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Abstract. The purpose of this paper is to revisit Hua’s matrix equality (and

inequality) through the Schur complement. We present Hua’s original proof and

two new proofs with some extensions of Hua’s matrix equality and inequalities.

The new proofs use a result concerning Schur complements and a generalization

of Sylvester’s law of inertia, each of which is useful in its own right.
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1. Introduction

Loo-Keng Hua (1910-1985) was a great mathematician and a Chinese legendary
hero. He had little formal education, but made enormous contributions to number
theory, algebra, complex analysis, matrix geometry and applied mathematics [10].
He worked with G.H. Hardy for two years and spent several years in USA [8].

The ideas in this paper were motivated by an elegant matrix equality which was
established in 1955 by Hua in [14]. Let A and B be m× n complex matrices, In or
simply I, be the n× n identity matrix, and denote by A∗ the conjugate transpose
of the matrix A. When In −A∗A and so Im −AA∗ is nonsingular, Hua showed (in
the proof of Theorem 1 of [14]) the matrix equality

(I −B∗B)− (I −B∗A)(In −A∗A)−1(I −A∗B)
= −(A−B)∗(Im −AA∗)−1(A−B).(1)

Hua’s paper [14] does not appear to be widely known or easily available, so it is
worthwhile giving his short proof here, followed by a brief explanation:

(I −B∗A)(I −A∗A)−1(I −A∗B)− (I −B∗B)
= (I −A∗A)−1 − I −B∗A(I −A∗A)−1

−(I −A∗A)−1A∗B + B∗(I + A(I −A∗A)−1A∗)B
= A∗(I −AA∗)−1A−B∗(I −AA∗)−1A

−A∗(I −AA∗)−1B + B∗(I −AA∗)−1B

= (B −A)∗(I −AA∗)−1(B −A).

In showing the second identity in this proof, we can use the formulae

(I −A∗A)−1 = I + A∗(I −AA∗)−1A(2)
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and
(I −A∗A)−1A∗ = A∗(I −AA∗)−1

which are easily established by multiplying both sides by I−A∗A. These well-known
matrix identities can be found in, for example, [6, 21, 24].

In establishing (1), Hua [14] took m = n and both A and B to be strictly
contractive: a matrix A is said to be contractive whenever I −A∗A is nonnegative
definite, namely the eigenvalues of A∗A (i.e., the singular values of A) all lie in
the closed unit interval [0, 1]. Horn & Johnson [13, p. 46] call such matrices A
contractions; see also Bhatia [2, p. 7]. When I − A∗A is positive definite, all
singular values of A lie in the half-open unit interval [0, 1), such an A is said to be
strictly contractive. But it is clear from the proof that the only restrictions on A
and B are that they both be m× n, and I −A∗A be nonsingular.

If I −A∗A is positive definite, it is clear from (1) that (see also Ando [1])

I −B∗B ≤ (I −B∗A)(I −A∗A)−1(I −A∗B).(3)

The matrix partial ordering in (3) is in the Löwner sense: F ≤ G means that both
F and G are Hermitian matrices of the same size and G−F is nonnegative definite.
In particular, G ≥ 0 means that G is nonnegative definite. Note that, in light of
(1), equality holds in (3) if and only if A = B.

Hua’s main purpose for (1) in [14] was to establish the determinant inequality

det(I −A∗A) · det(I −B∗B) ≤ |det(I −A∗B)|2(4)

with both A and B (strictly) contractive. To do this he first proved the now well-
known inequality (see, for instance, [16, p. 117]): for Hermitian M ≥ 0, S ≥ 0

(5) det(M + S) ≥ det(M) + det(S).

Equality holds in (5) if and only if M +S is singular or M = 0 or S = 0 (or M and
S are scalars). Hua then proved the following inequality (6), by taking

M = I −B∗B, S = (A−B)∗(Im −AA∗)−1(A−B),

and using (1)
M + S = (I −B∗A)(In −A∗A)−1(I −A∗B)

to get

|det(I −A∗B)|2 ≥ det(I −A∗A) · (det(I −B∗B)(6)

+det((A−B)∗(Im −AA∗)−1(A−B))
)
,

which yields (4), where equality holds if and only if A = B (or m = n = 1).
If A and B are square, then

|det(I −A∗B)|2 ≥ det(I −A∗A) · det(I −B∗B) + |det(A−B)|2.
In 1958 Marcus [15] extended (4), and also proved for I − A∗A and I − B∗B

nonnegative definite and any complex n-vector x:

x∗(I −A∗A)x · x∗(I −B∗B)x ≤ |x∗(I −A∗B)x|2.(7)

In 1980 Ando [1] generalized (7), pointing out if A and B are strictly contractive
then (7) implies (3).

We shall call the expression (matrix) on the left-hand side of the identity (1) Hua
matrix and denoted it by H, and the matrix equality (1) Hua’s matrix equality. We
will refer to (3) as Hua’s matrix inequality and (4) Hua’s determinant inequality.

Our purpose in this paper is to present a new proof of Hua’s matrix equality (1),
and a new proof of Hua’s matrix inequality (3), both using Schur complements,
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and we do this in Sections 3 and 4, after presenting necessary background theory
in Section 2. Perhaps more interesting than the proofs are the tools we introduce
to obtain them — a general result on Schur complements for the first proof, and a
generalization of Sylvester’s law of inertia for the second. These are more widely
useful, and appear to be new to us in the literature. In Section 5 we comment on
the most general situation when the matrix A is not necessarily strictly contractive,
in Section 6 we use our result on Schur complements to generalize Hua’s matrix
equality (1) and prove a new inequality.

2. Background Theory

We will use the following material on Schur complements.
When the matrix C in the top-left corner of the partitioned matrix

G =
(

C D
E F

)
(8)

is square and nonsingular, then the Schur complement of C in G is defined to be

(G/C) = F − EC−1D.(9)

The term Schur complement and the notation (G/C) in (9) were introduced in
1968 by E. Haynsworth [11] following the seminal 1917 paper [22] by I. Schur.

When C is square and singular, or rectangular, (9) can be generalized. We give a
constructive approach that makes the Schur complement, its main properties, and
its generalization and the resulting necessary conditions, obvious. If C is m×n and
F is p×q in (8), and C− denotes any generalized inverse of C satisfying CC−C = C,
then(

Im 0
−EC− Ip

)(
C D
E F

)(
In −C−D
0 Iq

)
=

(
C D − CC−D

E − EC−C G1

)
,(10)

where

G1 = F − EC−D − EC−(D − CC−D) = F − EC−D − (E − EC−C)C−D.

When C is invertible the off-diagonal blocks in the right-hand side of (10) are
zero and G1 is the Schur complement (9). As we will see, the vanishing of these
two blocks gives the Schur complement its useful properties, so we will require in
the general case that

CC−D = D and EC−C = E,(11)

or equivalently that

C(D) ⊆ C(C) and R(E) ⊆ R(C) ⇔ rank(C, D) = rank(C) = rank
(

C
E

)
,(12)

where C(·) denotes column space (range) and R(·) row space. Carlson [3] refers
to these conditions as the “natural setting for results in generalized Schur comple-
ments”. We will refer to (11) and (12) as the natural conditions for C in G, or just
the natural conditions. We define the generalized Schur complement of C in G as
G1 above when these natural conditions (11) hold

(G/C) = F − EC−D.(13)

Note that the natural conditions are necessary and sufficient for the general-
ized Schur complement (13) to be unique [3, 21, 24]. And the natural conditions
automatically hold when C is invertible or G is (Hermitian) nonnegative definite.
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When either of the natural conditions (11) holds, and C and F are square in (8),
we see from (10) that

det(G) = det(C) · det(G/C).

When both the natural conditions (11) hold, rank is additive on the Schur com-
plement (G/C) in the sense that

rank(G) = rank(C) + rank(G/C).(14)

This rank additivity result is obvious from (10), and was apparently first established
in 1946 by Guttman [9] for C square and nonsingular and then extended by Meyer
[19] and Marsaglia & Styan [17] to C square and singular or rectangular – but
subject to the natural conditions (11) or (12).

We define the inertia In(M) of a Hermitian matrix M to be the ordered triple
{i+, i−, i0}, where i+ denotes the number of positive eigenvalues of M , i− the
number of negative eigenvalues, and i0 the number of zero eigenvalues.

Crucial to studies of inertia is Sylvester’s law of inertia:

In(M) = In(T ∗MT ),(15)

which was first established in 1852 by Sylvester [25]; cf. e.g., Mirsky [20, p. 377]. In
(15) the matrix M is Hermitian and T is square and nonsingular; in Section 4 we
extend (15) to situations where the matrix T is square and singular or rectangular
and show how this generalized Sylvester’s law of inertia may be used to provide a
new proof of Hua’s matrix inequality (3) using Schur complements.

The inertia is additive on the Schur complement (G/C) in the sense that when
the matrix G in (8) is Hermitian with C square (and so also Hermitian), then

In(G) = In(C) + In(G/C),(16)

With C nonsingular this is obvious from (10) and (15). Haynsworth [11] established
(16) with C nonsingular while Carlson, Haynsworth & Markham [4] showed that
(16) remains true when C is square and singular provided that the (generalized)
Schur complement (G/C) is defined as in (13) with the natural conditions (11) or
(12) which, since now C = C∗ and E = D∗ with G Hermitian, can be shown to
simplify to

CC−D = D ⇔ C(D) ⊆ C(C) ⇔ rank(C, D) = rank(C).(17)

Then with T =
(

I
0
−C−D

I

)
, (16) follows from In(G) = In(T ∗GT ) due to (15).

The theory for the Schur complement of F in G can be similarly found by apply-
ing permutations to bring F to the top-left corner. For more on Schur complements
and their applications see the survey articles by Carlson [3], Cottle [5], Ouellette
[21], and Styan [24], and the book edited by Zhang [28].

3. A useful result on Schur complements

For our new proof of Hua’s matrix equality (1) we will need the following lemma.

Lemma 1. Let G be a partitioned matrix defined as in (8), with C m× n in
(

Im 0
X1 Y1

)(
C D
E F

)(
In X2

0 Y2

)
= Z1GZ2.

If the natural conditions (11) hold and (G/C) is the Schur complement of C in
G, then the natural conditions hold for C in Z1GZ2, and the Schur complement
(Z1GZ2/C) of C in Z1GZ2 is invariant for all choices of X1 and X2, and
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(Z1GZ2/C) = Y1(G/C)Y2.(18)

Proof. Multiplying out

Z1GZ2 =
(

C CX2 + DY2

X1C + Y1E X1CX2 + Y1EX2 + X1DY2 + Y1FY2

)

and checking the natural conditions for C in Z1GZ2, we see that (Z1GZ2/C) is
well defined and unique. Using (11) and by a direct computation we obtain (18).

Corollary 1. When Y1 and Y2 are invertible, if the natural conditions hold for C
in Z1GZ2, then they hold for C in G, and (G/C) = Y −1

1 (Z1GZ2/C)Y −1
2 .

Proof. These follow by applying Lemma 1 to Z−1
1 (Z1GZ2)Z−1

2 = G.

We note that a similar result to Lemma 1 has appeared in [26, 27]. We now use
Lemma 1 to give a new proof of (1). The generalized inverse notation in the proof
is for later use.

Proof of (1). Let I −A∗A be nonsingular, so (I −A∗A)− = (I −A∗A)−1. Let

H1 =
(

I −A∗A I −A∗B
I −B∗A I −B∗B

)
,(19)

H2 =
(

I 0
−I I

)
H1

(
I −I
0 I

)
=

(
I −A∗A A∗(A−B)

(A−B)∗A −(A−B)∗(A−B)

)
.(20)

The Hua matrix H is the Schur complement of I −A∗A in H1:

H = (H1/(I −A∗A)) = (I −B∗B)− (I −B∗A)(I −A∗A)−(I −A∗B)(21)

and from Lemma 1 this equals the Schur complement of I −A∗A in H2:

(H2/(I −A∗A)) = −(A−B)∗[Im + A(I −A∗A)−A∗](A−B)(22)
= −(A−B)∗(Im −AA∗)−(A−B)(23)

from (2) with A and A∗ interchanged. So the Hua matrix

H = (I −B∗B)− (I −B∗A)(In −A∗A)−1(I −A∗B)
= −(A−B)∗(Im −AA∗)−1(A−B)(24)

and our easy proof of (1) follows at once.

A similar proof is obtained using a technique by Embry [7]. If we replace B
by A − N in the right-hand side of (21) then, after some cancellation, it becomes
−N∗[Im + A(I − A∗A)−1A∗]N , which is the second expression in (23) since now
N = A − B. In fact Embry only needed to show (21) could not be nonnegative
definite in [7], and did not go on to prove (24).

Our Schur complement approach allows us to generalize Hua’s matrix equality
(1) to the case of singular I −A∗A with minimal additional effort.

Theorem 1. Let A and B be be any m× n complex matrices such that

C(I −A∗B) ⊆ C(I −A∗A).(25)

Then

H = (I −B∗B)− (I −B∗A)(I −A∗A)−(I −A∗B)
= −(A−B)∗(Im −AA∗)−(A−B).(26)
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Proof. From (19) we see that (25) is the natural condition for I−A∗A in Hermitian
H1. So (21) is the unique Schur complement of I −A∗A in H1. Moreover, since

rank(I −A∗B, I −A∗A) = rank(I −A∗A)

equivalently,
rank(A∗A−A∗B, I −A∗A) = rank(I −A∗A),

we see that (25) is equivalent to

C(A∗(A−B)) ⊆ C(I −A∗A),

Thus if (25) holds, the Schur complement of I−A∗A in H2 is unique. By Lemma 1,

H = (H1/(I −A∗A)) = (H2/(I −A∗A)).

We now only need to show that (22) is equal to (23). Notice that

(I−A∗A)[I +A∗(I−AA∗)−A](I−A∗A) = (I−A∗A)2 +A∗(I−AA∗)A = I−A∗A.

This says that I + A∗(I −AA∗)−A is a generalized inverse of I −A∗A of the form
(I −A∗A)−, completing the proof. This also generalizing equation (2).

We note that the identity (26) is understood as follows: for any generalized
inverse (I−A∗A)− on the left-hand side, there is a generalized inverse (Im−AA∗)−

on the right-hand side such that the expressions on both sides agree.

We now show Hua’s matrix inequality (3) also generalizes to the singular case.

Corollary 2. Let C− denote any generalized inverse of C satisfying CC−C = C.
If I −A∗A is nonnegative definite and (25) holds, then

I −B∗B ≤ (I −B∗A)(I −A∗A)−(I −A∗B).(27)

Proof. When (25) holds, there exists n×n R so that I −A∗B = (I −A∗A)R, then

A∗(A−B) = (I −A∗B)− (I −A∗A) = (I −A∗A)(R− I),

which with (22) shows

(H2/(I −A∗A)) = −(A−B)∗(A−B)− (R− I)∗(I −A∗A)(R− I) ≤ 0.

Since it is equal to the right hand side of (26), the inequality (27) follows.

When the natural conditions (25) hold, we can combine (14) with (19) to obtain

(28) det(H1) = det(I −A∗A)det(H).

This is zero if I −A∗A is singular, otherwise the natural conditions must hold and

(−1)ndet(H1) = det(I −A∗A)det[(A−B)∗(Im −AA∗)−1(A−B)]
= |det(A−B)|2, if A and B are n× n,(29)

since A∗A and AA∗ have the same nonzero eigenvalues. Note that here A need
not be contractive. Whether A and B are square or not, if they are both (strictly)
contractive, we see from (6) and the above that (note the “gap” in (4))

(−1)ndet(H1) ≤ |det(I −A∗B)|2 − det(I −A∗A) · det(I −B∗B).

As Hua [14] observed, when I−A∗A and I−B∗B are both positive definite then
I − A∗B is nonsingular and the nonpositive definiteness (no positive eigenvalues)
of the Hermitian Hua matrix H defined in (1), see (24), is equivalent to

H̃1 =
(

(I −A∗A)−1 (I −B∗A)−1

(I −A∗B)−1 (I −B∗B)−1

)
≥ 0.(30)
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We note that the matrix I − A∗B now appears in the lower left rather than the
upper right position as in (19), and that its nonsingularity follows from [18, p. 246]

|λ(A∗B)| ≤ σmax(A∗B) ≤ σmax(A) · σmax(B) < 1,

Here λ(·) denotes any eigenvalue, and σmax(·) the largest singular value.
The inequality (30) follows from the inertia additivity for the symmetrically

permuted block matrix,

In
(

(I −B∗B)−1 (I −A∗B)−1

(I −B∗A)−1 (I −A∗A)−1

)
= In[(I −B∗B)−1] + In(K)(31)

where

K = (I −A∗A)−1 − (I −B∗A)−1(I −B∗B)(I −A∗B)−1.

It follows from (21), then (15), that

(I −B∗A)K(I −A∗B) = −H, In(K) = In(−H).(32)

Since the Hua matrix H is nonpositive definite, K is nonnegative definite, (30)
follows from (31). Using (14), (32), (28), the determinant of the matrix in (30) is

det(H̃1) = det((I −B∗B)−1)det(K)
= det(−H)/[det(I −B∗B) · |det(I −A∗B)|2]
=

(−1)ndet(H1)
det(I −A∗A)det(I −B∗B)|det(I −A∗B)|2 ,

which can be combined with (29) and (30) to give more information on det(H̃1).

4. A generalization of Sylvester’s law of inertia

We have seen that an elegant approach to proving Hua’s matrix and determinant
inequalities is to first prove Hua’s matrix equality, since the inequalities follow from
this. But our early work showed we could prove the matrix inequality directly using
a generalized version of Sylvester’s law of inertia, and since this is interesting in its
own right, we include it here.

Sylvester’s law of inertia (15) holds for congruent transformations T ∗MT with
T square and nonsingular. Here we give a similar result for T square and singular,
or rectangular. For the Hermitian matrix M we will write, cf. (15),

i+(M) = the number of positive eigenvalues of M,

i−(M) = the number of negative eigenvalues of M,

i0(M) = the number of zero eigenvalues of M,

and i±(M) for either i+(M) or i−(M) consistently within an expression.

Lemma 2. Let M be p× p Hermitian. Then for any p× q matrix T of rank r

0 ≤ i−(T ∗MT ) + i+(T ∗MT ) = rank(T ∗MT ) ≤ min{r, rank(M)},(33)
i±(M)− (p− r) ≤ i±(T ∗MT ) ≤ i±(M).(34)

Proof. Since M is Hermitian, (33) follows immediately. Let

λp(M) ≤ · · · ≤ λ2(M) ≤ λ1(M)

denote the ordered, necessarily real, eigenvalues of M . When r = 0, (34) is trivially
true. So let r > 0 and let T have singular value decomposition T = UΣV ∗ =
UrΣrV

∗
r , and let Mr = U∗

r MUr, where Ur is p × r and Vr is q × r with U∗
r Ur =

V ∗
r Vr = Ir, while Σr is r × r diagonal positive definite. It follows that
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V ∗T ∗MTV =
(

ΣrMrΣr 0
0 0

)
.(35)

By the Poincaré separation theorem, cf. e.g., [12, Cor. 4.3.16], [23], we have

λk+p−r(M) ≤ λk(U∗
r MUr) = λk(Mr) ≤ λk(M), k = 1, 2, . . . , r.(36)

We see from this that U∗
r MUr = Mr cannot have, respectively, any more negative

eigenvalues, or any more positive eigenvalues, than M and so the upper bound in
(34) is established. We now consider i+(T ∗MT ) = i+(Mr) (by (35)). If M has
exactly k + p − r positive eigenvalues then Mr has at least k positive eigenvalues
and so i+(Mr) ≥ k = i+(M)− (p−r); a similar argument for i−(T ∗MT ) = i−(Mr)
holds in terms of the negative eigenvalues and so our proof is complete.

We can use (33) and (34) to obtain bounds on i0(T ∗MT ) = q − i+(T ∗MT ) −
i−(T ∗MT ) in special cases. When T has full row rank r = p, (34) collapses to

i±(T ∗MT ) = i±(M)(37)

and then

i0(T ∗MT ) = (q − p) + i0(M).(38)

When q = p = r then T is square and nonsingular and (37) and (38) together
become Sylvester’s law of inertia (15).

We now show how this generalized Sylvester’s law of inertia may be used to
provide a direct proof of Hua’s matrix inequality (3) using Schur complements.

Another Proof of (3). With m× n strictly contractive A, we define

T =
(

In In

A B

)
, where rank(T ) = n + rank(B −A),(39)

by rank additivity on the Schur complement (T/In) = B −A, cf. (14). Then

H1 = T ∗
(

In 0
0 −Im

)
T =

(
In −A∗A In −A∗B
In −B∗A In −B∗B

)
(40)

and the Hua matrix H, cf. (1), is the Schur complement of In − A∗A in H1, cf.
(21). But inertia is additive on the Schur complement H, cf. (16), so

i+(H1) = n + i+(H) and i−(H1) = i−(H).(41)

This with (33) in Lemma 2 and (39) gives

0 ≤ i−(H1) + i+(H1) = n + i−(H) + i+(H) ≤ rank(T ) = n + rank(B −A),
i−(H) + i+(H) ≤ rank(B −A).

With (34) in Lemma 2, and (39),

i±

(
In 0
0 −Im

)
− (m− rank(B −A)) ≤ i±(H1) ≤ i±

(
In 0
0 −Im

)
,

where using (41) the right-hand side result for i+ gives n + i+(H) ≤ n, and the
left-hand side result for i− gives rank(B − A) ≤ i−(H). So i+(H) = 0 and H has
no positive eigenvalues, i−(H) = rank(H) = rank(B − A), and our proof of Hua’s
matrix inequality (3) using Schur complements is complete.

When m = n, (14) with (39) and (40) gives another proof of (29):

det(H1) = (−1)n|det(T )|2 = (−1)n|det(B −A)|2.
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5. Hua’s matrix without contractiveness

Since inertia is additive on the Schur complement, cf. (16), equations (19) and
(21) show for the Hua matrix H that with

H1 =
(

I −A∗A I −A∗B
I −B∗A I −B∗B

)
, In(H1) = In(I −A∗A) + In(H)(42)

holds for A not necessarily strictly contractive, but it does require that I −A∗A be
nonsingular (which we also need for the Hua matrix H to be defined). But from
(15) with

H̃2 =
(−I I

I 0

)
H1

(−I I
I 0

)

=
(−(A−B)∗(A−B) (A−B)∗A

A∗(A−B) I −A∗A

)
,

In(H1) = In(H̃2) = In[−(A−B)∗(A−B)] + In(I −A∗QA−BA)(43)

holds for any complex matrix A not necessarily (strictly) contractive. Here the
Hermitian idempotent matrix

QA−B = I − (A−B)[(A−B)∗(A−B)]−(A−B)∗ = I − PA−B

is the orthogonal projector onto the null space of (A− B)∗ or onto the orthocom-
plement of the column space of A − B, and the natural conditions for the Schur
complement (H̃2/− (A−B)∗(A−B)) can be seen to hold.

Combining (42) and (43) yields

In(H) = {0, c, n− c}+ In(I −A∗QA)− In(I −A∗A)(44)

with I −A∗A nonsingular, where

c = rank(A−B) and Q = QA−B .

Hence, when I −A∗A is nonsingular, we find that

i+(H) = i+(I −A∗QA)− i+(I −A∗A) ≥ 0

i−(H) = c + i−(I −A∗QA)− i−(I −A∗A) ≤ c

i0(H) = n− c + i0(I −A∗QA) ≥ n− c.

(45)

The first two equalities and the first inequality in (45) follow at once from (44)
while the second inequality (as well as the first) follows from

A∗QA ≤ A∗A,(46)

which holds since I − Q is Hermitian idempotent and hence nonnegative definite;
equality holds in (46) if and only if QA = A. The last equality in (45) follows from
the nonsingularity of I −A∗A.

The inequality (46) shows that QA is strictly contractive whenever A is and
then equality holds throughout all of (45). To go the other way we see that when
equality holds throughout (45) then I−A∗QA must be nonsingular and, in addition,
i±(I −A∗QA) = i±(I −A∗A) or equivalently QA and A have the same numbers of
(nonzero) singular values, respectively greater than and less than 1; neither A nor
QA need, however, be strictly contractive. As an example, let

A =
(

2 0
0 1

2

)
, B =

(
2 0
0 − 1

2

)
, A−B =

(
0 0
0 1

)
,
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so that

Q =
(

1 0
0 0

)
, QA =

(
2 0
0 0

)
, I −A∗QA =

(−3 0
0 1

)
, I −A∗A =

(−3 0
0 3

4

)
.

The equalities in (45), or equivalently in the inertia equality (44), lead to

rank(H) = rank(A−B)− [n− rank(I −A∗QA)] ≤ rank(A−B)(47)

with equality if and only if I −A∗QA is nonsingular; curiously, this does not (seem
to) require that i±(I − A∗QA) = i±(I − A∗A); of course we do need (our earlier
assumption) that I −A∗A is nonsingular. When A is strictly contractive, however,
the rank of H is maximal—equal to rank(A−B).

6. Generalizing Hua’s matrix equality

The factorization of H1 in (40) and the proof of (1) in Section 3 suggest a nice
generalization of Hua’s matrix equality (1). The following proof suggests the power
of the Schur complement approach used in Section 3.

Theorem 2. Let W , X, Y , and Z be any m× n complex matrices such that

C(I + X∗Z) ⊆ C(I + X∗Y ) and R(I + W ∗Y ) ⊆ R(I + X∗Y ).(48)

Then the “generalized Hua matrix”

Hg = I + W ∗Z − (I + W ∗Y )(I + X∗Y )−(I + X∗Z)

= (W −X)∗(Im + Y X∗)−(Z − Y ).(49)

Proof. Let

J1 =
(

I I
X W

)∗(
I I
Y Z

)
=

(
I + X∗Y I + X∗Z
I + W ∗Y I + W ∗Z

)
.

By (12), the inclusions in (48) are the natural conditions for I + X∗Y in J1. So

H(1)
g = I + W ∗Z − (I + W ∗Y )(I + X∗Y )−(I + X∗Z)

is the unique Schur complement of I + X∗Y in J1. Furthermore, by Lemma 1,

H(2)
g = (W −X)∗[Im − Y (I + X∗Y )−X∗](Z − Y )

is the unique Schur complement of I + X∗Y in

J2 =
(

I 0
−I I

)
J1

(
I −I
0 I

)
=

(
I + X∗Y X∗(Z − Y )

(W −X)∗Y (W −X)∗(Z − Y )

)
,

and H
(1)
g = H

(2)
g . On the other hand,

(Im + Y X∗)[Im − Y (I + X∗Y )−X∗](Im + Y X∗) =
(Im + Y X∗)2 − Y (I + X∗Y )X∗ = Im + Y X∗

so Im−Y (I+X∗Y )−X∗ is a generalized inverse of I+Y X∗ of the form (Im+Y X∗)−

(which generalizes Duncan’s formula (2) further than in Theorem 1). This shows

H(2)
g = (W −X)∗(Im + Y X∗)−(Z − Y )

for some generalized inverse (Im + Y X∗)−, so (49) holds, completing the proof.

Whenever I + X∗Y is nonsingular (and so Im + Y X∗ is also nonsingular) the
natural conditions (48) automatically hold.

When W = B, X = A, Y = −A, and Z = −B, then (48) reduces to (25) and
(49) reduces to (26), our generalization of (1):
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H = (I −B∗B)− (I −B∗A)(In −A∗A)−(I −A∗B)
= −(A−B)∗(Im −AA∗)−(A−B).

When W = −B, X = A, Y = A, Z = −B, however, then (49) yields the alternate
Hua matrix:

Ha = (I + B∗B)− (I −B∗A)(In + A∗A)−1(I −A∗B)
= (A + B)∗(Im + AA∗)−1(A + B),

which holds for all m × n matrices A and B (since In + A∗A and Im + AA∗ are
always positive definite). Hence

I + B∗B ≥ (I −B∗A)(I + A∗A)−1(I −A∗B)

holds for all m× n matrices A and B, with equality if and only if A = −B.
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