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Abstract

This paper addresses the general problem of do-
main adaptation which arises in a variety of appli-
cations where the distribution of the labeled sam-
ple available somewhat differs from that of the test
data. Building on previous work by Ben-David
et al. (2007), we introduce a novel distance be-
tween distributions,discrepancy distance, that is
tailored to adaptation problems with arbitrary loss
functions. We give Rademacher complexity bounds
for estimating the discrepancy distance from finite
samples for different loss functions. Using this
distance, we derive new generalization bounds for
domain adaptation for a wide family of loss func-
tions. We also present a series of novel adaptation
bounds for large classes of regularization-based al-
gorithms, including support vector machines and
kernel ridge regression based on the empirical dis-
crepancy. This motivates our analysis of the prob-
lem of minimizing the empirical discrepancy for
various loss functions for which we also give sev-
eral algorithms. We report the results of prelimi-
nary experiments that demonstrate the benefits of
our discrepancy minimization algorithms for do-
main adaptation.

1 Introduction

In the standard PAC model (Valiant, 1984) and other the-
oretical models of learning, training and test instances are
assumed to be drawn from the same distribution. This is a
natural assumption since, when the training and test distri-
butions substantially differ, there can be no hope for gen-
eralization. However, in practice, there are several crucial
scenarios where the two distributions are more similar and
learning can be more effective. One such scenario is that of
domain adaptation, the main topic of our analysis.

The problem of domain adaptation arises in a variety of
applications in natural language processing (Dredze et al.,
2007; Blitzer et al., 2007; Jiang & Zhai, 2007; Chelba &
Acero, 2006; Daumé III & Marcu, 2006), speech processing
(Legetter & Woodland, 1995; Gauvain & Chin-Hui, 1994;
Pietra et al., 1992; Rosenfeld, 1996; Jelinek, 1998; Roark
& Bacchiani, 2003), computer vision (Martı́nez, 2002), and

many other areas. Quite often, little or no labeled data is
available from thetarget domain, but labeled data from a
source domainsomewhat similar to the target as well as large
amounts of unlabeled data from the target domain are at one’s
disposal. The domain adaptation problem then consists of
leveraging the source labeled and target unlabeled data to
derive a hypothesis performing well on the target domain.

A number of different adaptation techniques have been
introduced in the past by the publications just mentioned
and other similar work in the context of specific applica-
tions. For example, a standard technique used in statistical
language modeling and other generative models for part-of-
speech tagging or parsing is based on the maximum a pos-
teriori adaptation which uses the source data as prior knowl-
edge to estimate the model parameters (Roark & Bacchiani,
2003). Similar techniques and other more refined ones have
been used for training maximum entropy models for lan-
guage modeling or conditional models (Pietra et al., 1992;
Jelinek, 1998; Chelba & Acero, 2006; Daumé III & Marcu,
2006).

The first theoretical analysis of the domain adaptation
problem was presented by Ben-David et al.(2007), who gave
VC-dimension-based generalization bounds for adaptation
in classification tasks. Perhaps, the most significant con-
tribution of this work was the definition and application of
a distance between distributions, thedA distance, which is
particularly relevant to the problem of domain adaptation
and can be estimated from finite samples for a finite VC di-
mension, as previously shown by Kifer et al. (2004). This
work was later extended by Blitzer et al. (2008) who also
gave a bound on the error rate of a hypothesis derived from
a weighted combination of the source data sets for the spe-
cific case of empirical risk minimization. A theoretical study
of domain adaptation was also presented by Mansour et al.
(2009), where the analysis deals with the related but distinct
case of adaptation with multiple sources, and where the tar-
get is a mixture of the source distributions.

This paper presents a new theoretical and algorithmic
analysis of the problem of domain adaptation. It builds on
the work of Ben-David et al. (2007) and extends it in sev-
eral ways. We introduce a novel distance, thediscrepancy
distance, that is tailored to comparing distributions in adap-
tation. This distance coincides with thedA distance for 0-1
classification, but it can be used to compare distributions for
more general tasks, including regression, and with other loss
functions. As already pointed out, a crucial advantage of the



dA distance is that it can be estimated from finite samples
when the set of regions used has finite VC-dimension. We
prove that the same holds for the discrepancy distance and
in fact give data-dependent versions of that statement with
sharper bounds based on the Rademacher complexity.

We give new generalization bounds for domain adapta-
tion and point out some of their benefits by comparing them
with previous bounds. We further combine these with the
properties of the discrepancy distance to derive data-dependent
Rademacher complexity learning bounds. We also present
a series of novel results for large classes of regularization-
based algorithms, including support vector machines (SVMs)
(Cortes & Vapnik, 1995) and kernel ridge regression (KRR)
(Saunders et al., 1998). We compare the pointwise loss of
the hypothesis returned by these algorithms when trained on
a sample drawn from the target domain distribution, versus
that of a hypothesis selected by these algorithms when train-
ing on a sample drawn from the source distribution. We show
that the difference of these pointwise losses can be bounded
by a term that depends directly on the empirical discrepancy
distance of the source and target distributions.

These learning bounds motivate the idea of replacing the
empirical source distribution with another distribution with
the same support but with the smallest discrepancy with re-
spect to the target empirical distribution, which can be viewed
as reweighting the loss on each labeled point. We analyze
the problem of determining the distribution minimizing the
discrepancy in both 0-1 classification and square loss regres-
sion. We show how the problem can be cast as a linear pro-
gram (LP) for the 0-1 loss and derive a specific efficient com-
binatorial algorithm to solve it in dimension one. We also
give a polynomial-time algorithm for solving this problem
in the case of the square loss by proving that it can be cast
as a semi-definite program (SDP). Finally, we report the re-
sults of preliminary experiments showing the benefits of our
analysis and discrepancy minimization algorithms.

In section 2, we describe the learning set-up for domain
adaptation and introduce the notation and Rademacher com-
plexity concepts needed for the presentation of our results.
Section 3 introduces the discrepancy distance and analyzes
its properties. Section 4 presents our generalization bounds
and our theoretical guarantees for regularization-based algo-
rithms. Section 5 describes and analyzes our discrepancy
minimization algorithms. Section 6 reports the results of our
preliminary experiments.

2 Preliminaries

2.1 Learning Set-Up

We consider the familiar supervised learning setting where
the learning algorithm receives a sample ofm labeled points
S = (z1, . . . , zm) = ((x1, y1), . . . , (xm, ym)) ∈ (X×Y )m,
whereX is the input space andY the label set, which is
{0, 1} in classification and some measurable subset ofR in
regression.

In the domain adaptation problem, the training sample
S is drawn according to asource distributionQ, while test
points are drawn according to atarget distributionP that
may somewhat differ fromQ. We denote byf : X → Y the
target labeling function. We shall also discuss cases where

the source labeling functionfQ differs from the target do-
main labeling functionfP . Clearly, this dissimilarity will
need to be small for adaptation to be possible.

We will assume that the learner is provided with an unla-
beled sampleT drawn i.i.d. according to the target distribu-
tion P . We denote byL : Y ×Y → R a loss function defined
over pairs of labels and byLQ(f, g) the expected loss for any
two functionsf, g : X → Y and any distributionQ overX :
LQ(f, g) = Ex∼Q[L(f(x), g(x))].

The domain adaptation problem consists of selecting a
hypothesish out of a hypothesis setH with a small expected
loss according to the target distributionP , LP (h, f).

2.2 Rademacher Complexity

Our generalization bounds will be based on the following
data-dependent measure of the complexity of a class of func-
tions.

Definition 1 (Rademacher Complexity) Let H be a set of
real-valued functions defined over a setX . Given a sam-
ple S ∈ Xm, the empirical Rademacher complexity ofH is
defined as follows:

R̂S(H) =
2

m
E
σ

[
sup
h∈H

∣∣
m∑

i=1

σih(xi)
∣∣
∣∣∣S = (x1, . . . , xm)

]
.

(1)
The expectation is taken overσ = (σ1, . . . , σn) whereσis
are independent uniform random variables taking values in
{−1, +1}. The Rademacher complexity of a hypothesis set
H is defined as the expectation ofR̂S(H) over all samples
of sizem:

Rm(H) = E
S

[
R̂S(H)

∣∣|S| = m
]
. (2)

The Rademacher complexity measures the ability of a class
of functions to fit noise. The empirical Rademacher com-
plexity has the added advantage that it is data-dependent and
can be measured from finite samples. It can lead to tighter
bounds than those based on other measures of complexity
such as the VC-dimension (Koltchinskii & Panchenko, 2000).

We will denote byR̂S(h) the empirical average of a hy-
pothesish : X → R and byR(h) its expectation over a
sampleS drawn according to the distribution considered.
The following is a version of the Rademacher complexity
bounds by Koltchinskii and Panchenko (2000) and Bartlett
and Mendelson (2002). For completeness, the full proof is
given in the Appendix.

Theorem 2 (Rademacher Bound)LetH be a class of func-
tions mappingZ = X × Y to [0, 1] andS = (z1, . . . , zm)
a finite sample drawn i.i.d. according to a distributionQ.
Then, for anyδ > 0, with probability at least1 − δ over
samplesS of sizem, the following inequality holds for all
h ∈ H :

R(h) ≤ R̂(h) + R̂S(H) + 3

√
log 2

δ

2m
. (3)



3 Distances between Distributions

Clearly, for generalization to be possible, the distributionQ
andP must not be too dissimilar, thus some measure of the
similarity of these distributions will be critical in the deriva-
tion of our generalization bounds or the design of our algo-
rithms. This section discusses this question and introduces a
discrepancydistance relevant to the context of adaptation.

Thel1 distance yields a straightforward bound on the dif-
ference of the error of a hypothesish with respect toQ versus
its error with respect toP .

Proposition 1 Assume that the lossL is bounded,L ≤ M
for someM > 0. Then, for any hypothesish ∈ H ,

|LQ(h, f) − LP (h, f)| ≤ M l1(Q, P ). (4)

This provides us with a first adaptation bound suggesting
that for small values of thel1 distance between the source
and target distributions, the average loss of hypothesish tested
on the target domain is close to its average loss on the source
domain. However, in general, this bound is not informative
since thel1 distance can be large even in favorable adaptation
situations. Instead, one can use a distance between distribu-
tions better suited to the learning task.

Consider for example the case of classification with the
0-1 loss. Fixh ∈ H , and leta denote the support of|h− f |.
Observe that|LQ(h, f) − LP (h, f)| = |Q(a) − P (a)|. A
natural distance between distributions in this context is thus
one based on the supremum of the right-hand side over all
regionsa. Since the target hypothesisf is not known, the
regiona should be taken as the support of|h − h′| for any
two h, h′ ∈ H .

This leads us to the following definition of a distance
originally introduced by Devroye et al. (1996) [pp. 271-
272] under the name ofgeneralized Kolmogorov-Smirnov
distance, later by Kifer et al. (2004) asthedA distance, and
introduced and applied to the analysis of adaptation in clas-
sification by Ben-David et al.(2007) and Blitzer et al.(2008).

Definition 3 (dA-Distance) LetA ⊆ 2|X| be a set of subsets
of X . Then, thedA-distancebetween two distributionsQ1

andQ2 overX , is defined as

dA(Q1, Q2) = sup
a∈A

|Q1(a) − Q2(a)|. (5)

As just discussed, in 0-1 classification, a natural choice
for A is A = H∆H = {|h′ − h| : h, h′ ∈ H}. We introduce
a distance between distributions,discrepancy distance, that
can be used to compare distributions for more general tasks,
e.g., regression. Our choice of the terminology is partly mo-
tivated by the relationship of this notion with the discrepancy
problems arising in combinatorial contexts (Chazelle, 2000).

Definition 4 (Discrepancy Distance)LetH be a set of func-
tions mappingX to Y and letL : Y ×Y → R+ define a loss
function overY . The discrepancy distancediscL between
two distributionsQ1 andQ2 overX is defined by

discL(Q1, Q2) = max
h,h′∈H

∣∣∣LQ1
(h′, h) − LQ2

(h′, h)
∣∣∣.

The discrepancy distance is clearly symmetric and it is not
hard to verify that it verifies the triangle inequality, regard-
less of the loss function used. In general, however, it does
not define adistance: we may havediscL(Q1, Q2) = 0 for
Q1 6= Q2, even for non-trivial hypothesis sets such as that of
bounded linear functions and standard continuous loss func-
tions.

Note that for the 0-1 classification loss, the discrepancy
distance coincides with thedA distance withA = H∆H .
But the discrepancy distance helps us compare distributions
for other losses such asLq(y, y′) = |y − y′|q for someq and
is more general.

As shown by Kifer et al. (2004), an important advantage
of the dA distance is that it can be estimated from finite
samples whenA has finite VC-dimension. We prove that
the same holds for thediscL distance and in fact give data-
dependent versions of that statement with sharper bounds
based on the Rademacher complexity.

The following theorem shows that for a bounded loss
functionL, the discrepancy distancediscL between a distri-
bution and its empirical distribution can be bounded in terms
of the empirical Rademacher complexity of the class of func-
tionsLH = {x 7→ L(h′(x), h(x)) : h, h′ ∈ H}. In particu-
lar, whenLH has finite pseudo-dimension, this implies that
the discrepancy distance converges to zero asO(

√
log m/m).

Proposition 2 Assume that the loss functionL is bounded
byM > 0. LetQ be a distribution overX and letQ̂ denote
the corresponding empirical distribution for a sampleS =
(x1, . . . , xm). Then, for anyδ > 0, with probability at least
1 − δ over samplesS of sizem drawn according toQ:

discL(Q, Q̂) ≤ R̂S(LH) + 3M

√
log 2

δ

2m
. (6)

Proof: We scale the lossL to [0, 1] by dividing byM , and
denote the new class byLH/M . By Theorem 2 applied to
LH/M , for anyδ > 0, with probability at least1 − δ, the
following inequality holds for allh, h′ ∈ H :

LQ(h′, h)

M
≤

L bQ(h′, h)

M
+ R̂S(LH/M) + 3

√
log 2

δ

2m
.

The empirical Rademacher complexity has the property that
R̂(αH) = αR̂(H) for any hypothesis classH and pos-
itive real numberα (Bartlett & Mendelson, 2002). Thus,
RS(LH/M) = 1

M RS(LH), which proves the proposition.

For the specific case ofLq regression losses, the bound
can be made more explicit.

Corollary 5 Let H be a hypothesis set bounded by some
M > 0 for the loss functionLq: Lq(h, h′) ≤ M , for all
h, h′ ∈ H . Let Q be a distribution overX and let Q̂ de-
note the corresponding empirical distribution for a sample
S = (x1, . . . , xm). Then, for anyδ > 0, with probability at
least1 − δ over samplesS of sizem drawn according toQ:

discLq
(Q, Q̂) ≤ 4qR̂S(H) + 3M

√
log 2

δ

2m
. (7)



Proof: The functionf : x 7→ xq is q-Lipschitz forx ∈ [0, 1]:

|f(x′) − f(x)| ≤ q|x′ − x|, (8)

and f(0) = 0. For L = Lq, LH = {x 7→ |h′(x) −
h(x)|q : h, h′ ∈ H}. Thus, by Talagrand’s contraction lemma
(Ledoux & Talagrand, 1991),̂R(LH) is bounded by2qR̂(H ′)
with H ′ = {x 7→ (h′(x) − h(x)) : h, h′ ∈ H}. Then,
R̂S(H ′) can be written and bounded as follows

R̂S(H ′) = E
σ

[
sup
h,h′

1

m
|

m∑

i=1

σi(h(xi) − h′(xi))|
]

≤ E
σ
[sup

h

1

m
|

m∑

i=1

σih(xi)|] + E
σ
[sup

h′

1

m
|

m∑

i=1

σih
′(xi)|]

= 2R̂S(H),

using the definition of the Rademacher variables and the sub-
additivity of the supremum function. This proves the in-
equalityR̂(LH) ≤ 4qR̂(H) and the corollary.

A very similar proof gives the following result for classi-
fication.

Corollary 6 LetH be a set of classifiers mappingX to{0, 1}
and letL01 denote the 0-1 loss. Then, with the notation of
Corollary 5, for anyδ > 0, with probability at least1 − δ
over samplesS of sizem drawn according toQ:

discL01
(Q, Q̂) ≤ 4R̂S(H) + 3

√
log 2

δ

2m
. (9)

The factor of4 can in fact be reduced to2 in these corol-
laries when using a more favorable constant in the contrac-
tion lemma. The following corollary shows that the discrep-
ancy distance can be estimated from finite samples.

Corollary 7 Let H be a hypothesis set bounded by some
M > 0 for the loss functionLq: Lq(h, h′) ≤ M , for all
h, h′ ∈ H . Let Q be a distribution overX and Q̂ the cor-
responding empirical distribution for a sampleS, and letP
be a distribution overX and P̂ the corresponding empiri-
cal distribution for a sampleT . Then, for anyδ > 0, with
probability at least1 − δ over samplesS of sizem drawn
according toQ and samplesT of sizen drawn according to
P :

discLq
(P, Q) ≤ discLq

(P̂ , Q̂)+

4q
(
R̂S(H)+R̂T (H)

)
+3M

(√
log 4

δ

2m
+

√
log 4

δ

2n

)
.

Proof: By the triangle inequality, we can write

discLq
(P, Q) ≤ discLq

(P, P̂ ) + discLq
(P̂ , Q̂)+

discLq
(Q, Q̂). (10)

The result then follows by the application of Corollary 5 to
discLq

(P, P̂ ) anddiscLq
(Q, Q̂).

As with Corollary 6, a similar result holds for the 0-1 loss
in classification.

4 Domain Adaptation: Generalization
Bounds

This section presents generalization bounds for domain adap-
tation given in terms of the discrepancy distance just defined.
In the context of adaptation, two types of questions arise:

(1) we may ask, as for standard generalization, how the
average loss of a hypothesis on the target distribution,
LP (h, f), differs fromL bQ(h, f), its empirical error based

on the empirical distribution̂Q;

(2) another natural question is, given a specific learning al-
gorithm, by how much doesLP (hQ, f) deviate from
LP (hP , f) wherehQ is the hypothesis returned by the
algorithm when trained on a sample drawn fromQ and
hP the one it would have returned by training on a sam-
ple drawn from the true target distributionP .

We will present theoretical guarantees addressing both ques-
tions.

4.1 Generalization bounds

Let h∗
Q ∈ argminh∈H LQ(h, fQ) and similarly leth∗

P be a
minimizer of LP (h, fP ). Note that these minimizers may
not be unique. For adaptation to succeed, it is natural to
assume that the average lossLQ(h∗

Q, h∗
P ) between the best-

in-class hypotheses is small. Under that assumption and fora
small discrepancy distance, the following theorem provides
a useful bound on the error of a hypothesis with respect to
the target domain.

Theorem 8 Assume that the loss functionL is symmetric
and obeys the triangle inequality. Then, for any hypothesis
h ∈ H , the following holds

LP (h, fP ) ≤ LP (h∗
P , fP ) + LQ(h, h∗

Q) + disc(P, Q)

+ LQ(h∗
Q, h∗

P ). (11)

Proof: Fix h ∈ H . By the triangle inequality property of
L and the definition of the discrepancydiscL(P, Q), the fol-
lowing holds

LP (h, fP ) ≤ LP (h, h∗
Q) + LP (h∗

Q, h∗
P ) + LP (h∗

P , fP )

≤ LQ(h, h∗
Q) + discL(P, Q) + LP (h∗

Q, h∗
P )

+ LP (h∗
P , fP ).

We compare (11) with the main adaptation bound given by
Ben-David et al.(2007) and Blitzer et al.(2008):

LP (h, fP ) ≤ LQ(h, fQ) + discL(P, Q)+

min
h∈H

(
LQ(h, fQ) + LP (h, fP )

)
. (12)

It is very instructive to compare the two bounds. Intuitively,
the bound of Theorem 8 has only one error term that involves
the target function, while the bound of (12) has three terms
involving the target function. One extreme case is when there
is a single hypothesish in H and a single target function
f . In this case, Theorem 8 gives a bound ofLP (h, f) +
disc(P, Q), while the bound supplied by (12) is2LQ(h, f)+
LP (h, f) + disc(P, Q), which is larger than3LP (h, f) +



disc(P, Q) whenLQ(h, f) ≤ LP (h, f). One can even see
that the bound of (12) might become vacuous for moderate
values ofLQ(h, f) andLP (h, f). While this is clearly an
extreme case, an error with a factor of 3 can arise in more
realistic situations, especially when the distance between the
target function and the hypothesis class is significant.

While in general the two bounds are incomparable, it
is worthwhile to compare them using some relatively plau-
sible assumptions. Assume that the discrepancy distance
betweenP and Q is small and so is the average loss be-
tweenh∗

Q andh∗
P . These are natural assumptions for adap-

tation to be possible. Then, Theorem 8 indicates that the
regretLP (h, fP ) − LP (h∗

P , fP ) is essentially bounded by
LQ(h, h∗

Q), the average loss with respect toh∗
Q on Q. We

now consider several special cases of interest.

(i) Whenh∗
Q = h∗

P thenh∗ = h∗
Q = h∗

P and the bound of
Theorem 8 becomes
LP (h, fP ) ≤ LP (h∗, fP ) + LQ(h, h∗) + disc(P, Q).

(13)
The bound of (12) becomes

LP (h, fP ) ≤ LP (h∗, fP ) + LQ(h, fQ)+

LQ(h∗, fQ) + disc(P, Q),

where the right-hand side essentially includes the sum
of 3 errors and is always larger than the right-hand side
of (13) since by the triangle inequalityLQ(h, h∗) ≤
LQ(h, fQ) +LQ(h∗, fQ).

(ii) When h∗
Q = h∗

P = h∗ ∧ disc(P, Q) = 0, the bound of
Theorem 8 becomes

LP (h, fP ) ≤ LP (h∗, fP ) + LQ(h, h∗),

which coincides with the standard generalization bound.
The bound of (12) does not coincide with the standard
bound and leads to:
LP (h, fP ) ≤ LP (h∗, fP ) +LQ(h, fQ) +LQ(h∗, fQ).

(iii) When fP ∈H (consistent case), the bound of (12) sim-
plifies to,

|LP (h, fP ) − LQ(h, fP )| ≤ discL(Q, P ),

and it can also be derived using the proof of Theorem 8.

Finally, clearly Theorem 8 leads to bounds based on the em-
pirical error ofh on a sample drawn according toQ. We
give the bound related to the 0-1 loss, others can be de-
rived in a similar way from Corollaries 5-7 and other simi-
lar corollaries. The result follows Theorem 8 combined with
Corollary 7, and a standard Rademacher classification bound
(Bartlett & Mendelson, 2002).

Theorem 9 Let H be a family of functions mappingX to
{0, 1} and let the rest of the assumptions be as in Corol-
lary 7. Then, for any hypothesish ∈ H , with probability at
least1 − δ, the following adaptation generalization bound
holds for the 0-1 loss:

LP (h, fP ) − LP (h∗
P , fP ) ≤

L bQ(h, h∗
Q)+discL01

(P̂ , Q̂)+(4q+
1

2
)R̂S(H)+4qR̂T (H)+

4

√
log 8

δ

2m
+ 3

√
log 8

δ

2n
+ LQ(h∗

Q, h∗
P ). (14)

Figure 1: In this example, the gray regions are assumed to
have zero support in the target distributionP . Thus, there
exist consistent hypotheses such as the linear separator dis-
played. However, for the source distributionQ no linear sep-
aration is possible.

4.2 Guarantees for regularization-based algorithms

In this section, we first assume that the hypothesis setH in-
cludes the target functionfP . Note that this does not imply
that fQ is in H . Even whenfP andfQ are restrictions to
supp(P ) andsupp(Q) of the same labeling functionf , we
may havefP ∈ H andfQ 6∈ H and the source problem
could be non-realizable. Figure 1 illustrates this situation.

For a fixed loss functionL, we denote bŷR bQ(h) the em-
pirical error of a hypothesish with respect to an empirical
distributionQ̂: R bQ(h) = L bQ(h, f). Let N : H → R+ be
a function defined over the hypothesis setH . We will as-
sume thatH is a convex subset of a vector space and that
the loss functionL is convex with respect to each of its argu-
ments. Regularization-based algorithms minimize an objec-
tive of the form

F bQ(h) = R̂ bQ(h) + λN(h), (15)

whereλ ≥ 0 is a trade-off parameter. This family of al-
gorithms includes support vector machines (SVM) (Cortes
& Vapnik, 1995), support vector regression (SVR) (Vapnik,
1998), kernel ridge regression (Saunders et al., 1998), and
other algorithms such as those based on the relative entropy
regularization (Bousquet & Elisseeff, 2002).

We denote byBF the Bregman divergence associated to
a convex functionF ,

BF (f‖g) = F (f) − F (g) − 〈f − g,∇F (g)〉 (16)

and define∆h as∆h = h′ − h.

Lemma 10 Let the hypothesis setH be a vector space. As-
sume thatN is a proper closed convex function and thatN
andL are differentiable. Assume thatF bQ admits a minimizer
h∈H andF bP a minimizerh′∈H and thatfP andfQ coin-

cide on the support of̂Q. Then, the following bound holds,

BN (h′‖h) + BN (h‖h′) ≤ 2discL(P̂ , Q̂)

λ
. (17)

Proof: SinceBF bQ
=B bR bQ

+ λBN andBF bP
=B bR bP

+ λBN ,

and a Bregman divergence is non-negative, the following in-
equality holds:

λ
(
BN (h′‖h) + BN (h‖h′)

)
≤ BF bQ

(h′‖h) + BF bP
(h‖h′).



By the definition ofh andh′ as the minimizers ofF bQ and
F bP , ∇ bQF (h)=∇ bP F (h′)=0 and

BF bQ
(h′‖h) + BF bP

(h‖h′)

= R̂ bQ(h′) − R̂ bQ(h) + R̂ bP (h) − R̂ bP (h′)

=
(
L bP (h, fP ) − L bQ(h, fP )

)

−
(
L bP (h′, fP ) − L bQ(h′, fP )

)
≤ 2discL(P̂ , Q̂).

This last inequality holds since by assumptionfP is in H .

We shall consider loss functionsL for which there exists
σ ∈ R+ such thatL(·, y) is σ-Lipschitz for ally ∈ Y . This
assumption holds for the hinge loss withσ = 1 and for the
Lq loss withσ=q(2M)q−1 when the hypothesis set and the
set of output labels are bounded by someM ∈ R+: ∀h ∈
H, ∀x ∈ X, |h(x)| ≤ M and∀y ∈ Y, |y| ≤ M .

Theorem 11 LetK: X × X→R be a positive-definite sym-
metric kernel such thatK(x, x)≤κ2 <∞ for all x∈X , and
let H be the reproducing kernel Hilbert space associated to
K. Assume thatL(·, y) is σ-Lipschitz for ally ∈ Y . Leth′

be the hypothesis returned by the regularization algorithm
based onN(·)= ‖·‖2

K for the empirical distributionP̂ , and
h the one returned for the empirical distribution̂Q, and as-
sume thatfP and fQ coincide onsupp(Q̂). Then, for all
x ∈ X , y ∈ Y ,

∣∣L(h′(x), y) − L(h(x), y)
∣∣ ≤ κσ

√
discL(P̂ , Q̂)

λ
. (18)

Proof: ForN(·) = ‖·‖2
K , N is a proper closed convex func-

tion and is differentiable. We haveBN (h′‖h) = ‖h′ − h‖2
K ,

thusBN (h′‖h) + BN (h‖h′) = 2‖∆h‖2
K. WhenL is differ-

entiable, by Lemma 10,

2‖∆h‖2
K ≤ 2discL(P̂ , Q̂)

λ
. (19)

This result can also be shown directly without assuming that
L is differentiable by using the convexity ofN and the mini-
mizing properties ofh andh′ with a proof that is longer than
that of Lemma 10.

Now, by the reproducing property ofH , for all x ∈ H ,
∆h(x)=〈∆h, K(x, ·)〉 and by the Cauchy-Schwarz inequal-
ity, |∆h(x)| ≤ ‖∆h‖K(K(x, x))1/2 ≤ κ‖∆h‖K. Since for
all y ∈ Y L(·, y) is σ-Lipschitz, for allx ∈ X , y ∈ Y ,

|L(h′(x), y) − L(h(x), y)| ≤ σ|∆h(x)| ≤ κσ‖∆h‖K ,

which, combined with (19), proves the statement of the the-
orem.

Theorem 11 provides a strong guarantee on the pointwise
difference of the loss forh′ andh with probability one. The
result, as well as the proof, also suggests that the discrep-
ancy distance is the “right” measure of difference of distri-
butions for this context. The theorem applies to a variety of
algorithms, in particular SVMs combined with arbitrary PDS
kernels and kernel ridge regression.

A similar result can be derived for the difference between
expected losses by bounding the expectation of∆h(x) in

the proof, instead of its maximum. But, the resulting upper
bound only differs from that of theorem byEP [K(x, x)1/2]
versusmaxx K(x, x)1/2, which, for a fixed kernel, are both
constant terms and cannot be minimized.

In general, the functionsfP andfQ may not coincide on
supp(Q̂). For adaptation to be possible, it is reasonable to
assume however that

L bQ(fQ(x), fP (x)) ≪ 1 and L bP (fQ(x), fP (x)) ≪ 1.

This can be viewed as a condition on the proximity of the
labeling functions (theY s), while the discrepancy distance
relates to the distributions on the input space (theXs). The
following result generalizes Theorem 11 to this setting in the
case of the square loss.

Theorem 12 Under the assumptions of Theorem 11, but with
fQ andfP potentially different onsupp(Q̂), whenL is the
square lossL2 andδ2 = L bQ(fQ(x), fP (x)) ≪ 1, then, for
all x ∈ X , y ∈ Y ,
∣∣L(h′(x), y) − L(h(x), y)

∣∣ ≤
2κM

λ

(
κδ +

√
κ2δ2 + 4λdiscL(P̂ , Q̂)

)
. (20)

Proof: Proceeding as in the proof of Lemma 10 and using
the definition of the square loss and the Cauchy-Schwarz in-
equality give

BF bQ
(h′‖h) + BF bP

(h‖h′)

= R̂ bQ(h′) − R̂ bQ(h) + R̂ bP (h) − R̂ bP (h′)

=
(
L bP (h, fP ) − L bQ(h, fP )

)

−
(
L bP (h′, fP ) − L bQ(h′, fP )

)

+ 2 E
bQ
[(h′(x) − h(x))(fP (x) − fQ(x)]

≤ 2discL(P̂ , Q̂) + 2
√

E
bQ
[∆h(x)2] E

bQ
[L(fP (x), fQ(x))]

≤ 2discL(P̂ , Q̂) + 2κ‖∆h‖Kδ.

SinceN(·) = ‖·‖2
K , the inequality can be rewritten as

λ‖∆h‖2
K ≤ discL(P̂ , Q̂) + κδ‖∆h‖K. (21)

Solving the second-degree polynomial in‖∆h‖K leads to
the equivalent constraint

‖∆h‖K ≤ 1

2λ

(
κδ +

√
κ2δ2 + 4λdiscL(P̂ , Q̂)

)
. (22)

The result then follows by theσ-Lipschitzness ofL(·, y) as
in the proof of Theorem 11, withσ = 4M .

Using the same proof schema, similar bounds can be de-
rived for other loss functions.

When the assumptionfP ∈ H is relaxed, the following
theorem holds.

Theorem 13 Under the assumptions of Theorem 11, but with
fP not necessarily inH and fQ and fP potentially differ-
ent onsupp(Q̂), whenL is the square lossL2 and δ′ =



L bQ(h∗
P (x), fQ(x))1/2 + L bP (h∗

P (x), fP (x))1/2 ≪ 1, then,
for all x ∈ X , y ∈ Y ,
∣∣L(h′(x), y) − L(h(x), y)

∣∣ ≤
2κM

λ

(
κδ′ +

√
κ2δ′2 + 4λdiscL(P̂ , Q̂)

)
. (23)

Proof: Proceeding as in the proof of Theorem 12 and us-
ing the definition of the square loss and the Cauchy-Schwarz
inequality give

BF bQ
(h′‖h) + BF bP

(h‖h′)

=
(
L bP (h, h∗

P ) − L bQ(h, h∗
P )
)

−
(
L bP (h′, h∗

P ) − L bQ(h′, h∗
P )
)

− 2 E
bP
[(h′(x) − h(x))(h∗

P (x) − fP (x)]

+ 2 E
bQ
[(h′(x) − h(x))(h∗

P (x) − fQ(x)]

≤ 2discL(P̂ , Q̂) + 2
√

E
bP
[∆h(x)2] E

bP
[L(h∗

P (x), fP (x))]

+ 2
√

E
bQ
[∆h(x)2] E

bQ
[L(h∗

P (x), fQ(x))]

≤ 2discL(P̂ , Q̂) + 2κ‖∆h‖Kδ′.

The rest of the proof is identical to that of Theorem 12.

5 Discrepancy Minimization Algorithms

The discrepancy distancediscL(P̂ , Q̂) appeared as a critical
term in several of the bounds in the last section. In particular,
Theorems 11 and 12 suggest that if we could select, instead
of Q̂, some other empirical distribution̂Q′ with a smaller
empirical discrepancydiscL(P̂ , Q̂′) and use that for training
a regularization-based algorithm, a better guarantee would
be obtained on the difference of pointwise loss betweenh′

andh. Sinceh′ is fixed, a sufficiently smaller discrepancy
would actually lead to a hypothesish with pointwise loss
closer to that ofh′.

The training sample is given and we do not have any con-
trol over the support of̂Q. But, we can search for the distri-
butionQ̂′ with the minimal empirical discrepancy distance:

Q̂′ = argmin
bQ′∈Q

discL(P̂ , Q̂′), (24)

whereQ denotes the set of distributions with supportsupp(Q̂).
This leads to an optimization problem that we shall study in
detail in the case of several loss functions.

Note that usinĝQ′ instead ofQ̂ for training can be viewed
as reweightingthe cost of an error on each training point.
The distributionQ̂′ can be used to emphasize some points
or de-emphasize others to reduce the empirical discrepancy
distance. This bears some similarity with the reweighting or
importance weightingideas used in statistics and machine
learning for sample bias correction techniques (Elkan, 2001;
Cortes et al., 2008) and other purposes. Of course, the ob-
jective optimized here based on the discrepancy distance is
distinct from that of previous reweighting techniques.

We will denote bySQ the support ofQ̂, by SP the sup-
port of P̂ , and byS their unionsupp(Q̂) ∪ supp(P̂ ), with
|SQ| = m0 ≤ m and|SP | = n0 ≤ n.

In view of the definition of the discrepancy distance, prob-
lem (24) can be written as a min-max problem:

Q̂′ = argmin
bQ′∈Q

max
h,h′∈H

|L bP (h′, h) − L bQ′(h
′, h)|. (25)

As with all min-max problems, the problem has a natural
game theoretical interpretation. However, here, in general,
we cannot permute themin and max operators since the
convexity-type assumptions of the minimax theorems do not
hold. Nevertheless, since the max-min value is always a
lower bound for the min-max, it provides us with a lower
bound on the value of the game, that is the minimal discrep-
ancy:

max
h,h′∈H

min
bQ′∈Q

|L bP (h′, h) − L bQ′
(h′, h)| ≤

min
bQ′∈Q

max
h,h′∈H

|L bP (h′, h) − L bQ′
(h′, h)|. (26)

We will later make use of this inequality. Let us now examine
the minimization problem (24) and its algorithmic solutions
in the case of classification with the 0-1 loss and regression
with theL2 loss.

5.1 Classification, 0-1 Loss

For the 0-1 loss, the problem of finding the best distribution
Q̂′ can be reformulated as the following min-max program:

min
Q′

max
a∈H∆H

∣∣Q̂′(a) − P̂ (a)
∣∣ (27)

subject to ∀x ∈ SQ, Q̂′(x) ≥ 0 ∧
∑

x∈SQ

Q̂′(x) = 1, (28)

where we have identifiedH∆H = {|h′ − h| : h, h′ ∈ H}
with the set of regionsa ⊆ X that are the support of an
element ofH∆H . This problem is similar to the min-max
resource allocation problem that arises in task optimization
(Karabati et al., 2001). It can be rewritten as the following
linear program (LP):

min
Q′

δ (29)

subject to ∀a ∈ H∆H, Q̂′(a) − P̂ (a) ≤ δ (30)

∀a ∈ H∆H, P̂ (a) − Q̂′(a) ≤ δ (31)

∀x ∈ SQ, Q̂′(x) ≥ 0 ∧
∑

x∈SQ

Q̂′(x) = 1. (32)

The number of constraints is proportional to|H∆H | but it
can be reduced to a finite number by observing that two sub-
setsa, a′∈H∆H containing the same elements ofS lead to
redundant constraints, since

∣∣Q̂′(a) − P̂ (a)
∣∣ =

∣∣Q̂′(a′) − P̂ (a′)
∣∣. (33)

Thus, it suffices to keep one canonical membera for each
such equivalence class. The necessary number of constraints
to be considered is proportional toΠH∆H(m0 + n0), the
shattering coefficient of order(m0 + n0) of the hypothesis



(a)

(b)

Figure 2: Illustration of the discrepancy minimization algo-
rithm in dimension one. (a) Sequence of labeled (red) and
unlabeled (blue) points. (b) The weight assigned to each la-
beled point is the sum of the weights of the consecutive blue
points on its right.

classH∆H . By the Sauer’s lemma, this is bounded in terms
of the VC-dimension of the classH∆H , ΠH∆H(m0+n0) ≤
O((m0+n0)

V C(H∆H)), which can be bounded byO((m0+
n0)

2V C(H)) since it is not hard to see thatV C(H∆H) ≤
2V C(H).

In cases where we can test efficiently whether there exists
a consistent hypothesis inH , e.g., for half-spaces inRd, we
can generate in timeO((m0 + n0)

2d) all consistent labeling
of the sample points byH . (We remark that computing the
discrepancy with the 0-1 loss is closely related to agnostic
learning. The implications of this fact will be described ina
longer version of this paper.)

5.2 Computing the Discrepancy in 1D

We consider the case whereX = [0, 1] and derive a simple
algorithm for minimizing the discrepancy for 0-1 loss. Let
H be the class of all prefixes (i.e.,[0, z]) and suffixes (i.e.,
[z, 1]). Our class ofH∆H includes all the intervals (i.e.,
(z1, z2]) and their complements (i.e.,[0, z1] ∪ (z2, 1]). We
start with a general lower bound on the discrepancy.

Let U denote the set ofunlabeled regions, that is the set
of regionsa such thata∩SQ = ∅ anda∩SP 6= ∅. If a is an
unlabeled region, then|Q̂′(a) − P̂ (a)| = P̂ (a) for any Q̂′.
Thus, by the max-min inequality (26), the following lower
bound holds for the minimum discrepancy:

max
a∈U

P̂ (a) ≤ min
bQ′∈Q

max
h,h′∈H

|L bP (h′, h) − L bQ′(h
′, h)|. (34)

In particular, if there is a large unlabeled regiona, we cannot
hope to achieve a small empirical discrepancy.

In the one-dimensional case, we give a simple linear-time
algorithm that does not require an LP and show that the lower
bound (34) is reached. Thus, in that case, themin andmax
operators commute and the minimal discrepancy distance is
preciselymina∈U P̂ (a).

Given our definition ofH , the unlabeled regions are open
intervals, or complements of these sets, containing only points
from SP with endpoints defined by elements ofSQ.

Let us denote bys1, . . . , sm0
the elements ofSQ, by ni,

i ∈ [1, m0], the number of consecutive unlabeled points to
the right ofsi andn =

∑
ni. We will make an additional

technical assumption that there are no unlabeled points to
the left ofs1. Our algorithm consists of defining the weight
Q̂′(si) as follows:

Q̂′(si) = ni/n. (35)

This requires first sortingSQ ∪ SP and then computingni

for eachsi. Figure 2 illustrates the algorithm.

Proposition 3 Assume thatX consists of the set of points on
the real line andH the set of half-spaces onX . Then, for any
Q̂ and P̂ , Q̂′(si) = ni/n minimizes the empirical discrep-
ancy and can be computed in timeO((m + n) log(m + n)).

The proof is given in the Appendix.

5.3 Regression,L2 loss

For the square loss, the problem of finding the best distribu-
tion can be written as

min
bQ′∈Q

max
h,h′∈H

∣∣∣E
bP
[(h′(x) − h(x))2] − E

bQ′

[(h′(x) − h(x))2]
∣∣∣.

If X is a subset ofRN , N > 1, and the hypothesis setH is
a set of bounded linear functionsH = {x 7→ w

⊤
x : ‖w‖≤

1}, then, the problem can be rewritten as

min
bQ′∈Q

max
‖w‖≤1
‖w′‖≤1

∣∣∣E
bP
[((w′ − w)⊤x)2] − E

bQ′

[((w′ − w)⊤x)2]
∣∣∣

= min
bQ′∈Q

max
‖w‖≤1
‖w′‖≤1

∣∣∣
∑

x∈S

(P̂ (x) − Q̂′(x))[(w′ − w)⊤x]2
∣∣∣

= min
bQ′∈Q

max
‖u‖≤2

∣∣∣
∑

x∈S

(P̂ (x) − Q̂′(x))[u⊤
x]2
∣∣∣

= min
bQ′∈Q

max
‖u‖≤2

∣∣∣u⊤
(∑

x∈S

(P̂ (x) − Q̂′(x))xx
⊤
)
u

∣∣∣. (36)

We now simplify the notation and denote bys1, . . . , sm0
the

elements ofSQ, by zi the distribution weight at pointsi:
zi = Q̂′(si), and byM(z) ∈ S

N a symmetric matrix that is
an affine function ofz:

M(z) = M0 −
m0∑

i=1

ziMi, (37)

whereM0 =
∑

x∈S P (x)xx
⊤ andMi = sis

⊤
i . Since prob-

lem (36) is invariant to the non-zero bound on‖u‖, we can
equivalently write it with a bound of one and in view of the
notation just introduced give its equivalent form

min
‖z‖1=1
z≥0

max
‖u‖=1

|u⊤
M(z)u|. (38)

SinceM(z) is symmetric,max‖u‖=1 u
⊤
M(z)u is the max-

imum eigenvalueλmax of M(z) and the problem is equiva-
lent to the following maximum eigenvalue minimization for
a symmetric matrix:

min
‖z‖1=1
z≥0

max{λmax(M(z)), λmax(−M(z))}. (39)

This is a convex optimization problem since the maximum
eigenvalue of a matrix is a convex function of that matrix
andM is an affine function ofz, and sincez belongs to a
simplex. The problem is equivalent to the following semi-
definite programming (SDP) problem:

min
z,λ

λ (40)

subject to λI − M(z) � 0 (41)

λI + M(z) � 0 (42)

1
⊤
z = 1 ∧ z ≥ 0. (43)
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Figure 3: Example of application of the discrepancy mini-
mization algorithm in dimensions one. (a) Source and target
distributionsQ andP . (b) Classification accuracy empiri-
cal results plotted as a function of the number of training
points for both theunweighted case(using original empiri-
cal distributionQ̂) and theweighted case(using distribution
Q̂′ returned by our discrepancy minimizing algorithm). The
number of unlabeled points used was ten times the number
of labeled. Error bars show±1 standard deviation.

SDP problems can be solved in polynomial time using gen-
eral interior point methods (Nesterov & Nemirovsky, 1994).
Thus, using the general expression of the complexity of inte-
rior point methods for SDPs, the following result holds.

Proposition 4 Assume thatX is a subset ofRN and that
the hypothesis setH is a set of bounded linear functions
H = {x 7→ w

⊤
x : ‖w‖ ≤ 1}. Then, for anyQ̂ and P̂ , the

discrepancy minimizing distribution̂Q′ for the square loss
can be found in timeO(m2

0N
2.5 + n0N

2).

It is worth noting that the unconstrained version of this prob-
lem (no constraint onz) and other close problems seem to
have been studied by a number of optimization publications
(Fletcher, 1985; Overton, 1988; Jarre, 1993; Helmberg &
Oustry, 2000; Alizadeh, 1995). This suggests possibly more
efficient specific algorithms than general interior point meth-
ods for solving this problem in the constrained case as well.
Observe also that the matricesMi have a specific structure
in our case, they are rank-one matrices and in many appli-
cations quite sparse, which could be further exploited to im-
prove efficiency.

As shown in a longer version of this paper, the results of
this section can be extended to the case whereH is a repro-
ducing kernel Hilbert space associated to a positive definite
symmetric kernel functionK.

6 Experiments

This section reports the results of preliminary experiments
showing the benefits of our discrepancy minimization algo-
rithms. Our results confirm that our algorithm is effective
in practice and produces a distribution that reduces the em-
pirical discrepancy distance, which allows us to train on a
sample closer to the target distribution with respect to this
metric. They also demonstrate the accuracy benefits of this
algorithm with respect to the target domain.

Figures 3(a)-(b) show the empirical advantages of using
the distributionQ̂′ returned by the discrepancy minimizing
algorithm described in Proposition 3 in a case where source
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Figure 4: (a) An(x1, x2, y) plot of Q̂ (magenta),̂P (green),
weighted (red) and unweighted (blue) hypothesis. (b) Com-
parison of mean-squared error for the hypothesis trained on
Q̂ (top), trained onQ̂′ (middle) and onP̂ (bottom) over a
varying number of training points.

and target distributions are shifted Gaussians: the sourcedis-
tribution is a Gaussian centered at−1 and the target distribu-
tion a Gaussian centered at+1, both with standard deviation
2. The hypothesis set used was the set of half-spaces and
the target function selected to be the interval[−1, 1]. Thus,
training on a sample drawn formQ generates a separator
at −1 and errs on about half of the test points produced by
P . In contrast, training with the distribution̂Q′ minimizing
the empirical discrepancy yields a hypothesis separating the
points at+1, thereby dramatically reducing the error rate.

Figures 4(a)-(b) show the application of the SDP derived
in (40) to determining the distribution minimizing the em-
pirical discrepancy for ridge regression. In Figure 4(a), the
distributionsQ andP are Gaussians centered at(

√
2,
√

2)

and(−
√

2,−
√

2), both with covariance matrix2I. The tar-
get function isf(x1, x2) = (1 − |x1|) + (1 − |x2|), thus
the optimal linear prediction derived fromQ has a negative
slope, while the optimal prediction with respect to the target
distributionP in fact has a positive slope. Figure 4(b) shows
the performance of ridge regression when the example is ex-
tended to 16-dimensions, before and after minimizing the
discrepancy. In this higher-dimension setting and even with
several thousand points, using (http://sedumi.ie.lehigh.edu/), our
SDP problem could be solved in about 15s using a single
3GHz processor with 2GB RAM. The SDP algorithm yields
distribution weights that decrease the discrepancy and assist
ridge regression in selecting a more appropriate hypothesis
for the target distribution.

7 Conclusion

We presented an extensive theoretical and an algorithmic anal-
ysis of domain adaptation. Our analysis and algorithms are
widely applicable and can benefit a variety of adaptation tasks.
More efficient versions of these algorithms, in some instances
efficient approximations, should further extend the applica-
bility of our techniques to large-scale adaptation problems.
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A Proof of Theorem 2

Theorem 14 (Rademacher Bound)LetH be a class of func-
tions mappingZ = X × Y to [0, 1] andS = (z1, . . . , zm)
a finite sample drawn i.i.d. according to a distributionQ.
Then, for anyδ > 0, with probability at least1 − δ over
samplesS of sizem, the following inequality holds for all
h ∈ H :

R(h) ≤ R̂(h) + R̂S(H) + 3

√
log 2

δ

2m
. (44)

Proof: Let Φ(S) be defined byΦ(S) = suph∈H R(h) −
R̂(h). Changing a point ofS affectsΦ(S) by at most1/m.
Thus, by McDiarmid’s inequality applied toΦ(S), for any
δ > 0, with probability at least1 − δ

2 , the following holds
for all h ∈ H :

Φ(S) ≤ E
S∼D

[Φ(S)] +

√
log 2

δ

2m
. (45)

ES∼D[Φ(S)] can be bounded in terms of the empirical Rade-
macher complexity as follows:

E
S
[Φ(S)]

= E
S

[
sup
h∈H

E
S′

[RS′(h)] − RS(h)
]

= E
S

[
sup
h∈H

E
S′

[RS′(h) − RS(h)]
]

≤ E
S,S′

[
sup
h∈H

RS′(h) − RS(h)
]

= E
S,S′

[
sup
h∈H

1

m

m∑

i=1

(h(x′
i) − h(xi))

]

= E
σ,S,S′

[
sup
h∈H

1

m

m∑

i=1

σi(h(x′
i) − h(xi))

]

≤ E
σ,S′

[
sup
h∈H

1

m

m∑

i=1

σih(x′
i)
]
+ E

σ,S

[
sup
h∈H

1

m

m∑

i=1

−σih(xi)
]

= 2 E
σ,S

[
sup
h∈H

1

m

m∑

i=1

σih(xi)
]

≤ 2 E
σ,S

[
sup
h∈H

∣∣ 1

m

m∑

i=1

σih(xi)
∣∣]

= Rm(H).

Changing a point ofS affectsRm(H) by at most2/m. Thus,
by McDiarmid’s inequality applied toRm(H), with proba-
bility at least1 − δ/2, the following holds:

Rm(H) ≤ R̂S(H) +

√
2 log 2

δ

m
. (46)

Combining this inequality with Inequality (45) and the bound
onES [Φ(S)] above yields directly the statement of the theo-
rem.

B Proof of Proposition 3

Proposition 5 Assume thatX consists of the set of points on
the real line andH the set of half-spaces onX . Then, for any
Q̂ and P̂ , Q̂′(si) = ni/n minimizes the empirical discrep-
ancy and can be computed in timeO((m + n) log(m + n)).

Proof: Consider an interval[z1, z2] that maximizes the dis-
crepancy ofQ̂′. The case of a complement of an interval is
the same, since the discrepancy of a hypothesis and its nega-
tion are identical. Letsi, . . . , sj ∈ [z1, z2] be the subset of
Q̂ in that interval, andpi′ , . . . , pj′ ∈ [z1, z2] the subset of
P̂ in that interval. The discrepancy isd = |∑j

k=i Q̂′(sk) −
j′−i′

n |. By our definition ofQ̂′, we can write
∑j

k=i Q̂′(sk) =
1
n

∑j
k=i nk. Let pi′′ be the maximal point in̂P which is less

thansi andj′′ the minimal point inP̂ larger thansj . We have
thatj′ − i′ = (i′′ − i′) +

∑j−1
k=i nk + (j′′ − j′). Therefore

d = |(i′′−i′)+(j′′−j′)−nj| = |(i′′−i′)−(nj−(j′′−j′))|.
Sinced is maximal and both terms are non-negative, one of
them is zero. Sincej′ − j′′ ≤ nj and i′′ − i′ ≤ ni, the
discrepancy of̂Q′ meets the lower bound of (34) and is thus
optimal.


