to compare distributions f

Pietra et al., 1992; Rosenfeld, 1996; Jelinek, 1998; Roark more general tasks, including regression, and with other lo
& Bacchiani, 2003), computer vision (Martinez, 2002), and functions. As already pointed out, a crucial advantage ef th



d 4 distance is that it can be estimated from finite samples the source labeling functiofiy differs from the target do-
when the set of regions used has finite VC-dimension. We main labeling functionfp. Clearly, this dissimilarity will
prove that the same holds for the discrepancy distance ancheed to be small for adaptation to be possible.
in fact give data-dependent versions of that statement with  We will assume that the learner is provided with an unla-
sharper bounds based on the Rademacher complexity. beled samplég drawn i.i.d. according to the target distribu-
We give new generalization bounds for domain adapta- tion P. We denote by.: Y x Y — R aloss function defined
tion and point out some of their benefits by comparing them over pairs of labels and b§, ( f, g) the expected loss for any
with previous bounds. We further combine these with the two functionsf, g: X — Y and any distributiorf) over X:
properties of the discrepancy distance to derive datartbpe Lo (f, 9) = Exo[L(f(2), g(x))].
Rademacher complexity learning bounds. \We also present  The domain adaptation problem consists of selecting a
a series of novel results for large classes of regulari@atio hypothesis: out of a hypothesis séf with a small expected

based algorithms, including support vector machines (SVMs |oss according to the target distributiéh £y (h, f).
(Cortes & Vapnik, 1995) and kernel ridge regression (KRR)

(Saunders et al., 1998). We compare the pointwise loss 0f2.2 Rademacher Complexity

the hypothesis returned by these algorithms when trained on L i i

a sample drawn from the target domain distribution, versus OUr generalization bounds will be based on the following

that of a hypothesis selected by these algorithms when train data-dependentmeasure of the complexity of a class of func-

ing on a sample drawn from the source distribution. We show tloNns-

that the difference of these pointwise losses can be bounded

by a term that depends directly on the empirical discrepancy Definition 1 (Rademacher Complexity) Let H be a set of

distance of the source and target distributions. real-valued functions defined over a s€t Given a sam-
These learning bounds motivate the idea of replacing the ple S € X™, the empirical Rademacher complexity éfis

empirical source distribution with another distributiofitiw defined as follows:

the same support but with the smallest discrepancy with re-

spect to the target empirical distribution, which can beveid o~ 2 " B

as reweighting the loss on each labeled point. We analyze Rs(H) = EE {SEE | Zaih(xiﬂ ‘S = (@1, mm) |
the problem _of determining t_hg di_stribution minimizing the =1 (1)
discrepancy in both 0-1 classification and square loss segre The expectation is taken over— (o1, ..., o) whereo,s

sion. We show how the problem can be cast as a linear POare independent uniform random variables taking values in
gram (LP) for the 0-1 loss and derive a specific efficient com- {—1,+1}. The Rademacher complexity of a hypothesis set
binatorial algorithm to solve it in dimension one. We also oo RN

give a polynomial-time algorithm for solving this problem 1 is defined as the expectation®fs (1) over all samples

in the case of the square loss by proving that it can be castOf Sizem:

as a semi-definite program (SDP). Finally, we report the re- ~

sults of preliminary experiments showing the benefits of our R (H) = % [mS(H)“S| = m] )
analysis and discrepancy minimization algorithms.

In section 2, we describe the learning set-up for domain The Rademacher complexity measures the ability of a class
adaptation and introduce the notation and Rademacher comyt functions to fit noise. The empirical Rademacher com-

plexity concepts needed for the presentation of our results pjexity has the added advantage that it is data-dependent an
Section 3 introduces the discrepancy distance and analyzegan he measured from finite samples. It can lead to tighter

and our theoretical guarantees for regularization-balggd a  gych as the VC-dimension (Koltchinskii & Panchenko, 2000).
rithms. Section 5 describes and analyzes our discrepancy We will denote byf%s(h) the empirical average of a hy-

minimization algorithms. Section 6 reports the resultswf o pothesish: X — R and by R(h) its expectation over a

preliminary experiments. sampleS drawn according to the distribution considered.
S The following is a version of the Rademacher complexity

2 Preliminaries bounds by Koltchinskii and Panchenko (2000) and Bartlett
21 L ing Set-U and Mendelson (2002). For completeness, the full proof is
' earning set-Up given in the Appendix.

We consider the familiar supervised learning setting where

the learning algorithm receives a samplerofabeled points  thaorem 2 (Rademacher Bound)Let H be a class of func-
S =21, 52m) = (F1,91); - Ty ym)) € (XXY)™, tigng mappingZ = X x Y t0[0,1] andS = (21, .. ., 2m)
where X is the input space antl the label set, which is 3 finite sample drawn i.i.d. according to a distributiap
{0,1} in classification and some measurable subsét of Then, for anyd > 0, with probability at leastl — & over

regression. , o samplesS of sizem, the following inequality holds for all
In the domain adaptation problepthe training sample 4, < -

S is drawn according to aource distribution), while test
points are drawn according totarget distribution P that
may somewhat differ fronj). We denote byf: X — Y the R(h) < R(h) + Rs(H) +3
target labeling function. We shall also discuss cases where 2m

log %

®)



3 Distances between Distributions The discrepancy distance is clearly symmetric and it is not
hard to verify that it verifies the triangle inequality, reda

Clearly, for generalization to be possible, the distriont) less of the loss function used. In general, however, it does
and P must not be too dissimilar, thus some measure of the 4t gefine adistance we may havelisc, (Q1, Q2) = 0 for
similarity of these distributions will be critical in the dea- Q1 # Qo, even for non-trivial hypothesis se7ts such as that of

tion of our generalization bounds or the design of our algo- 1) nded linear functions and standard continuous loss func
rithms. This section discusses this question and intraglace  {jgns.

discrepancydistance relevant to the context of adaptation. Note that for the 0-1 classification loss, the discrepancy
Thel, distance yields a straightforward bound on the dif- jistance coincides with thé, distance withA — HAH.
ference of the error of @ hypothesisvith respect t@) versus gy the discrepancy distance helps us compare distribsition

its error with respect t@”. for other losses such ds, (y,y') = |y — v/|* for someg and
- . is more general.
Proposition 1 Assume that the loss is bounded L < M As shown by Kifer et al.(2004), an important advantage
for someM > 0. Then, for any hypothesisc H, of the d4 distance is that it can be estimated from finite
1Lo(h, f) — Lp(h, )] < M1(Q, P). (4) samples whem has finite VC-dimension. We prove that

the same holds for théisc;, distance and in fact give data-
dependent versions of that statement with sharper bounds
based on the Rademacher complexity.
The following theorem shows that for a bounded loss
({)unction L, the discrepancy distanckscy, between a distri-
ution and its empirical distribution can be bounded in erm
of the empirical Rademacher complexity of the class of func-

This provides us with a first adaptation bound suggesting
that for small values of thé distance between the source
and target distributions, the average loss of hypottiessted
on the target domain is close to its average loss on the sourc
domain. However, in general, this bound is not informative
since thé; distance can be large even in favorable adaptation > , ) .
situations. Instead, one can use a distance between distrib 1ONSLu = {2 — L(W'(x), h(z)): h,h" € H}. In particu-
tions better suited to the learning task. lar, V\{henLH has flmte pseudo-dimension, this implies that

Consider for example the case of classification with the the discrepancy distance convergesto ze@(@glog m/m).
Oo-éslgrsvse- Egtf@ f(‘z , ?r;d_ Ieﬁtc; ?:%e ihT C;Elalo)logrtp qu; )—| f /k Proposition 2 Assume that the loss functidnis bounded
natural distance between distributions in this contextist ~ PY M > 0. LetQ be a distribution overX and let@ denote
one based on the supremum of the right-hand side over allthe corresponding empirical distribution for a samdfe=
regionsa. Since the target hypothesjsis not known, the ~ (Z1:---%m). Then, for any > 0, with probability at least
regiona should be taken as the support|df— 4’| for any 1 — 4 over samples of sizem drawn according tay:

twoh,h' € H. 2

This leads us to the following definition of a distance disc(Q, 0) < R (L) +3M llogS_ (6)
originally introduced by Devroye et al. (1996) [pp. 271- T 2m

272] under the name ajeneralized Kolmogorov-Smirnov
distance later by Kifer et al. (2004) athe d 4 distance and
introduced and applied to the analysis of adaptation in-clas
sification by Ben-David et al.(2007) and Blitzer et al.(2D08

Proof: We scale the los& to [0, 1] by dividing by M, and
denote the new class by /M. By Theorem 2 applied to
Ly /M, for anydé > 0, with probability at least — 4§, the
following inequality holds for alh, »’ € H:

Definition 3 (d 4-Distance) Let A C 2/X! be a set of subsets

~(h! 2
of X. Then, thel 4-distancebetween two distribution§), Lo(h',h) < Lo, n) +Rs(Ly /M) +3 log 5
andQ- over X, is defined as M M 2m
da(Q1,Q0) = sungl(a) — Qs(a)]. 5) The empirical Rademacher complexity has the property that
ac

E)A%(aH) = ofR(H) for any hypothesis clas& and pos-
itive real numberx (Bartlett & Mendelson, 2002). Thus,

As just discussed, in 0-1 classification, a natural choice Rs(Ly/M) = ﬁfﬁs(LH). which proves the proposition.
forAisA= HAH = {|W —h|: h,h’ € H}. We introduce  m
a distance between distributiorgiscrepancy distangehat o _
can be used to compare distributions for more general tasks, 0" the specific case df, regression losses, the bound
e.g., regression. Our choice of the terminology is partly mo Ccan Pe made more explicit.

tivated by the relationship of this notion with the discrepa Corollary 5 Let H be a hypothesis set bounded by some
problems arising in combinatorial contexts (Chazelle 00 1/ <  for the loss functionL,: Lq(h,h') < M, for all

h,h' € H. Let(Q be a distribution overX and Iet@ de-
note the corresponding empirical distribution for a sample
S = (x1,...,2m). Then, for any > 0, with probability at
leastl — § over samples of sizem drawn according tay):

Definition 4 (Discrepancy Distance)Let H be a set of func-
tions mappingX toY andletL: Y x Y — R, define aloss
function overY. The discrepancy distangtisc; between
two distributions); and Q- over X is defined by

log %

discr (Q1,Q2) = max Lo, (W, h) — Lo, (W, h)|. discr, (@, Q) < 4qRs(H) +3M [ -~

()



Proof: The functionf: x — x4 is g-Lipschitz forz € [0, 1]:

[f(2") = f(@)] < qla’ — =], ©)
and f(0) = 0. ForL Ly, Ly = {z — |M(z) —
h(x)|?: h,h' € H}. Thus, by Talagrand’s contraction lemma
(Ledoux & Talagrand, 199193 (L ) is bounded bR¢R (H')
with H = {z — (h'(z) — h(z)): h,h' € H}. Then,
MRs(H') can be written and bounded as follows

> oilh(wi) = W ()]

~ 1
Rs(H') = E[sup —]|
hoh! TS

1 & 1 &
< E[sup — o;h(x;)|] + E[sup — oih/ (x;
Blowp 1 Dot )) + Elonp 113 it (2]

= 2Rs(H),

using the definition of the Rademacher variables and the sub-

additivity of the supremum function. This proves the in-
equalityR(Ly) < 4¢93(H) and the corollary. |

A very similar proof gives the following result for classi-
fication.

Corollary 6 LetH be a set of classifiers mappidgto {0, 1}
and letLy; denote the 0-1 loss. Then, with the notation of
Corollary 5, for anyd > 0, with probability at leastl — ¢
over samples of sizem drawn according tay:

log %

discr,, (Qa @) < 4{)\{3 (H) +3 9)

2m

The factor of4 can in fact be reduced tin these corol-

4 Domain Adaptation: Generalization
Bounds

This section presents generalization bounds for domaiprada
tation given in terms of the discrepancy distance just ddfine
In the context of adaptation, two types of questions arise:

(1) we may ask, as for standard generalization, how the
average loss of a hypothesis on the target distribution,
Lp(h, f), differsfromL5(h, f), its empirical error based

on the empirical distributio@;

(2) another natural question is, given a specific learning al
gorithm, by how much doegp(hg, f) deviate from
Lp(hp, f) wherehg is the hypothesis returned by the
algorithm when trained on a sample drawn frghand
hp the one it would have returned by training on a sam-
ple drawn from the true target distributidh

We will present theoretical guarantees addressing bots-que
tions.

4.1 Generalization bounds

Let hy, € argmin, ey Lg(h, fo) and similarly leth}, be a
minimizer of Lp(h, fp). Note that these minimizers may
not be unique. For adaptation to succeed, it is natural to
assume that the average la&g(hf,, h}) between the best-
in-class hypothesesis small. Unger that assumption ared for
small discrepancy distance, the following theorem provide
a useful bound on the error of a hypothesis with respect to
the target domain.

Theorem 8 Assume that the loss functidn is symmetric

laries when using a more favorable constant in the contrac-and obeys the triangle inequality. Then, for any hypothesis

tion lemma. The following corollary shows that the discrep-
ancy distance can be estimated from finite samples.

Corollary 7 Let H be a hypothesis set bounded by some
M > 0 for the loss functionL,: Ly(h,h") < M, for all

h,h' € H. Let@ be a distribution overX and@ the cor-
responding empirical distribution for a sampfg and letP

be a distribution overX and P the corresponding empiri-
cal distribution for a sampl€". Then, for any > 0, with
probability at leastl — § over samplesS of sizem drawn
according toQQ and sample§ of sizen drawn according to
P:

discr, (P, Q) < discr, (P, Q)+

1q(Rs(H)+Rr (H)) +3M (\/ kfn% +1/ l(;gn% ) .

Proof: By the triangle inequality, we can write

discz, (P, Q) < discr, (P, P) + discr, (P,Q)+
discr, (Q,Q). (10)

The result then follows by the application of Corollary 5 to
disc, (P, P) anddiscr,, (@, Q). |

As with Corollary 6, a similar result holds for the 0-1 loss
in classification.

h € H, the following holds

Lp(h, fp) < Lp(hp, fp) + Lg(h, hey) + disc(P, Q)
+ Lo(hy, hp). (11)

Proof: Fix h € H. By the triangle inequality property of
L and the definition of the discrepandisc., (P, @), the fol-
lowing holds

Lp(h, fp) < Lp(h,hg) + Lp(hg, hp) + Lp(hp, fP)
< Lg(h, hZ?) +discr, (P, Q) + Ep(h*Q, hp)
+£P( >;%fP)' u

We compare (11) with the main adaptation bound given by
Ben-David et al. (2007) and Blitzer et al. (2008):

Lp(h, fp) < Lo(h, fo) +discr (P, Q)+
min (Lq(h, fo) + Lp(h, fr)). (12)

It is very instructive to compare the two bounds. Intuitivel
the bound of Theorem 8 has only one error term that involves
the target function, while the bound of (12) has three terms
involving the target function. One extreme case is wherether
is a single hypothesisd in H and a single target function
f. In this case, Theorem 8 gives a bound@®#(h, f) +
disc(P, @), while the bound supplied by (12)2Lq (h, f)+
Lp(h, f) + disc(P, Q), which is larger tharBLp(h, f) +



disc(P, Q) whenLg(h, f) < Lp(h, f). One can even see
that the bound of (12) might become vacuous for moderate
values ofLq(h, f) andLp(h, f). While this is clearly an
extreme case, an error with a factor of 3 can arise in more
realistic situations, especially when the distance betviee
target function and the hypothesis class is significant.

While in general the two bounds are incomparable, it
is worthwhile to compare them using some relatively plau-
sible assumptions. Assume that the discrepancy distance_ ) )
betweenP and Q is small and so is the average loss be- Figure 1: In this example, the gray regions are assumed to
tweenhy, andhj,. These are natural assumptions for adap- have zero support in the target distributiéh Thus, there
tation to be possible. Then, Theorem 8 indicates that the €xist consistent hypotheses such_ as thg Ilnea( separator di
regretLp(h, fp) — Lp(h', fp) is essentially bounded by played. However, for the source distributi@mo linear sep-
Lq(h, h,), the average loss with respect/ig, on Q. We aration is possible.
now consider several special cases of interest.

() Whenhg, = hp thenh™ = hg, = h} and the bound of
Theorem 8 becomes

4.2 Guarantees for regularization-based algorithms

In this section, we first assume that the hypothesigkat-
cludes the target functiofi. Note that this does not imply

Lp(h, fp) < Lp(h*, fp) + Lo(h, k") + disc(P, Q). that f is in H. Even whenfp and f,, are restrictions to
(13) supp(P) andsupp(Q) of the same labeling functiof, we
The bound of (12) becomes may havefp € H and fo ¢ H and the source problem
Lp(h, fp) < Lp(h*, fp) + Lo(h, fo)+ could be non-realizable. Figure 1 iIIustratef this sitrati
Lq(h*, fq) + disc(P, Q), For a fixed loss functiod, we denote byz(h) the em-

where the right-hand side essentially includes the sum Pirical error of a hypothesis with respect to an empirical
of 3 errors and is always larger than the right-hand side distribution@: R5(h) = L5(h, f). LetN: H — R, be

of (13) since by the triangle inequalitgq (h, h*) < a function defined over the hypothesis ¢&t We will as-
Lo(h, fq) +Lo(h*, fq). sume that] is a convex subset of a vector space and that

. e _ the loss functiort. is convex with respect to each of its argu-
(i) Whenhg = hjp = h* Adise(P,Q) = 0, the bound of 0 tq " Reqularization-based algorithms minimize an ebjec
Theorem 8 becomes

N tive of the form
EP(hafP) < ‘CP(h*afP) J’_‘CQ(h’h )7

which coincides with the standard generalization bound. Fa(h) = Rg(h) + AN (h), (15)
The bound of (12) does not coincide with the standard ) . )
bound and leads to: whereX > 0 is a trade-off parameter. This family of al-

X X gorithms includes support vector machines (SVM) (Cortes
Lp(h, fp) < Lp(h™, fr) + Lo(h, fq) + Lo(h", fq). & Vapnik, 1995), support vector regression (SVR) (Vapnik,
(i) When fp € H (consistent case), the bound of (12) sim- 1998), kernel ridge regression (Saunders et al., 1998), and
plifies to, other algorithms such as those based on the relative entropy
\Lp(h, fp) — Lo(h, fp)] < discr(Q, P), regularization (Bousquet & Elisseeff, 2002).

and it can also be derived using the proof of Theorem 8. e denote by3x the Bregman divergence associated to
a convex functior?’,
Finally, clearly Theorem 8 leads to bounds based on the em-

pirical error of  on a sample drawn according @. We Br(fllg) = F(f) — F(g9) = (f —9,VF(9)) (16)
give the bound related to the 0-1 loss, others can be de- i ,

rived in a similar way from Corollaries 5-7 and other simi- and definedh asAh = h" — h.

lar corollaries. The result follows Theorem 8 combined with

Corollary 7, and a standard Rademacher classification bound-emma 10 Let the hypothesis séf be a vector space. As-
(Bartlett & Mendelson, 2002). sume thatV is a proper closed convex function and thét

Theorem 9 Let H be a family of functions mapping to and[ are differentiable. Assume thAp, admits a minimizer
{0,1} and let the rest of the assumptions be as in Corol- /'€ H and F's a minimizerh' € H and that_fP and fq coin-

lary 7. Then, for any hypothesise H, with probability at cide on the support af. Then, the following bound holds,
least1 — 0, the following adaptation generalization bound ) PN
holds for the 0-1 loss: Bu(W||B) + By (B[l < 2dlsCL(P,Q).

Lp(h, fp) — Lp(hp, fp) < A

~ o~ 1.~ ~ . i — R — B~
E@(h, hz—?)—l—diSCLOl (P, Q)+(4q+§)%S(H)+4qu(H)+ Proof: SII’]CGBF(j _BRQ + AByn andBFﬁ _BRﬁ + ABpy,
and a Bregman divergence is non-negative, the following in-

log 8 log & Lo equality holds:
4\/ o +3\/ 5o+ Lo(hg,hp). (14) / / / /
m n A(Bn (W' |[R) + By (h||h")) < Brg (W ||h) + B (h]|h).

(17)




By the definition ofh andh’ as the minimizers oF@ and
Fp,VF(h)=V3F(h')=0and
Br, (W'||h) + Br, (l|1)
= Rg(l) = Rg(h) + Rp(h) -
= (Lp(h, fp) — E@(hafp))
— (Lp(, fr) — Ll fr)) < 2disc, (P, Q).
This last inequality holds since by assumptifnis in 7.l

Rp(W)

We shall consider loss functiorsfor which there exists
o € Ry such thatl(-,y) is o-Lipschitz for ally € Y. This
assumption holds for the hinge loss with= 1 and for the
L, loss witho = q(2M )7~ when the hypothesis set and the
set of output labels are bounded by soMee R, : Vh €
H,Vr € X, |h(z)] < M andvy €Y, |y| < M.

Theorem 11 Let K: X x X — R be a positive-definite sym-
metric kernel such thakl (z, ») <x? <o for all x € X, and

let H be the reproducing kernel Hilbert space associated to
K. Assume thaL(-,y) is o-Lipschitz for ally € Y. Leth/

be the hypothesis returned by the regularization algorithm
based onV(-) =||-||% for the empirical distribution?, and

h the one returned for the empirical distributic@, and as-

sume thatfp and fg coincide onsupp(@). Then, for all
reX,yey,

disc, (P, Q)

L (@), ) = Lh(2), )] < o\ | ZE2EL 1)

Proof: For N(-) = |||%, N is a proper closed convex func-
tion and is differentiable. We havéy (1’ ||h) = ||’ — hl|3%,

thusBy (1'||h) + By (h||h') = 2||AR||%. WhenL is differ-
entiable, by Lemma 10,

2discL(16, Q)

2||AR|Z <
lanj < ==L

(19)

This result can also be shown directly without assuming that

L is differentiable by using the convexity &f and the mini-
mizing properties oh and’’ with a proof that is longer than
that of Lemma 10.

Now, by the reproducing property df, for all x € H,
Ah(x)=(Ah, K (z,-)) and by the Cauchy-Schwarz inequal-
ity, |Ah(z)| < ||Ah|| k(K (x,2))/? < k|| AR| k. Since for
ally € Y L(-,y) is o-Lipschitz, forallz € X,y € Y,

[L(W(2),y) — L(h(x),y)| < o|Ah(2)] < Kol Al x,

which, combined with (19), proves the statement of the the-

orem. |

Theorem 11 provides a strong guarantee on the pointwise

difference of the loss fok’ andh with probability one. The

the proof, instead of its maximum. But, the resulting upper
bound only differs from that of theorem Wy K (x, 2)'/?]
versusmax, K (z,z)'/?, which, for a fixed kernel, are both
constant terms and cannot be minimized.

In general, the functiongp and fo may not coincide on

supp(@). For adaptation to be possible, it is reasonable to
assume however that

Ls(fo(x), fr(z)) <1 and Lp(fo(z), fr(z)) < 1.

This can be viewed as a condition on the proximity of the
labeling functions (th&’s), while the discrepancy distance
relates to the distributions on the input space &®. The
following result generalizes Theorem 11 to this settindia t
case of the square loss.

Theorem 12 Under the assumptions ofIheorem 11, butwith
fo and fp potentially different orsupp(Q®), whenL is the
square loss., and§? = La(fq(2), fr(z)) < 1, then, for
alze X,yeY,

|L(W'(x),y) — L(h(x),y)| <
2r M (ms + \/ K202 + d)discr (P, @)). (20)

Proof: Proceeding as in the proof of Lemma 10 and using
the definition of the square loss and the Cauchy-Schwarz in-
equality give

By (1 ||1) + By (][
= Rg(n') - th) + Rp(h) — Rp(l)

= (Lp(h, fp) = La(h. fP))
—(Lp(W, fp) = Lo(W, fp))
2E[(h/( ) = h(@))(fp(x) = fo(z)]

< 2discr(P, Q) + 2\/g[Ah($)2] g[L(fP(x)v fa(2))]

< 2discr (P, Q) + 2k|| Ah)| .
SinceN () = ||-|%, the inequality can be rewritten as
M A% < diser (P, Q) + ko[ ARl k. (21)

Solving the second-degree polynomial|ih| x leads to
the equivalent constraint

AR & < i (ms + \/1@52 + 4)discr (P, @)). (22)

The result then follows by the-Lipschitzness of_ (-, 1
in the proof of Theorem 11, with = 4 M.

y) as

Using the same proof schema, similar bounds can be de-

result, as well as the proof, also suggests that the discrep+ived for other loss functions.

ancy distance is the “right” measure of difference of distri

When the assumptiofi € H is relaxed, the following

butions for this context. The theorem applies to a variety of theorem holds.

algorithms, in particular SVMs combined with arbitrary PDS
kernels and kernel ridge regression.

A similar result can be derived for the difference between
expected losses by bounding the expectatiom\éfx) in

Theorem 13 Under the assumptions of Theorem 11, but with
fp not necessarlly id and fo and fp potentially differ-

ent on bupp(Q), when L is the square losd., and §' =



Lg(hp(x), fo(@)'/? + Lp(hp(x), fp(x))'/? < 1, then, We will denote byS, the support o@ by Sp the sup-
forallz € X,y €Y, port of P, and byS their unionsupp(Q) U supp(P ) with

[Sq| = mo < mand|Sp| =mno <n.
|L(W (2),y) = L(M(z),y)| < In view of the definition of the discrepancy distance, prob-
26M lem (24) can be written as a min-max problem:

(w6" + \/ 526 + ddisc, (P, Q). (@3)
Q' = argmin max [Lp (W', h) —E@,(h’,hﬂ. (25)

Proof: Proceeding as in the proof of Theorem 12 and us- Qreq MhEH

ing the definition of the square loss and the Cauchy-Schwarz

inequality give As with all min-max problems, the problem has a natural

game theoretical interpretation. However, here, in gdnera

BF@(h’IIh) + Bp, (h||W) we cannot permute thain and max operators since the
. . convexity-type assumptions of the minimax theorems do not
= (Lp(h,hp) — Lg(h, hp)) hold. Nevertheless, since the max-min value is always a
LW, h LA(W R} lower bound for the min-max; it provides us with a lower
- (£ , P) - Q( 2 bound on the value of the game, that is the minimal discrep-
- 2%[@ (x) — h(@))(hp(z) — fr(z)] ancy:
+2E[(h(z) — h(2))(hp(z) — fo(z)] max min |Lp(h',h) — Lg, (W, h)| <
Q h.h'€H GreQ
. ~ o~ _ . I
< 2disc, (P, Q) + 2¢gmh< oV E[L(hp (), f(@))] min ma |Ep(Ns ) = Lo (0, D] (26)
o (@))] We will later make use of this inequality. Let us now examine

the minimization problem (24) and its algorithmic soluson
o in the case of classification with the 0-1 loss and regression
< 2discr, (P, Q) + 2k||Ah| k¢ with the L, loss.

The rest of the proof is identical to that of Theorem 128

+ 2\/g[ﬁh(9€)z] g[L(h}B( ), [

5.1 Classification, 0-1 Loss
For the 0-1 loss, the problem of finding the best distribution

5 Discrepancy Minimization Algorithms )’ can be reformulated as the following min-max program:
The discrepancy distanck’asc,;(ﬁ, @) appeared as a critical min max ’@/(Q) -~ ﬁ(a)‘ 27)
term in several of the bounds in the last section. In pasicul Q' a€HAH

Theorems 11 and 12 suggest that if we could select, instead subjectto ¥z € So. Q ) >0 Z Q —1, (28)

of (), some other empirical distributio@’ with a smaller e '

empirical dlscrepancghscL(P Q ) and use that for training

a regularization-based algorithm, a better guaranteedvoul Where we have identifiedd AH = {|h' — h|: h,h' € H}
be obtained on the difference of pointwise loss betwien ~ With the set of regions C X that are the SUIOPOV'[ of an
andh. Sinceh’ is fixed, a sufficiently smaller discrepancy element ofHAH. This problem is similar to the min-max
would actually lead to a hypothestswith pointwise loss resource allocation problem that arises in task optiniznati

closer to that ofy’. (Karabati et al., 2001). It can be rewritten as the following
The training sample is given and we do not have any con- linear program (LP)i

trol over the support of). But, we can search for the distri- min & (29)
bution@’ with the minimal empirical discrepancy distance: Q'

O’ = argmindiscr, (P, Q"), (24) subjectto Va € HAH,Q'(a) — f(a) <6 (30)

QeQ VYa € HAH, P( )—Q'(a) <4 (31)

whereQ denotes the set of distributions with supparbp(Q). Vz € So,Q'(z) >0 A Q'(z) =1. (32)
This leads to an optimization problem that we shall study in ©€8q

detail in the case of several loss functions. o . )
Note that using)’ instead of}) for training can be viewed ~ The number of constraints is proportional[d A H | but it
asreweightingthe cost of an error on each training point. ¢an be reduced to a finite number by observing that two sub-

The distributiond)’ can be used to emphasize some points S€tSe; @’ € HAH containing the same elements$fead to

or de-emphasize others to reduce the empirical discrepancyfedundant constraints, since

distance. This bears some similarity with the reweighting o AN D A AN Dl

importance weightingdeas used in statistics and machine |Q (a) P(a)‘ N |Q (a) = Pla )|' (33)
learning for sample bias correction techniques (Elkan1200 Thus, it suffices to keep one canonical memébdor each
Cortes et al., 2008) and other purposes. Of course, the ob-such equivalence class. The necessary number of constraint
jective optimized here based on the discrepancy distance isto be considered is proportional Id; r (mo + no), the
distinct from that of previous reweighting techniques. shattering coefficient of orddin + ng) of the hypothesis



(b)

Figure 2: lllustration of the discrepancy minimization@lg

Proposition 3 Assume thak consists of the set of points on
the real line andH the set of half-spaces oxi. Then, for any

@ and P, @’(si) = n,;/n minimizes the empirical discrep-
ancy and can be computed in tirdg (m + n) log(m + n)).

The proof is given in the Appendix.

5.3 Regression/s loss

rithm in dimension one. (a) Sequence of labeled (red) and For the square loss, the problem of finding the best distribu-
unlabeled (blue) points. (b) The weight assigned to each la-tion can be written as

beled point is the sum of the weights of the consecutive blue

points on its right.

min max
@/GQ h,h'eH

B{(H(2) = h(@))?] = B[4 () = h(a) ]|

classHAH. By the Sauer's lemma, this is bounded interms |f X is a subset oRY, N > 1, and the hypothesis séf is

of the VC-dimension of the clad$ A H, TT A i (mo+ng) <
O((mg+no)VCHAH)) 'which can be bounded &y((1mo +
ng)?V ¢y since it is not hard to see thatC(HAH) <
2V O (H).

In cases where we can test efficiently whether there exists

a consistent hypothesis i, e.qg., for half-spaces iR?, we
can generate in tim@((mg + ng)?¢) all consistent labeling
of the sample points by/. (We remark that computing the

discrepancy with the 0-1 loss is closely related to agnostic

learning. The implications of this fact will be describedan
longer version of this paper.)

5.2 Computing the Discrepancy in 1D
We consider the case wheie = [0, 1] and derive a simple

a set of bounded linear functiods = {x — w ' x: ||w| <
1}, then, the problem can be rewritten as

& e | > (P60 - QI - w) T
= i o | S(P) - Q) fuTF|
= min o [u7(3 (P9 - @000 )u]. (@0

algorithm for minimizing the discrepancy for 0-1 loss. Let We now simplify the notation and denote &y, . . ., sy, the

H be the class of all prefixes (i.€0, z]) and suffixes (i.e.,
[2,1]). Our class ofHAH includes all the intervals (i.e.,
(21, z2]) and their complements (i.€0, z1] U (22, 1]). We
start with a general lower bound on the discrepancy.

Let U denote the set ainlabeled regionsthat is the set
of regionsz such thatNSq = PandanSp # 0. If aisan
unlabeled region, thej®’(a) — P(a)| = P(a) for anyQ'.
Thus, by the max-min inequality (26), the following lower
bound holds for the minimum discrepancy:

P(a) < mi 5(h',h) — Ls, (W, h)).
max P(a) < Doin Jmax [Lp(hh) — Lo, (W, bl (34)
In particular, if there is a large unlabeled regigrwe cannot
hope to achieve a small empirical discrepancy.

elements ofSg, by z; the distribution weight at poing;:
2 = Q'(s;), and byM(z) € SV a symmetric matrix that is
an affine function og:

mo

M(z) = My — Z zi M, (37)

i=1
whereM, = > ¢ P(x)xx" andM; = s;s; . Since prob-
lem (36) is invariant to the non-zero bound {pa||, we can
equivalently write it with a bound of one and in view of the
notation just introduced give its equivalent form

min max |u' M(z)ul.
lzll1=1[uf=1
z>0

(38)

Inthe one-dimensional case, we give a simple linear-time SinceM(z) is symmetricmax =1 u' M(z)u is the max-
algorithm that does not require an LP and show that the lower imum eigenvalue\,,. of M(z) and the problem is equiva-

bound (34) is reached. Thus, in that case,thie andmax

lent to the following maximum eigenvalue minimization for

operators commute and the minimal discrepancy distance isa symmetric matrix:

preciselyming, ¢ 13(a).

Given our definition off/, the unlabeled regions are open

intervals, or complements of these sets, containing orilytpo
from Sp with endpoints defined by elements.&.
Let us denote by, . .., s, the elements 0fg, by n;,

H;ﬂllll:ll max{)\max (M(Z)), )\max(_M(z))}'
z>0

This is a convex optimization problem since the maximum
eigenvalue of a matrix is a convex function of that matrix

(39)

i € [1,mg), the number of consecutive unlabeled points to andM is an affine function ok, and sincez belongs to a

the right ofs; andn = Y n;. We will make an additional

simplex. The problem is equivalent to the following semi-

technical assumption that there are no unlabeled points todefinite programming (SDP) problem:

the left of s;. Our algorithm consists of defining the weight
Q' (s;) as follows:

Q'(si) = ni/n. (35)
This requires first sortingo U Sp and then computing,;
for eachs;. Figure 2 illustrates the algorithm.

mi}\n A (40)
subjectto AI — M(z) = 0 (42)
A+ M(z) =0 (42)
1"z=1A2z>0. (43)
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Figure 3: Example of application of the discrepancy mini- Weighted (red) and unweighted (blue) hypothesis. (b) Com-
mization algorithm in dimensions one. (a) Source and target Parison of mean-squared error for the hypothesis trained on
distributions@ and P. (b) Classification accuracy empiri- @ (top), trained onQ’ (middle) and onP (bottom) over a

cal results plotted as a function of the number of training varying number of training points.

points for both thaunweighted caséusing original empiri-

b A ; ; P and target distributions are shifted Gaussians: the salisee
cal distribution@) and theweighted casusing distribution tribution is a Gaussian centered-at and the target distribu-

Q' returned by our discrgpancy minimizing {;\Igorithm). The ion a Gaussian centered-at, both with standard deviation
number of unlabeled points used was ten times the number, ~ 1,4 hypothesis set used was the set of half-spaces and

of labeled. Error bars show1 standard deviation. the target function selected to be the interjval, 1]. Thus,
SDP problems can be solved in polynomial time using gen- F@iNing on a sample drawn for@ generates a separator

eral interior point methods (Nesterov & Nemirovsky, 1994). &t —1 and errs on about half of the test .p(lilnts-p.rO(.jgced by
Thus, using the general expression of the complexity ofinte - In contrast, training with the distributio” minimizing

rior point methods for SDPs, the following result holds. the empirical discrepancy yields a hypothesis separatieg t
points at+1, thereby dramatically reducing the error rate.
Proposition 4 Assume thatX is a subset ofRY and that Figures 4(a)-(b) show the application of the SDP derived

the hypothesis sell is a set of bounded linear functions in (40) to determining the distribution minimizing the em-
H = {x — w'x: |w| <1}. Then, for anyd and P, the pirical discrepancy for ridge regression. In Figure 4(ag t
discrepancy minimizing distributio@’ for the square loss distributions@ and P are Gaussgns centergd(aﬁ, v2)
can be found in tim&(m2 N2 + nyN?). and(—v/2, —v/2), both with covariance matri2I. The tar-

get function isf(z1,z2) = (1 — |z1]) + (1 — |z2|), thus
Itis worth noting that the unconstrained version of thisppro ~ the optimal linear prediction derived from has a negative
lem (no constraint om) and other close problems seem to Slope, while the optimal prediction with respect to the érg
have been studied by a number of optimization publications distribution P in fact has a positive slope. Figure 4(b) shows
(Fletcher, 1985; Overton, 1988; Jarre, 1993; Helmberg & the performance of ridge regression when the example is ex-
Oustry, 2000; Alizadeh, 1995). This suggests possibly more ténded to 16-dimensions, before and after minimizing the
efficient specific algorithms than general interior pointime ~ discrepancy. In this higher-dimension setting and eveh wit
ods for solving this problem in the constrained case as well. S€veral thousand points, usirigtp:/sedumi.ie.lehigh.ed/our
Observe also that the matrich4; have a specific structure SDP problem could be solved in about 15s using a single
in our case, they are rank-one matrices and in many appli-3GHZ processor with 2GB RAM. The SDP algorithm yields

cations quite sparse, which could be further exploited to im distribution weights that decrease the discrepancy anstass
prove efficiency. ridge regression in selecting a more appropriate hypathesi

As shown in a longer version of this paper, the results of for the target distribution.
this section can be extended to the case wlitkis a repro- _
ducing kernel Hilbert space associated to a positive definit 7 Conclusion

symmetric kernel functiot’. . ) )
We presented an extensive theoretical and an algorithrale an

i ysis of domain adaptation. Our analysis and algorithms are
6 Experiments widely applicable and can benefit a variety of adaptatiokstas
This section reports the results of preliminary experiment More efficient versions of these algorithms, in some instanc
showing the benefits of our discrepancy minimization algo- efficient approximations, should further extend the aplic
rithms. Our results confirm that our algorithm is effective bility of our techniques to large-scale adaptation proldem
in practice and produces a distribution that reduces the em-
pirical discrepancy distance, which allows us to train on a References
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A Proof of Theorem 2

Theorem 14 (Rademacher Bound)Let H be a class of func-
tions mappingZ = X x Y to [0,1] andS = (z1,...,2m)

a finite sample drawn i.i.d. according to a distributi@p.
Then, for anyd > 0, with probability at leastl — ¢ over
samplesS of sizem, the following inequality holds for all
heH:

R(h) < B(h) + s (H) + 31 22

SN

o (44)

Proof: Let ®(S) be defined by®(S) = sup,cy R(h) —

f%(h). Changing a point of affects®(S) by at mostl /m.

Thus, by McDiarmid’s inequality applied t@(S), for any
§ > 0, with probability at least — £, the following holds
forallh € H:

(S) < _E_[®(S)] + (45)

Es~p[®(S)] can be bounded in terms of the empirical Rade-
macher complexity as follows:

B#(S)
=k [SEEE[RS/(M] — Rs(h)]
= E} [sgg E[Rs/(h) — RS(h)]]
< 3% [ o 0= )]
1 m
= & [ o3 (htel) — (e
1 — /
= o Bo Ly 7y 2 osh(a) (e
L o L
< B [sup o oihlel)] + B [sup =03 —ouh(z)]
1 m
=2 E [sup o0 > oih(en)
1 m
<2 B Lo 3 oo
— R, (H).

Changing a point of affects?i,,,(H ) by at mose/m. Thus,
by McDiarmid’s inequality applied t6R,,(H), with proba-
bility at leastl — ¢/2, the following holds:

~ 2log 2
Ron(H) < R (H) + | 3.

Combining this inequality with Inequality (45) and the baun
onEs[®(S)] above yields directly the statement of the theo-
rem. |

(46)

B Proof of Proposition 3

Proposition 5 Assume thak consists of the set of points on
the real line andH the set of half-spaces oxi. Then, for any

Q and P, Q'(s;) = ni/n minimizes the empirical discrep-
ancy and can be computed in tirdg (m + n) log(m + n)).

Proof: Consider an intervdk;, 22| that maximizes the dis-

crepancy o@’. The case of a complement of an interval is
the same, since the discrepancy of a hypothesis and its nega-
tion are identical. Les;,...,s; € [z1, z2] be the subset of

@ in that interval, and;, ..., p; € [z1, z2] the subset of
P in that interval. The discrepancy ds= |Z-,i:i Q' (s) —
J'n;’ |. By our definition ofQ)’, we can write) 7 _, Q' (sp) =

% Z-,i:i ny. Letp;» be the maximal point itP which is less
thans; and;” the minimal pointin? larger thars;. We have
thatj —i' = (i"” — ') + 3204 ng + (j — j'). Therefore

d =" =)+ (j" =) =n;| = | " =)= (n; = (5" =3"))]
Sinced is maximal and both terms are non-negative, one of
them is zero. Sincg’ — j”/ < n; andi” — i’ < n,, the
discrepancy o@’ meets the lower bound of (34) and is thus
optimal.



