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Abstract The standard approaches to solving overdetermined linear systems Ax ≈
b construct minimal corrections to the data to make the corrected system
compatible. In ordinary least squares (LS) the correction is restricted
to the right hand side b, while in scaled total least squares (Scaled TLS)
[10; 7] corrections to both b and A are allowed, and their relative sizes
are determined by a real positive parameter γ. As γ → 0, the Scaled
TLS solution approaches the LS solution. Fundamentals of the Scaled
TLS problem are analyzed in our paper [7] and in the contribution in
this book entitled Unifying least squares, total least squares and data
least squares.

This contribution is based on the paper [8]. It presents a theoretical
analysis of the relationship between the sizes of the LS and Scaled TLS
corrections (called the LS and Scaled TLS distances) in terms of γ. We
give new upper and lower bounds on the LS distance in terms of the
Scaled TLS distance, compare these to existing bounds, and examine
the tightness of the new bounds.

This work can be applied to the analysis of iterative methods which
minimize the residual norm [9; 6].

Keywords: ordinary least squares, scaled total least squares, singular value decom-
position, linear equations, least squares residual.
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Introduction
Consider an overdetermined approximate linear system

Ax ≈ b, A an n by k matrix, b an n-vector, b /∈ R(A), (1)

where R(M) denote the range (column space) of a matrix M . In LS we
seek (we use ‖ · ‖ to denote the vector 2-norm)

LS distance ≡ min
r,x
‖r‖ subject to Ax = b− r. (2)

In Scaled TLS, for a given parameter γ > 0, x, G and r are sought to
minimize the Frobenius (F) norm in

Scaled TLS distance ≡ min
r,G,x
‖[r,G]‖F s. t. (A+G)xγ = bγ−r. (3)

We call the x = x(γ) which minimizes this distance the Scaled TLS
solution of (3). Here the relative sizes of the corrections G and r in A
and bγ are determined by the real scaling parameter γ > 0. As γ → 0
the Scaled TLS solution approaches the LS solution. The formulation
(3) is studied in detail in [7]. We present an introduction to and refine
some results of [7] in our contribution Unifying least squares, total least
squares and data least squares presented in this book. Here we follow
the notation introduced there. In applications γ can have a statistical
interpretation, see for example [7, §1], but here we regard γ simply as a
variable.

Scaled TLS solutions can be found via the singular value decomposi-
tion (SVD). Let σmin(·) denote the smallest singular value of a matrix,
and let Pk be the orthogonal projector onto the left singular vector sub-
space of A corresponding to σmin(A). The bounds presented here will
assume

the n× (k + 1) matrix [A, b] has rank k + 1, and Pkb 6= 0. (4)

We showed in [7, (3.7)] that this implied

0 < σ(γ) ≡ σmin([A, bγ]) < σmin(A) for all γ > 0. (5)

In this case the unique solution of the Scaled TLS problem (3) is (in
theory) obtained from scaling the right singular vector of [A, bγ] corre-
sponding to σmin([A, bγ]), and the norm of the Scaled TLS correction
satisfies, for a given γ > 0 (see for example [7, (1.9)], or [5, §12.3] when
γ = 1),

Scaled TLS distance in (3) = σmin([A, bγ]). (6)
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The paper [8] and the presentation of the bounds in this contribution
are greatly simplified by only dealing with problems where (4) holds.
The assumption (4) is equivalent to that in [7, (1.10)] plus the restric-
tion b /∈ R(A), which eliminates the theoretically trivial case b ∈ R(A).
It is sufficient to note here that nearly all practical overdetermined prob-
lems will already satisfy (4), but any overdetermined (and incompatible)
problem that does not can be reduced to one that does, see [7, §8], and
the bounds presented here with this assumption will be applicable to the
original problem.

It is known that (see for example [7, (6.3)])

lim
γ→0

Scaled TLS distance in (3)
γ

= lim
γ→0

σmin([A, bγ])
γ

(7)

= ‖r‖, the LS distance in (2),

but here we examine the relationship between these distances for any
γ > 0. This will bound the rate at which these quantities approach each
other for small γ, as well as provide bounds on the LS distance in terms
of σmin([A, bγ]), and vice versa, for all γ > 0. It will in general simplify
the presentation to assume γ > 0, since when γ = 0 is meaningful, the
values will be obvious.

Van Huffel and Vandewalle [3] derived several useful bounds for TLS
versus LS (the γ = 1 case). Our results extend some of these to the case
of general γ > 0, as well as provide new bounds.

The contribution is organized as follows. In Section 1 we present our
main result, in particular, bounds on the least squares residual norm
‖r‖ (LS distance) in terms of the scaled total least squares distance
σmin([A, bγ]). We show how good these bounds are, and how varying
γ gives important insights into the asymptotic relationship between the
LS and Scaled TLS distances. In Section 2 we compare our bounds
to previous results. In Section 3 we analyze the ratio of the minimal
singular values of [A, bγ] and A which determines the tightness of the
presented bounds.

1. Main result
Our main result relating the LS distance ‖r‖ to the Scaled TLS distance
σmin([A, bγ]) is formulated in the following theorem, see [8, Theorem 4.1
and Corollary 6.1].

Theorem 1 Given a scalar γ > 0, and an n by k+ 1 matrix [A, b], use
σ(·) to denote singular values and ‖ · ‖ to denote 2-norms. If r and x
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solve minr,x ‖r‖ subject to Ax = b− r, and (4) holds, then

0 < θ(γ) ≡ σmin([A, bγ])
σmax(A)

≤ δ(γ) ≡ σmin([A, bγ])
σmin(A)

< 1, (8)

and we have bounds on the LS residual norm ‖r‖ in terms of the Scaled
TLS distance σmin([A, bγ]):

λr ≡ σmin([A, bγ]){γ−2+ ‖x‖2}
1
2 < σmin([A, bγ]) {γ−2+

‖x‖2

1− θ(γ)2
}

1
2

≤ ‖r‖ ≤ µr ≡ σmin([A, bγ]){γ−2+
‖x‖2

1− δ(γ)2
}

1
2 . (9)

Equivalently,

λσ ≡ ‖r‖/{γ−2 +
‖x‖2

1− δ(γ)2
}

1
2 ≤ σmin([A, bγ])

≤ ‖r‖/{γ−2 +
‖x‖2

1− θ(γ)2
}

1
2 ≤ µσ ≡ ‖r‖/{γ−2 + ‖x‖2}

1
2 . (10)

In addition to that, δ(γ) is bounded as

γ‖r‖
‖[A, bγ]‖

≤ δ(γ) ≤ γ‖r‖
σk([A, bγ])

≤ γ‖r‖
σmin(A)

. (11)

We see that the difference between the upper and the lower bounds in
(9) depends on the size of (1−δ(γ)2)−1. If δ(γ)� 1, then this difference
will be very small. Bounds in (11) give us some indication of the size of
δ(γ). We see from (11) that if γ‖r‖ is small compared with σk([A, bγ])
then δ(γ) � 1, but if γ‖r‖ is not small compared with ‖[A, bγ]‖ then
δ(γ) cannot be small. If [A, bγ] is well-conditioned in the sense that
σmin([A, bγ]) is not too much smaller than ‖[A, bγ]‖, then (11) gives us
a very good idea of δ(γ). We will study δ(γ) in more detail in Section 3.

A crucial aspect of Theorem 1 is that it gives both an upper and a
lower bound on the minimum residual norm ‖r‖, or on σmin([A, bγ]),
which is the Scaled TLS distance in (3). The weaker lower bound in (9),
or upper bound in (10), is sufficient for many uses, and is relatively easy
to derive, but the upper bound in (9), or lower bound in (10), is what
makes the theorem strong.

The following corollary [8, Corollary 4.2] examines the tightness of
the bounds (9)–(10), to indicate just how good they can be. In fact it
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shows that all the relative gaps go to zero (as functions of the scaling
parameter γ) at least as fast as O(γ4).

Corollary 1 Under the same conditions as in Theorem 1, with σ ≡
σ(γ) ≡ σmin([A, bγ]), the notation in (9)–(10), and

ηr ≡ (‖r‖ − λr)/‖r‖, ησ ≡ (σ − λσ)/σ,
ζr ≡ (µr − λr)/‖r‖, ζσ ≡ (µσ − λσ)/σ, (12)

we have the following bounds

0 < ηr ≤ ζr, 0 < ησ ≤ ζσ,

0 < ζr, ζσ <
γ2‖x‖2

2 + γ2‖x‖2
· δ(γ)2

1− δ(γ)2
→ 0 as γ → 0, (13)

where the upper bound goes to zero at least as fast as O(γ4).

Thus when δ(γ) � 1, or γ is small, the upper and lower bounds
in (9)–(10) are not only very good, but very good in a relative sense,
which is important for small ‖r‖ or σmin([A, bγ]). We see Corollary 1
makes precise a nice theoretical observation with practical consequences
— small γ ensures very tight bounds (9) on ‖r‖. In particular, for small
γ we see

‖r‖ ≈ λr ≡ σmin([A, bγ]) {γ−2 + ‖x‖2}
1
2 , (14)

and the relative error is bounded above by O(γ4).
When δ(γ) < 1, [3, Thm. 2.7] showed (for γ = 1) the closed form

TLS solution xγ = x(γ)γ of (3) is

x(γ)γ = {ATA− σ2
min([A, bγ])I}−1AT bγ,

and with rScaledTLS ≡ bγ −Ax(γ)γ, [3, (6.19)] showed (for γ = 1)

‖rScaledTLS‖ = σmin([A, bγ])(1 + ‖x(γ)γ‖2)
1
2 . (15)

Relation (14) can be seen to give an analogue of this for the LS solution:
since rγ = bγ−Axγ in (2), the bounds (9), (11) and (13) show a strong
relationship between γ‖r‖ and σmin([A, bγ]) for small δ(γ), γ, ‖r‖ or
‖x‖/(1− δ(γ)2):

γ‖r‖ ≈ σmin([A, bγ]) {1 + γ2‖x‖2}
1
2 . (16)

The assumption Pkb 6= 0 in (4) is not necessary for proving the bounds
(9)–(10). From the proof of Theorem 1 in [8] it is clear that these bounds
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only require δ(γ) < 1. However δ(γ) < 1 does not guarantee Pkb 6= 0.
When Pkb = 0, ‖r‖ contains no information whatsoever about σmin(A),
while the bounds do. By assuming Pkb 6= 0 we avoid this inconsistency.
Moreover, we will consider various values of the parameter γ, and so we
prefer the theorem’s assumption to be independent of γ.

We end this section by a comment on possible consequences of The-
orem 1 for understanding methods for large Scaled TLS problems. For
small δ(γ), γ, ‖r‖ or ‖x‖2/(1− δ(γ)2), (10) with (11) and (13) show

σ2
k+1([A, bγ]) ≈ γ2‖r‖2

1 + γ2‖x‖2
= ‖[A, bγ]

(
−xγ

1

)
‖2 / ‖

(
−xγ

1

)
‖2;

so the Scaled TLS distance is well approximated using the Rayleigh
quotient corresponding to the unique LS solution of Axγ = bγ − rγ. As
pointed out by Åke Björck in a personal communication, this may help
to explain the behaviour of algorithms proposed in [1].

2. Comparison with previous bounds
The best previously published bounds relating LS and TLS distances
appear to be those of Van Huffel and Vandewalle [3]. The relevant
bounds of that reference, and a new bound, can be derived from (9),
and we present them as a corollary (cf. [8, Corollary 5.1]).

Corollary 2 Under the same conditions and assumptions as in Theo-
rem 1, with σ(γ) ≡ σmin([A, bγ]), δ(γ) ≡ σmin([A, bγ])/σmin(A),

σmin([A, bγ])
γ

≤ σmin([A, bγ])
γ

{1− σ2
min([A, bγ])
‖A‖2

+
‖b‖2γ2

‖A‖2
}

1
2

≤ ‖r‖ ≤ σmin([A, bγ])
γ

{1− δ(γ)2 +
‖b‖2γ2

σmin(A)2
}

1
2 . (17)

When γ = 1 the weaker lower bound and the upper bound in (17) are
the equivalents for our situation of (6.34) and (6.35) in [3]. The stronger
lower bound seems new. A slightly weaker upper bound was derived
in [2, (2.3)]. Experimental results presented, e.g., in [8] demonstrate
that our bounds in (9) can be significantly better than those in (17).
The relationship of these bounds is, however, intricate. While (17) was
in [8, Corollary 5.1] derived from (9), it is not always true that the
latter is tighter. When δ(γ) ≈ 1 and ‖r‖ ≈ ‖b‖, it is possible for the
upper bound in (17) to be smaller than that in (9). But in this case
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σmin([A, bγ]) ≈ σmin(A), and then the upper bound in (17) becomes the
trivial ‖r‖ <∼ ‖b‖. Summarizing, when the upper bound in (17) is tighter
than the upper bound in (9), the former becomes trivial and the latter
is irrelevant.

The bounds (17) and (9) differ because the easily available ‖x‖ in (9)
was replaced by its upper and lower bounds to obtain (17). But there
is another reason (9) is preferable to (17). The latter bounds require
knowledge of σmin(A), as well as σmin([A, bγ]). Admittedly (8) shows
we also need these to know δ(γ) exactly, but, assuming that (4) holds,
we know δ(γ) < 1, and is bounded away from 1 always (see Theorem 2
in the following section). In fact there are situations where we know
δ(γ) � 1. Thus (9) is not only simpler and often significantly stronger
than (17), it is more easily applicable.

3. Tightness parameter
The results presented above show the crucial role of the parameter
δ(γ) = σmin([A, bγ])/σmin(A). It represents a ratio of the smallest sin-
gular value of the matrix appended by a column (here [A, bγ]) to the
smallest singular value of the original matrix (here A). Though the def-
inition is simple, the nature of δ(γ) is very subtle and its behaviour is
very complicated.

Let the n×k matrix A have rank k and singular values σi with singular
value decomposition (SVD)

A = UAΣV T , Σ ≡ diag(σ1, . . . , σk), σ1 ≥ . . . ≥ σk > 0. (18)

Here UA is n×k matrix, UTA UA = Ik, Σ is k×k, and k×k V is orthogonal.
Let

a ≡ (α1, . . . , αk)T ≡ [u1, . . . , uk]T b = UTA b. (19)

The elements of a are the components of the vector of observations b in
the directions of the left singular vectors of the data matrix A.

Assume (4) holds. Then using the notation in (18)–(19), 0 < σ(γ) <
σk ≡ σmin(A) holds for all γ > 0, and the Scaled TLS distance in (3) is
σ(γ) ≡ σmin([A, bγ]), which is the smallest positive solution of

0 = ψk(σ(γ), γ) = γ2‖r‖2 − σ(γ)2 − γ2σ(γ)2
k∑
i=1

|αi|2

σ2
i − σ(γ)2

. (20)

Moreover, if (4) holds and γ > 0, then 0 < δ(γ) < 1, and δ(γ) increases as
γ increases, and decreases as γ decreases, strictly monotonically. This
was derived in [7, §4]. With γ = 1, (20) was derived in [4], see also
[3, Thm. 2.7, & (6.36)]. These latter derivations assumed the weaker
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condition σmin([A, b]) < σmin(A), and so do not generalize to Scaled
TLS for all γ > 0, see [7].

Our bounds containing the factor (1 − δ(γ)2)−1 would be useless if
δ(γ) = 1 and of limited value when δ(γ) ≈ 1. The following theorem
( [8, Theorem 3.1]) shows that when (4) holds, δ(γ) is bounded away from
unity for all γ, giving an upper bound on (1− δ(γ)2)−1. It is important
that these bounds exist, but remember they are worst case bounds, and
give no indication of the sizes of δ(γ) or (1 − δ(γ)2)−1 for the values of
γ we will usually be interested in.

Theorem 2 With the notation and assumptions of (18)–(20), let n× k
A have singular values σ1 ≥ . . . ≥ σj > σj+1 = . . . = σk > 0. Then
since (4) holds,

‖Pkb‖2 =
k∑

i=j+1

|αi|2 > 0, (21)

δ(γ)2 ≡ σ2
min([A, bγ])

σ2
k

≤ ‖r‖2

‖Pkb‖2 + ‖r‖2
< 1 for all γ ≥ 0, (22)

(1− δ(γ)2)−1 ≤ 1 + ‖r‖2/‖Pkb‖2 for all γ ≥ 0, (23)

where Pk is described just before (4).

This shows that when (4) holds, δ(γ) is bounded away from unity, so
σmin([A, bγ]) is bounded away from σmin(A), for all γ.

The inequality (22) has a useful explanatory purpose. We cannot
have δ(γ) ≈ 1 unless Pkb, the projection of b onto the left singular
vector subspace of A corresponding to σmin(A), is very small compared
to r. It is straightforward to show that replacing A by

Ã = A−
k∑

i=j+1

uiσmin(A)vTi

in (2) increases the square of the LS residual by ‖Pkb‖2, thus giving a
small relative change when Pkb is small compared to r. This confirms
that the criterion (4) (see also [7, (1.10]) is exactly what is needed.
When Pkb = 0 the smallest singular value σmin(A) has no influence
to the solution of the LS problem and should be eliminated from our
considerations. When Pkb is small, elimination of σmin(A) (replacing of
A by Ã) has little effect on the LS solution.

We will finish this contribution by a short note illustrating the concep-
tual and technical complications which arise when the assumption (4)
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is not used. First we must analyze when δ(γ) = 1. The necessary and
sufficient conditions for δ(γ) = 1 were given in [7, Theorem 3.1]. Here
we will explain the main idea in relation to the secular equation (20).
Let n × k A have singular values σ1 ≥ . . . ≥ σj > σj+1 = . . . = σk > 0.
When δ(γ) = 1, b has no components in the left singular vector sub-
space of A corresponding to σmin(A), Pkb = 0, αj+1 = . . . = αk = 0 and
the matrix with the appended column [A, bγ] has k − j singular values
equal to σmin(A). The singular values of [A, bγ] different from those of
A are solutions σ(γ) of the deflated secular equation, see [11, Ch2, §47,
pp. 103-104],

0 = ψj(σ(γ), γ) = γ2‖r‖2 − σ(γ)2 − γ2σ(γ)2
j∑
i=1

|αi|2

σ2
i − σ(γ)2

, (24)

where the summation term is ignored if all singular values of A are equal.
Note that ψj(0, γ) > 0, so that δ(γ) = 1 requires that ψj(σk, γ) ≥ 0
(if ψj(σk, γ) < 0, then the deflated secular equation (24) must have a
positive solution σ less than σmin(A) which contradicts the condition
δ(γ) = 1).

It is interesting to note that for the particular choice of γ = σk/‖r‖,
the condition ψj(σk, γ) ≥ 0 is equivalent to α1 = . . . = αj = 0, i.e.
UTA b = 0 and r = b. In the other words, δ(γ) < 1 for γ < σk/‖b‖ (the
last column of the matrix [A, bγ] has for γ < σk/‖b‖ norm less than
σmin(A)), and for the choice γb ≡ σk/‖b‖ the condition δ(γb) = 1 is
equivalent to the fact that in the LS problem (2) the LS solution x = 0
is trivial and r = b. When this particular γb is used with (17), we obtain
(see also [6, Section 2])

δ(γb)‖b‖ ≤ ‖r‖ ≤ δ(γb)‖b‖{2− δ(γb)2}
1
2 . (25)

The results presented here have been successfully applied outside the
Errors-in-Variables Modeling field for analysis of convergence and nu-
merical stability of Krylov subspace methods, see [9], [6].

4. Conclusion
Summarizing, our contribution (which is based on [8]) shows new bounds
for the LS residual norm ‖r‖ = minx ‖b − Ax‖ in terms of the Scaled
TLS distance σmin([A, bγ]), and presents several important corollaries
describing the tightness of the bounds and their dependence on the pa-
rameter γ. The bounds were seen to be very good when σmin([A, bγ])
was sufficiently smaller than σmin(A). When σmin([A, bγ]) ≈ σmin(A), it
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is shown that the smallest singular value σmin(A) and its singular vectors
did not play a significant role in the solution of the LS problem.
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