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Abstract

We analyze classification problems in which data
is generated by a two-tiered random process. The
class is generated first, then a layer of condition-
ally independent hidden variables, and finally the
observed variables. For sources like this, the Bayes-
optimal rule for predicting the class given the val-
ues of the observed variables is a two-layer neu-
ral network. We show that, if the hidden variables
have non-negligible effects on many observed vari-
ables, a linear classifier approximates the error rate
of the Bayes optimal classifier up to lower order
terms.

1 Introduction
In many classification problems, groups of features are posi-
tively associated, even among examples of a given class. For
example, when classifying news articles as to whether they
are about sports or not, words about soccer tend to appear
in the same articles. Similarly, biomolecules are organized
into subsystems, including pathways, and diseases often co-
ordinately affect the production rates of members of certain
subsystems.

One way to model this phenomenon is to think of the
class designations and feature values as being generated by a
probability distribution with hidden variables [10, 3, 24, 16,
14]. In one model of this type, the class designation directly
and conditionally independently affects the hidden variables,
each of which in turn drives a set of observed variables (see
Figure 1). Each hidden variable can be interpreted as in-
dicating whether a group of observed variables have been
collectively affected by the class of the item. For example,
a hidden variable could indicate whether an article is about
soccer or not. Its descendents would include words that are
especially common in articles about soccer, like “corner” and
“striker”. It is intuitive that the Bayes optimal classifier for a
source like this is a two-layer feed-forward neural network,
with the hidden layer of the neural network corresponding to
the layer of hidden variables in the generative model. (We
provide a proof because we are not aware of a reference for
this in the literature.)
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Despite this fact, for many problems clearly possessing
such hierarchical structure, learning algorithms that use lin-
ear hypotheses achieve excellent, often even state-of-the-art,
performance (see, e.g. [12, 19, 22, 20, 11]). This might ap-
pear paradoxical, because one might think that such algo-
rithms must be doomed to fail because they use an inordi-
nately limited hypothesis space.

In this paper, we show that, despite the fact that the op-
timal classifier has a more complex structure, a linear clas-
sifier can provide a good approximation. Here is the rough
idea of the proof. Suppose that a hidden variable is binary-
valued, and that its value affects many features – this is to be
expected for example in text classification problems, where
subtopics may have many constituent words. Then a linear
combination of those observed features should be expected
to be highly concentrated – the combination will be close
to one value when the hidden variable takes one value, and
close to another value when the hidden variable takes the
other value. Consequently, this linear combination of the
observed features can be viewed as an approximation to a
rescaling of the hidden variable. If we replace each hidden
variable with the appropriate linear combination of the ob-
served variables that it affects, and construct a linear classi-
fier using the replacements, the result is a linear classifier of
the original features.

2 Preliminaries
2.1 The structure of the source
In a hidden variable model, the joint distribution of the class
label Y , hidden variables H1, ...,Hk, and observed variables

X01, ..., X0m0 , X11, ..., X1m1 , ..., Xk1, ..., Xkmk

(all of which take values in {−1, 1}) satisfies the conditional
independence constraints shown in the Bayes Net of Fig-
ure 1. The hidden variables H1, ...,Hk, along with some of
the observed variables, X01, ..., X0m0 , are collectively con-
ditionally independent given the class designation Y . Each
hidden variable Hi in turn has a collection of observed vari-
ables Xi1, ..., Ximi that are conditionally independent given
Hi.

We can think of the model as generating labeled random
examples (x, y) in stages, by

• generating the class label y, and fixing it, then
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Figure 1: A probability model in which the dependence of some of the observed variables on the class designation is mediated
by a layer of hidden variables.

• independently sampling the hidden variables

h1, ..., hk

and the observed variables with direct dependence on
the class x01, ..., x0m0 using the appropriate class con-
ditional distribution, fixing them, and finally

• independently sampling the remaining observed vari-
ables

x11, ..., x1m1 , ..., xk1, ..., xkmk
,

each from the appropriate conditional distribution given
the values of its parents.

Note that we may assume without loss of generality that
for any indices i and j, we have

Pr(Xij = 1|Hi = 1) > Pr(Xij = 1|Hi = −1),

since otherwise, we could replace Xij with its negation.

Definition 1 (β-effect) We say that a hidden variable Hi β-
affects observed variable Xij if

Pr(Xij = 1|Hi = 1)−Pr(Xij = 1|Hi = −1) > β.

To eliminate uninteresting clutter from the analysis, we
will assume throughout that Pr(Y = 1) = 1/2.

2.2 Other probability tools

Definition 2 (Total variation distance) The total variation
distance between probability distributions P and Q over a
common domain U is maxE⊆U |P (E)−Q(E)|.

Lemma 3 (Hoeffding bound, see [17]) LetU1, ..., U` be in-
dependent zero-mean real random variables, each of which
takes values in an interval of length κ. Then

Pr

[∑̀
i=1

Ui ≥ γ

]
≤ e−

2γ2

κ2` .

3 Linear approximation
Theorem 4 Suppose that for β > 0, each hidden variable
β-affects at least m observed variables, for

m = ω

(
k log2(k/opt) log(1/opt)

β2

)
,

where opt is the error rate of the Bayes optimal classifier.
Suppose

X = (X01, ..., X0m0 , X11, ..., X1m1 , ..., Xk1, ..., Xkmk
)

are the observed variables. Then there is a linear classifier
f such that

Pr(f(X) 6= Y ) ≤ (1 + o(1))opt.

Proof: We will establish the stronger guarantee that the lin-
ear classifier approximates the behavior of an idealized clas-
sifier that has access to the hidden variables. The optimal
classifier that uses the values h1, ..., hk of the hidden vari-
ables H1, ...,Hk along with x01, ..., xkmk

is at least as ac-
curate as the optimal classifier that only uses x01, ..., xkmk

,
since when optimizing over classifiers that have access to
h1, ..., hk, one possibility is use a classifier that ignores them.
The Bayes optimal classifier fopt, for using a realization x
of the tuple X of observed variables and a realization h of
the tuple H of hidden variables, chooses ŷ to be

ŷ = argmaxyPr(Y = y|H = h and X = x).

If, for each i,
Xi = (Xi,1, ..., Xi,mi),

then, since
H1, ...,Hk, X01, ..., X0m0

form a Markov blanket for Y , for any realizations

x0,x1, ...,xk

of the various groups of observed variables, we have

Pr(Y = y|H = h,X0 = x0,X1 = x1, ...,Xk = xk)
= Pr(Y = y|H = h,X0 = x0).



Maximizing the latter is equivalent to maximizing

Pr(Y = y|H = h,X0 = x0)
Pr(Y = −y|H = h,X0 = x0)

=
Pr(Y = y,H = h,X0 = x0)

Pr(Y = −y,H = h,X0 = x0)
, (1)

which decomposes nicely, facilitating analysis, as we will
see.

The usual analysis of Naive Bayes [8] can be used to
express the Bayes optimal decision rule as a linear threshold
function of the variables that depend directly on Y . The odds
ratio (1) can be written as follows

Pr(Y = y,H = h,X0 = x0)
Pr(Y = −y,H = h,X0 = x0)

=

((
k∏
i=1

Pr(Hi = hi|Y = y)
Pr(Hi = hi|Y = −y)

)

×

m0∏
j=1

Pr(X0j = x0j |Y = y)
Pr(X0j = x0j |Y = −y)

 ,

and a case analysis verifies that for each i, we have

Pr(Hi=hi|Y =y)
Pr(Hi=hi|Y =−y)

=exp
(
y

2
ln
(

Pr(Hi=1|Y =1)Pr(Hi=−1|Y =1)
Pr(Hi=−1|Y =−1)Pr(Hi=1|Y =−1)

)
+
yhi
2

ln
(

Pr(Hi=1|Y =1)Pr(Hi=−1|Y =−1)
Pr(Hi=−1|Y =1)Pr(Hi=1|Y =−1)

))
,

and similarly, for each j, we have

Pr(X0j=x0j |Y =y)
Pr(X0j=x0j |Y =−y)

=exp
(
y

2
ln
(

Pr(X0j=1|Y =1)Pr(X0j=−1|Y =1)
Pr(X0j=−1|Y =−1)Pr(X0j=1|Y =−1)

)
+
yx0j

2
ln
(

Pr(X0j=1|Y =1)Pr(X0j=−1|Y =−1)
Pr(X0j=−1|Y =1)Pr(X0j=1|Y =−1)

))
.

Thus, if for each i ∈ {1, ..., k}, we define

wi =
1
2

ln
(

Pr(Hi = 1|Y = 1)Pr(Hi = −1|Y = −1)
Pr(Hi = −1|Y = 1)Pr(Hi = 1|Y = −1)

)
and let

w0 = 1
2

∑k
i=1 ln

(
Pr(Hi=1|Y=1)Pr(Hi=−1|Y=1)

Pr(Hi=−1|Y=−1)Pr(Hi=1|Y=−1)

)
and similarly, for j ∈ {1, ...,m0}, let

vj =
1
2

ln
(

Pr(X0j = 1|Y = 1)Pr(X0j = −1|Y = −1)
Pr(X0j = −1|Y = 1)Pr(X0j = 1|Y = −1)

)
and let

v0 = 1
2

∑m0
j=1 ln

(
Pr(X0j=1|Y=1)Pr(X0j=−1|Y=1)

Pr(X0j=−1|Y=−1)Pr(X0j=1|Y=−1)

)
,

then
Pr(Y = y,H = h,X0 = x0)

Pr(Y = −y,H = h,X0 = x0)
= exp (y (w0 + v0 + w · h + v · x0)) , (2)

where w = (w1, ..., wk), v = (v1, ..., vm0). This in turn
implies that

fopt(x,h) = sign(y (w0 + v0 + w · h + v · x0)).

(Recall that x0 refers the components of x that depend di-
rectly on the label.)

Now, let us turn to constructing the estimates of the hid-
den variables using the observed variables. For each i, let Xi
consist of all indices j such that

Pr(Xij = 1|Hi = 1)−Pr(Xij = 1|Hi = −1) > β. (3)

Define

H+
i =

1
|Xi|

∑
j∈Xi

E(Xij |Hi = 1)

H−
i =

1
|Xi|

∑
j∈Xi

E(Xij |Hi = −1).

Define φi : R → R to be the affine transformation of the
real line that maps H+

i to 1, and H−
i to −1; that is,

φi(x) =
2x− (H+

i +H−
i )

H+
i −H−

i

.

For each i > 0, define

Ĥi = φi

 1
|Xi|

∑
j∈Xi

Xij

 ,

so that
E(Ĥi|Hi = hi) = hi. (4)

Now, let us analyze the accuracy of the classifier f ob-
tained by replacing each hidden variableHi with its estimate
Ĥi.

Our analysis will make use of the notion of a margin µ
defined by

µ(h,x0, y) = y (w0 + v0 + w · h + v · x0) .

Let us divide our analysis into the cases in which the Bayes
optimal classification is made with a large margin, and cases
in which its margin is small: for any γ > 0, we have

Pr [f(X) 6= Y ]
= Pr [f(X) 6= Y and |µ(H,X0, Y )| ≤ γ]

+Pr [f(X) 6= Y and |µ(H,X0, Y )| > γ]
≤ Pr [f(X) 6= Y and |µ(H,X0, Y )| ≤ γ]

+Pr [µ(H,X0, Y ) < −γ]

+Pr

[
Y

(
k∑
i=1

wi

(
Hi − Ĥi

))
> γ

]
(5)

Let us begin by working on the third term.
To control the variance of

∑k
i=1 wi

(
Hi − Ĥi

)
, we need

to show that we can assume without loss of generality that
each weight wi is not very big. Let ε > 0 be an error toler-
ance parameter that will be fixed later in the argument. Sup-
pose we modified the source by adding a layer of hidden
variables H̃1, ..., H̃k in which
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Figure 2: The dependence structure of the probability distribution used in the proof of Theorem 4.

• each H̃i was obtained by negating the value of Hi with
probability ε/k, and

• the conditional distributions of Xi1, ..., Ximi given H̃i

were the same as the old conditional distributions of
Xi1, ..., Ximi given Hi.

(See Figure 2.) If we did this, the joint distribution of

Y, H̃1, ..., H̃k, X01, ..., X0m0 , ..., Xk1, ..., Xkmk

would have total variation distance at most ε from the distri-
bution over

Y,H1, ...,Hk, X01, ..., X0m0 , ..., Xk1, ..., Xkmk
,

because the probability that any of the hidden variables is
flipped is at most k(ε/k) = ε. This means that the probabil-
ity of error of any classifier with respect to the original source
is at most εmore than its error probability with respect to the
modified source. Furthermore,

Y, H̃1, ..., H̃k, X01, ..., X0m0 , ..., Xk1, ..., Xkmk

have the same conditional independence structure as the orig-
inal source, but Pr(H̃i = h|Y = y) is always in the interval
[ε/k, 1− ε/k]. The definition of wi then implies that, by ap-
proximating the optimal classifier for the modified source, at
the cost of additional error ε, we may assume without loss of
generality that

W
def= max

i≥1
|wi| = O(ln(k/ε)). (6)

Furthermore, suppose that, instead of setting each of the prob-
abilities thatHi was flipped to be ε/k, we instead chose each
flip probability from the interval

[ε/(2k), ε/k].

Then the total variation distance from the original to the mod-
ified source would still be at most ε, and the weights would
still satisfy (6). But, since each weight is a continuous func-
tion of Pr(H̃i = h|Y = y), and there are only finitely
many values that H̃ and X0 can take, there are values in

[ε/(2k), ε/k] for the flip probabilities such that Pr(µ(H̃,X0, y) =
0) = 0. Thus, we may also assume without loss of generality
that

Pr(µ(H,X0, y) = 0) = 0. (7)
Now let us return to bounding the third term of (5). For

some realization y, h1, ..., hk of the label and the hidden vari-
ables, let us condition on the event that

Y = y,H1 = h1, ...,Hk = hk. (8)

The independence structure of the source implies that, after
conditioning on (8),

k∑
i=1

wi

(
Hi − Ĥi

)
=

k∑
i=1

wi

(
hi − Ĥi

)
is a sum of independent random variables. Further, by (4),
E(Ĥi) = hi, so the expectation of

S =
k∑
i=1

wi

(
hi − Ĥi

)
is 0. Thus, S is a sum of at least km independent random
variables, each of which, by (6), and the definitions ofXi and
Ĥi, takes values in an interval of size at most 4W

βm . Applying
the Hoeffding bound (Lemma 3), we get

Pr

[
Y

(
k∑
i=1

wi

(
Hi − Ĥi

))
> γ

]

≤ exp
(
−γ2β2m

8kW 2

)
≤ exp

(
−Ω

(
γ2β2m

k ln2(k/ε)

))
. (9)

Now, let us work on the first term of (5). We can pair
borderline cases with their counterparts in which the label is
negated. Equation (2) implies that the two cases are nearly
equally likely. Since both the linear classifier and the Bayes
optimal classifier make an incorrect classification in one of
the cases, the linear classifier approximates the accuracy of



the Bayes optimal classifier, on average, over borderline cases.
To see this logic in more detail, let us start by recalling that
(7) implies that

Pr [f(X) 6= Y and |µ(H,X0, Y )| ≤ γ]
= Pr [f(X) 6= Y and |µ(H,X0, Y )| ∈ (0, γ]] .

Now, let us evaluate this probability with a sum over pairs of
examples that differ only on the label. (Note that exactly one
example from each pair will have a positive margin.)

Pr [f(X) 6= Y and |µ(H,X0, Y )| ≤ γ]

=
∑

h,x,y:µ(h,x0,y)∈(0,γ]

Pr(H = h,X = x, Y = y)

×1f 6=y(x, y)
+Pr(H = h,X = x, Y = −y)
×1f 6=−y(x,−y),

where 1f 6=y is an indicator function for {(x, y) : f(x) 6= y}.
Since each pair of examples differs only in the label, any
classifier, in particular, the linear classifier f , must classify
one example of each pair correctly, thus

Pr [f(X) 6= Y and |µ(H,X0, Y )| ≤ γ]

≤
∑

h,x,y:µ(h,x0,y)∈(0,γ]

max{Pr(H = h,X = x, Y = y),

Pr(H = h,X = x, Y = −y)}.

Now, (2) immediately gives.

Pr [f(X) 6= Y and |µ(H,X0, Y )| ≤ γ]

≤
∑

h,x,y:µ(h,x0,y)∈(0,γ]

eγ min{Pr(H = h,X = x, Y = y),

Pr(H = h,X = x, Y = −y)}.

The Bayes optimal classifier chooses ŷ to maximize Pr(H =
h,X = x, Y = ŷ), so it will make an error in the opposite
case. Thus

Pr [f(X) 6= Y and |µ(H,X0, Y )| ≤ γ]

≤ eγ
∑

h,x,y:µ(h,x0,y)∈[−γ,0)

Pr(H = h,X = x, Y = y)

= eγPr(µ(H,X0, Y ) ∈ [−γ, 0)).

Putting this together with (5) and (9), we get

Pr [f(X) 6= Y ]
≤ eγPr [fopt(X,H) 6= Y ] + ε

+exp
(
−Ω

(
γ2β2m

k ln2(k/ε)

))
. (10)

Now, let us show that we can choose ε and γ so that
Pr(f(X) 6= Y ) = (1 + o(1))opt. Suppose ε = opt2, so
that the second term of (10) is o(opt). Then a choice of γ
that satisfies

γ = Θ

√k log2(k/opt) log(1/opt)
β2m



suffices for

exp
(
−Ω

(
γ2β2m

k ln2(k/ε)

))
= opt2

so that the third term of (10) is o(opt). For such a γ,

m = ω

(
k log2(k/opt) log(1/opt)

β2

)
suffices for

eγ = 1 + o(1),
completing the proof.

The hidden variables can afford to be much less influen-
tial if they have similar degrees of association with the class
designation. This is illustrated by considering the idealized
case in which all associations are equally strong.

Theorem 5 Suppose there is 0 < α < 1/4 such that each
hidden variable Hi has Pr(Hi = y|Y = y) = 1/2 + α for
both y ∈ {−1, 1}, and suppose m0 = 0.

If in addition for β > 0, each hidden variable β-affects
at least m observed variables, and opt is the error rate of
the Bayes optimal classifier, for

m = ω

(
log2(1/opt)

β2

)
,

then there is a linear classifier whose error rate is

(1 + o(1))opt.

Proof: First, we will modify the proof of Theorem 4 to get an
upper bound, and then reason that the upper bound implies
the theorem.

First, wi = ln 1+2α
1−2α for all i, so wi = Θ(α).

Thus (9) can be replaced with

Pr

[
Y

(
k∑
i=1

wi

(
Hi − Ĥi

))
> γ

]

≤ exp
(
−cγ2β2m

α2k

)
. (11)

for an absolute positive constant c, leading to a bound of

Pr(f(X) 6= Y )

≤ eγopt + exp
(
−cγ2β2m

α2k

)
. (12)

As argued in the proof of Theorem 4, the error rate of
the Bayes optimal classifier that uses only the observed vari-
ables is at least as large as the error rate of the optimal clas-
sifier that also uses the hidden variables, and, for sources
considered in this theorem, the latter classifier simply takes
a majority vote over the values of the hidden variables. This
classifier is incorrect when a majority of the hidden variables
take values different from the label. Applying the Hoeffing
bound, this happens with probability exp(−Ω(α2k)), and
thus, α2k = O(log(1/opt)) which implies

Pr(f(X) 6= Y )

≤ eγopt + exp
(
−c′γ2β2m

log(1/opt)

)
.



Here, a choice of γ that satisfies

γ = Θ

√ log2(1/opt)
β2m


is sufficient for

exp
(
−c′γ2β2m

log(1/opt)

)
= opt2,

and, for such a γ, m = ω
(

log2(1/opt)
β2

)
suffices for eγ =

1 + o(1).

4 Bayes Optimal Models are Two-layer
Neural Networks

In this section, we show that, even with further restrictions
on the structure of the source, a two-layer neural network is
needed to compute the exact Bayes optimal classifier.

Theorem 6 Suppose that there are real constants α, β > 0
and a positive integer m such that

• each Hi is independently equal to Y with probability
1/2 + α,

• m0 = 0, and mi = m for all i > 0, and

• each Xij is independently equal to Hi with probability
1/2 + β,

• A = 1+2α
1−2α , B = 1+2β

1−2β , and, for each i ∈ {1, ..., k},
si(x) =

∑m
j=1 xij .

Then the Bayes optimal classifier is

h(x) = sign

(
k∑
i=1

log
(
Bsi(x)A+ 1
Bsi(x) +A

))
. (13)

Proof: Notice that for any y ∈ {−1, 1},

Pr[Y = y|(∀i, j)Xij = xij ]

=
Pr[Y = y]Pr[(∀i, j)Xij = xij |Y = y]

Pr[(∀i, j)Xij = xij ]

=
Pr[(∀i, j)Xij = xij |Y = y]

2Pr[(∀i, j)Xij = xij ]

and therefore

Pr[Y = 1|(∀i, j)Xij = xij ]
> Pr[Y = −1|(∀i, j)Xij = xij ]

if and only if

Pr[(∀i, j)Xij = xij |Y = 1]
> Pr[(∀i, j)Xij = xij |Y = −1].

Therefore, the Bayes optimal classifier gives

h(x) = sign (Pr[(∀i, j)Xij = xij |Y = 1]−
Pr[(∀i, j)Xij = xij |Y = −1]) .

Since log is a monotone function we also have

h(x)
= sign (log Pr[(∀i, j)Xij = xij |Y = 1]

− log Pr[(∀i, j)Xij = xij |Y = −1])

= sign
(

log
Pr[(∀i, j)Xij = xij |Y = 1]

Pr[(∀i, j)Xij = xij |Y = −1]

)
.(14)

Let Si = HiY (so that Si that is 1 with probability 1
2 + α

and −1 with probability 1
2 − α), and Tij = XijHi (so Tij

is 1 with probability 1
2 + β and −1 with probability 1

2 − β).
Now since Tij and Si are independent of Y , and, the events
[(∀j)TijSi = xij ] are independent

Pr[(∀i, j)Xij = xij |Y = 1]
= Pr[(∀i, j)TijSiY = xij |Y = 1]
= Pr[(∀i, j)TijSi = xij |Y = 1]
= Pr[(∀i, j)TijSi = xij ]

=
k∏
i=1

Pr[(∀j)TijSi = xij ].

Similarly,

Pr[(∀i, j)Xij = xij |Y = −1]

=
k∏
i=1

Pr[(∀j)TijSi = −xij ].

By (14) we get

h(x)

= sign
(

log
Pr[(∀i, j)Xij = xij |Y = 1]

Pr[(∀i, j)Xij = xij |Y = −1]

)
= sign

(
k∑
i=1

log
(

Pr[(∀j)TijSi = xij ]
Pr[(∀j)TijSi = −xij ]

))
.(15)

Now, since for every i,

Pr[(∀j)Tij = xij ]
Pr[(∀j)Tij = −xij ]

=
m∏
j=1

Pr[Tij = xij ]
Pr[Tij = −xij ]

=
m∏
j=1

Bxij ,

we have

Pr[(∀j)TijSi = xij ]
= Pr[(∀j)Tij = xij ]Pr[Si = 1]

+Pr[(∀j)Tij = −xij ]Pr[Si = −1]

=
(

1
2
− α

)
(Pr[(∀j)Tij = xij ]A

+Pr[(∀j)Tij = −xij ])

=
(

1
2
− α

)
Pr[(∀j)Tij = −xij ]

A m∏
j=1

Bxij + 1

 .



and

Pr[(∀j)TijSi = −xij ]
= Pr[(∀j)Tij = −xij ]Pr[Si = 1]

+Pr[(∀j)Tij = xij ]Pr[Si = −1]

=
(

1
2
− α

)
(Pr[(∀j)Tij = −xij ]A

+Pr[(∀j)Tij = xij ])

=
(

1
2
− α

)
Pr[(∀j)Tij = −xij ]

A+
m∏
j=1

Bxij

 .

Now by (15),

h(x)

= sign

(
k∑
i=1

log

(
A
∏m
j=1B

xij + 1
A+

∏m
j=1B

xij

))

= sign

 k∑
i=1

log

A exp
(∑m

j=1(lnB)xij
)

+ 1

A+ exp
(∑m

j=1(lnB)xij
)
 ,

completing the proof.
One useful representation uses the following Taylor se-

ries

lnx = 2
[(

x− 1
x+ 1

)
+

1
3

(
x− 1
x+ 1

)3

+
1
5

(
x− 1
x+ 1

)5

+ · · ·
]

and gives

h(x) = sign
( k∑
i=1

∞∑
`=1

(
2α
)2`−1

2`− 1
(16)

× tanh2`−1

(
1
2

m∑
j=1

(lnB)xij

))
,

where

tanh y =
e2y − 1
e2y + 1

.

The hyperbolic tangent is a standard squashing function
for the hidden nodes in a two-layer neural network [9], and
raising it to a positive odd power maintains the sigmoid shape.
Thus the Bayes optimal classifier described in Theorem 6 can
be thought of as a two-layer neural network.

The classifier of (13) approximately,

• for each i, computes an estimate Vi of Hi by taking a
majority vote over Xi1, ..., Xim, and

• outputs a vote over Vi.

Intuitively, this is not a linear classifier, since, for example,
Xim matters less if the value of Vi is already more-or-less
determined by the values of Xi1, ..., Xi(m−1). This is for-
malized in the following.

Theorem 7 If k = m = 3, for any α > 0, there is a value
of β ∈ (0, 1/2), so that the classifier h defined in (13) is not
linear.

Proof: Assume for contradiction that w ∈ Rkm is the weight
vector of a linear classifier f equal to h, i.e.

sign

∑
i

∑
j

wijxij

 = h(x)

for all x ∈ {−1, 1}km.
We claim that this implies that h computes a majority

vote. By symmetry, for any x, any permutation φ of {1, ..., k}
and any permutation ψ over {1, ...,m}, we have

h(x) = sign

∑
i

∑
j

wijxφ(i)ψ(j)

 . (17)

In general, for real a and b, if sign(a) = sign(b), then sign(a+
b) = sign(a) = sign(b). Thus, (17) implies

h(x) = sign

∑
φ

∑
ψ

∑
i

∑
j

wijxφ(i)ψ(j)

 .

This in turn implies

h(x) = sign

(k − 1)!(m− 1)!

∑
i,j

wij

∑
i,j

xij


because the permutations φ and ψ pair each weight with each
feature an equal number of times. Rescaling, we get

h(x) = sign

∑
i,j

xij

 ,

the majority function.
To arrive at a contradiction, suppose k = m = 3, and

x = ((1, 1, 1), (1,−1,−1), (1,−1,−1)).

Note that the majority function evaluates to 1 on x. On the
other hand, using the definition in (13), we have

h(x) = sign
(

log
(
B3A+ 1
B3 +A

)
+ 2 log

(
B−1A+ 1
B−1 +A

))
.

As β gets closer to 1/2, B gets arbitrarily large. But

lim
B→∞

log
(
B3A+ 1
B3 +A

)
+ 2 log

(
B−1A+ 1
B−1 +A

)
= logA− 2 logA < 0

and therefore there is a value of β such that h(x) = −1, a
contradiction.

5 Some related work
A number of papers have considered why the Naive Bayes
algorithm, which outputs a linear hypothesis, works well de-
spite class-conditional dependencies among the features [7,
2, 23, 13]. While Naive Bayes works suprisingly well, other



linear classifiers typically perform better [5, 4]. Note that
Naive Bayes may not work for the sources considered in this
paper.

The hidden variable model studied here is a generaliza-
tion of the Neyman Model of Evolution [15]. A PAC algo-
rithm for learning the probability distribution over the leaves
for such models is known [6]. Using known tools, this algo-
rithm can be used as a subroutine in a polynomial-time al-
gorithm for approximating the Bayes-Optimal classifier for
sources in which the class-conditional distributions are of
this form [1]. The linear approximation pointed out in this
paper could be a step toward a more efficient algorithm for
this problem. Most examples appear to be classified cor-
rectly by a large margin, which promises to help even more.

Another related line of work is on threshold circuit com-
plexity (see [18, 21] for surveys).

6 Conclusion
The analysis of this paper illustrates the power of linear mod-
els even in the presence of latent structure among the fea-
tures. The exact mathematical statements of this paper are
among many possible choices that trade off between inter-
pretibility and coverage in different ways. For example, it
would not be hard to extend the approximation to apply to
sources in which fan-in is allowed. If some observed vari-
ables depend on multiple hidden variables, as long as each
hidden variable has enough variables that depend on it alone,
we can construct the linear approximation as a function only
of the observed variables that depend on specific hidden vari-
ables.

Our analysis only demonstrates the existence of a good
linear classifier, leaving the following problem open: what
training algorithm is best suited to learn the parameters of
a linear classifier approximating the Bayes-optimal accuracy
in hidden variable models like that studied here?
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