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Summary. The standard approaches to solving overdetermined linear sys-
temsBx ≈ c construct minimal corrections to the vectorc and/or thematrix
B such that the corrected system is compatible. In ordinary least squares
(LS) the correction is restricted toc, while in data least squares (DLS) it
is restricted toB. In scaled total least squares (STLS) [22], corrections to
bothc andB are allowed, and their relative sizes depend on a real positive
parameterγ. STLS unifies several formulations since it becomes total least
squares (TLS) whenγ = 1, and in the limit corresponds to LS whenγ → 0,
and DLS whenγ → ∞. This paper analyzes a particularly useful formula-
tion of the STLS problem. The analysis is based on a new assumption that
guarantees existence and uniqueness of meaningful STLS solutions for all
parametersγ > 0. It makes the whole STLS theory consistent. Our theory
reveals the necessary and sufficient condition for preserving the smallest
singular value of a matrix while appending (or deleting) a column. This
condition represents a basic matrix theory result for updating the singular
value decomposition, as well as the rank-one modification of the Hermitian
eigenproblem. The paper allows complex data, and the equivalences in the
limit of STLS with DLS and LS are proven for such data. It is shown how
any linear systemBx ≈ c can be reduced to a minimally dimensioned core
system satisfying our assumption. Consequently, our theory and algorithms
can be applied to fully general systems. The basics of practical algorithms
for both the STLS and DLS problems are indicated for either dense or large
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sparse systems. Our assumption and its consequences are compared with
earlier approaches.

Mathematics Subject Classification (1991):15A18, 65F20, 65F25, 65F50

1 Introduction

We will useR(B) to denote the range (column space) of a matrixB. Two
useful approaches to solving the overdetermined approximate linear system

Bx ≈ c, B ann by k matrix,c ann-vector, c /∈ R(B),(1.1)

are ordinary least squares (LS, or OLS, see for example [1], [12,§5.3]) and
total least squares (TLS, see [10,11], and for example [1,§4.6], [12,§12.3],
[16]). In LS we seek (we use‖ · ‖ to denote the vector 2-norm)

LS distance ≡ min
r,y

‖r‖ subject to By = c− r.(1.2)

In TLS,E ands are sought to minimize the Frobenius (F) norm in

TLS distance ≡ min
s,E,z

‖[s,E]‖F s. t. (B + E)z = c− s.(1.3)

In both LS and TLSwe look for aminimal correction such that the corrected
problem is compatible. While in LS the correction is restricted to the vector
c (which corresponds to the assumption that all errors are confined to the
vector of observations), in TLS the correction is allowed to compensate for
errors in the data matrixB as well as in the vector of observationsc. The LS
and TLS problems have statistical relevance for different situations, see Van
Huffel and Vandewalle [16] for an excellent discussion and history. They
also carefully delineated the TLS theory and how it is related to LS.

The opposite case to LS is the data least squares problem (DLS), see
[13]. In DLS the correction is allowed only inB (errors are assumed to
affect only the data matrix)

DLS distance ≡ min
G,w

‖G‖F subject to (B +G)w = c.(1.4)

All these approaches can be unified by considering the following very
general scaled TLS problem (STLS), see the paper [22] by Rao, who called
it “weighted TLS”: for a givenγ > 0,

STLS distance≡ min
s̃,Ẽ,z̃

‖[s̃γ, Ẽ]‖F s. t. (B + Ẽ)z̃ = c− s̃.(1.5)

Here the relative sizes of the corrections inB andc are determined by the
real parameterγ > 0. Whenγ → 0 the STLS solution approaches the LS
solution, whenγ = 1 (1.5) coincides with the TLS formulation, and when
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γ → ∞ it approaches DLS. The caseγ → 0 is not completely obvious
since settingγ = 0 in (1.5) leads toẼ = 0, but allowsarbitrary s̃, which
does not necessarily mean the LS solution. The caseγ = 1 is obvious, and
we see thatγ → ∞ requiress̃ → 0, leading to DLS. For more on STLS
and DLS see also [3], [4], [5]. Scaling by a diagonal matrix was considered
in [11], and this motivated later researchers, leading eventually to the STLS
formulation in [22]. The paper [8] considered the case where only some of
the columns of the data matrix are contaminated, and this also suggested a
way of treating LS as well as TLS in the one formulation.

The formulation of the STLS problem that we use is slightly different
from that in (1.5). For any positive boundedγ, substitute in (1.5)s ≡ s̃γ,
z ≡ z̃ andE ≡ Ẽ to obtain the new formulation of the STLS problem: for
a givenγ > 0,

STLS distance≡ min
s,E,z

‖[s,E]‖F s. t. (B + E)zγ = cγ − s.(1.6)

We call thez = z(γ) that minimizes this theSTLS solutionof (1.6). In
analogy with (1.3), we callz(γ)γ the TLS solutionof (1.6). In (1.6) we
could have writtenz instead ofzγ. We chose the present form so that for
positive boundedγ, the STLS solutionz = z(γ) of (1.6) is identical to the
solutionz̃ of (1.5). Thus (1.5) and (1.6) have identical distancesandsolutions
for positive boundedγ. Therefore our results and discussions based on (1.6)
apply fully to the scaled TLS problem (1.5).

We show for (1.6) that asγ → 0, z(γ) becomes the LS solutiony of
(1.2), and(STLS distance)/γ becomes the LS distance. Asγ → ∞, z(γ)
becomes the DLS solutionw of (1.4), and the STLS distance becomes the
DLS distance. The convergence of the STLS problem to the LS problem has
been described in [22], and essentially in [11], for the real case. Here the
convergence is proven for complex data by explicitly taking the limits for
both solutions and distances.

We found that the development of our results was more simple and intu-
itive using the formulation (1.6) rather than (1.5). In particular, all the known
TLS theory and algorithms can be applied directly to (1.6). The equivalence
of (1.6) and (1.5) is extremely useful. This equivalence was pointed out to
us by Sabine Van Huffel [15] after she read an earlier version of our work
based on (1.6). We have not seen it stated in the literature, but it is implicit
in the paper by Rao [22].

In (1.6), γ simply scales the right-hand side vectorc (and the STLS
solutionz = z(γ)). Therefore it is appropriate to call the formulation (1.6)
thescaledTLS problem, rather than the “weighted” TLS problem as was
done in [22]. This also avoids the possibility of confusing the meaning of
“weighted” here with its different meaning in “weighted least squares”.
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Usingγ can have a statistical significance. Suppose that the elements of
B areknown tohave independent zero-mean randomerrorsof equal standard
deviationδB. Suppose also that the elements ofc have been observed with
independent zero-mean random errors of equal standard deviationδc, and
that the errors inc andB are independent. Then takingγ = δB/δc in (1.6)
will ensure that all theerrors in thatmodel haveequal standarddeviation (and
so variance), and (1.6) is the ideal formulation for providing estimates. This
agrees with the limiting behaviour described above, for clearly ifδB = 0
andδc �= 0, then LS is the correct choice, while ifδB �= 0 andδc = 0,
then DLS is the correct choice. However (1.6) can also be useful outside
any statistical context, see for example [20], and thenγ does not have the
above interpretation.

In all these formulations, ifc ∈ R(B), then zero distance canbeobtained
via a direct solution. Otherwise TLS, and so STLS solutions can be found
via the singular value decomposition (SVD). Letσmin(·)denote the smallest
singular value of a givenmatrix. To be precise,σmin(G)will denote thej-th
largest singular value of ann by j matrixG, and will be zero ifn < j. The
interlacing property for the eigenvalues of[B, c]H [B, c] and ofBHB [23,
Ch2,§47, pp. 103–4] tells us thatσmin([B, c]) ≤ σmin(B). When

σmin([B, c]) < σmin(B)(1.7)

the n by k matrix B must have rankk, the unique solution of the TLS
problem (1.3) is obtained from scaling the right singular vector of[B, c]
corresponding toσmin([B, c]), and the norm of the TLS correction satisfies
mins,E,z ‖[s,E]‖F = σmin([B, c]), (see for example [12,§12.3]). When

σmin([B, cγ]) < σmin(B) for a givenγ > 0,(1.8)

it follows that

STLS distance in (1.6)= σmin([B, cγ]).(1.9)

In the general case, letUmin be the left singular vector subspace ofB
corresponding toσmin(B). We explain in full later why (1.8) should not be
used as a basis for the STLS theory. Very briefly, ifc ⊥ Umin, then[B, cγ]
has a singular value equal toσmin(B) for all γ > 0. But for aparticular
value ofγ, [B, cγ]might have asmallersingular value thanσmin(B). Thus
we can have (1.8)and c ⊥ Umin. But c ⊥ Umin meansσmin(B) plays no
role in solving the LS problem, so the comparison withσmin(B) in (1.8)
should not form the basis for deciding if there is a solution to the STLS, or
even TLS, problem.

We argue that a satisfactory condition for building the theory of the TLS,
DLSandSTLS formulations for solving (1.1) is theγ-independent criterion:

then× k matrixB has rankk, and c �⊥ Umin.(1.10)
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We will show in Theorem 3.1 (see (3.7)) that this implies

σ(γ) ≡ σmin([B, cγ]) < σmin(B) for all γ ≥ 0,(1.11)

which of course implies (1.7) and (1.8). The condition (1.10) is the simplest
one. It only requires the SVD ofB, while the others each require two SVDs.
Note also that (1.10) is purely geometric.

A trivial example ofB with rankk, butc not satisfying (1.10), is

[
c B

]
=


 2 4 0

0 3 0
0 0 1


 .(1.12)

Note that for sufficiently largeγ (evenγ = 1), this example gives

σmin([B, cγ]) = σmin(B).(1.13)

But dropping the last row and column of[c,B], to give[c1, B11], results in
a “core” problemB11x1 ≈ c1 satisfying (1.10) and (1.11).

Almost all practical problems will satisfy (1.10), and so (1.11), but to
complete the theoretical foundations of the STLS problem, Theorem 3.1 an-
alyzes when it is possible to have (1.13). This case seems never to have been
fully analyzed before. Clearly (1.13) corresponds to the smallest singular
value of a matrix being preserved when appending (or deleting) a column.
This is useful in the theory of updating the singular value decomposition,
and the rank-one modification of the Hermitian eigenproblem.

A crucial property of the criterion (1.10) is thatanylinear systemBx ≈ c
can in theory be reduced to a “core” problem satisfying (1.10). In practice
this can be done by direct computations that can be usefully applied to all
small and dense STLS problems. We also suggest an algorithm for the large
sparse matrix case.

Thus in this paper we present a new and thorough analysis of the theo-
retical foundations of the STLS problem, and of its relationships to the LS
and DLS problems. But we also develop some more generally applicable
matrix theory, and suggest the basics for useful approaches to solving STLS
and DLS problems.

The rest of the paper is organized as follows. We start in Sect. 2 by
reviewing some mathematical tools that we will need. In Sect. 3 we prove
just when (1.13) can hold, since this is poorly understood, but is needed for
a full understanding of TLS, DLS and STLS problems, and for our choice
of criterion (1.10). It represents a general matrix theory result that might
be useful outside the context of this paper. In Sect. 4 we give the valuable
secular equationwhichσmin([B, cγ]) in (1.9)must satisfy. Section 5 derives
alternative forms of the STLS formulation (1.6) and the DLS formulation
(1.4), aswell as theDLSsolution.Weallow complex data, and the functional
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to be optimized is not an analytic function, so the derivative cannot be
taken in the usual way. Thus we give new algebraic proofs of optimality,
instead of using derivatives. In Sect. 6 we show how the STLS problem (1.6)
corresponds to the LS problem (1.2) whenγ → 0, and to the DLS problem
(1.4) whenγ → ∞. Section 7 shows why the formulations (1.3)–(1.6) are
incompletewithout the criterion (1.10), sincewhen this doesnot hold, theyat
best contain computationally dangerous irrelevant data, and at worst do not
lead to meaningful solutions. Section 8 shows how to handle the completely
general STLS (or evenBx ≈ c) problem by reducing it to a core problem
that satisfies an even stronger criterion than (1.10)— one which ensures the
core problem is irreducible in the sense of containing no information that is
irrelevant to thesolution.This suggestspractical approaches tosolvingSTLS
problems, whether the datamatrixB is small and dense, or large and sparse.
Section 9 discusses howSTLS problems can be solved computationally, and
describes a simple solution to the DLS problem. Section 10 compares our
chosen assumptions for ensuring unique STLS solutions with the criteria for
“generic” TLS problems given in [16]. Wewill always use these quotes here
because we show that some of the problems labelled “generic” in [16] are
not generic in themore usual sense of the word. This is in no way a criticism
of [16] — the authors were probably using the terminology to indicate that
all such problems could be solved by the standard algorithm of Golub and
Van Loan [11].

This paper deals with equalities, and is the first in a sequence. The next
one [20] will deal with bounds and the LS–STLS relationship whenγ > 0.

We use[cγ,B] for some purposes, and[B, cγ] for others. Their SVDs
are trivially related. Of course all the ideas given here for generalγ apply
to the TLS problem (1.3) by takingγ = 1.

The philosophy behind this paper is radically different from that of pre-
vious TLS, STLS or DLS work known to us. The STLS formulation (1.6)
makes it easy to analyze and solve the STLS problem (it shows the STLS
problem is just the TLS problemwith its right-hand sidec scaled byγ, so all
the TLS artillery is available). But more importantly than that, the approach
of reducing a problemBx ≈ c to its “core” problem (Sect. 8) and solving
that core problem simplifies our understanding of the area. It also simplifies
the development of algorithms, while unifying the theoretical problems in
the area. Crucial to all this is the new (γ-independent) criterion (1.10) for
STLS (also TLS, DLS and even possibly LS) problems. This is based onc
and the SVD ofB, whereas the previous main TLS criterion (1.7) involved
the SVDs of bothB and[B, c] (and so would be dependent onγ for STLS
problems). The key here is thatanySTLS (or LS or TLS or DLS) prob-
lem can in theory be transformed bydirectunitary transformations into two
independent problems: a (possibly nonexistent) trivial problem, and a core
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problem, where the core problem automatically satisfies (1.10). Solving the
core problem then solves the original problem. Thus no complicated con-
ditions such as (1.7) or (1.10) need be tested, and no special cases need be
treated. All the decisions can be made by examining the sizes of elements
in the unitarily transformed data. Both theory and computations can thus be
unified, simplified and clarified.

2 Mathematical preliminaries

Here we introduce some notation and general theory that we will need in
the paper. We usēα to denote the complex conjugate of the scalarα, and
aH to denote the complex conjugate transpose of the vectora. Thek × k
unit matrix isI = [e1, . . . , ek]. We will need the following lemma. It is
a generalization of the familiar result obtained by takingm = −1 in the
lemma.

Lemma 2.1 For any integerm and matrixZ,

Z(ZHZ − λI)mZH − λ(ZZH − λI)m = (ZZH − λI)m+1,(2.1)

where ifm < 0, the scalarλ must be such that the inverses exist.

Proof. Clearly (2.1) is true form = 0. Multiply each side of (2.1) by
ZZH − λI, giving

Z(ZHZ − λI)m+1ZH − λ(ZZH − λI)m+1 = (ZZH − λI)m+2,(2.2)

which is (2.1) withm increased by unity. Thus since (2.1) holds form = 0,
it holds for all integersm ≥ 0. Now if m = −1, (2.2) is true, so (2.1) is
also true ifZZH − λI is nonsingular. Similarly we can show (2.1) is true
form = −2,−3, . . . . ��

We can avoid the restriction onλ as follows.

Corollary 2.1 For m < 0, (2.1) also holds foranyscalarλ if we replace
each inverse by the Moore–Penrose pseudo-inverse (theG1234 generalized
inverse).

Proof. ReplaceZ by its singular value decomposition, and use (2.1) for the
nonsingular part. ��

In order to analyze or solve (1.2)–(1.6) we usually transform the data
[B, c]. The transformations that we use here take the form

[B̃, c̃] = PH [BQ, c], P andQ unitary,(2.3)
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(for obtaining LS solutions,Q need only be nonsingular). These do not alter
the distances defined in Sect. 1, and the solution vector for the original data
[B, c] isQ times that for the transformed data.

We regularly use the following forr, c, B andy in (1.2). Letn ≥ k
in (1.1). Let then × k matrixB have rankk and singular valuesσi with
singular value decomposition (SVD)

B = U
[
Σ
0

]
V H , Σ ≡ diag(σ1, . . . , σk), σ1 ≥ . . . ≥ σk > 0.(2.4)

HereU is ann×n unitarymatrix,Σ isk×k, andk×k V is a unitarymatrix.
If n > k, in U = [UB|ÛB] = [u1, . . . , uk|uk+1, . . . , un], ÛB is arbitrary up
to multiplication on the right by a unitary matrix, so assume it is chosen to
give ÛH

B c = e1ρ, ρ ≥ 0. If n = k, thisρ will not exist. For this study, an
important part of the SVD ofB is

Umin ≡ the left singular vector subspace ofB for σmin(B).(2.5)

A useful allowable transformation of the data is

UH [B, c]
[
V 0
0 1

]
=


Σ a

0 ρ
0 0


 ,

a ≡ (α1, . . . , αk)T ≡ [u1, . . . , uk]Hc = UH
B c.(2.6)

We also denote, forγ ≥ 0,

N ≡ UH [B, cγ]
[
V 0
0 1

]
=


Σ aγ

0 ργ
0 0


 .(2.7)

N has the same singular values as[B, cγ]. The elements ofa are the com-
ponents of the vector of observationsc in the directions of the left singular
vectors of the data matrixB. With (1.2) we see that

UHr = UH(c−By) =


a−ΣV Hy

ρ
0


 =


0
ρ
0




gives the minimum for‖r‖. Then for the LS solution and residual

y = V Σ−1a, ‖y‖2 =
k∑

i=1

|αi|2
σ2

i

,(2.8)

‖r‖ = ρ.(2.9)

For analysis of the STLS problem (1.6), we will be interested in the
singular valuesσ of [B, cγ], see (1.9), and so the eigenvaluesσ2 of NHN
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forN in (2.7). We use the following classical results (see for example [14])

to analyze these. Consider amatrixGwith partitioningG =
[
C D
E F

]
.When

C is square and nonsingular, the Schur complement(G/C) of C in G is
defined as (we will also needC = CH ,D = EH andF = FH for (2.12)
below)

(G/C) ≡ F−EC−1D, soG =
[
I 0

EC−1 I

][
C 0
0 (G/C)

][
I C−1D
0 I

]
.

(2.10)
Define the “inertia”In(M) of a Hermitian matrixM to be the ordered triple
{i+, i−, i0}, wherei+ denotes the number of positive eigenvalues ofM , i−
the number of negative eigenvalues, andi0 the number of zero eigenvalues.
We will use results that follow from (2.10):

det(G) = det(C) · det(G/C),(2.11)

In(G) = In(C) + In(G/C).(2.12)

3 The minimum singular values of[B, cγ] andB

When the minimum singular values of[B, cγ] andB are distinct, the STLS
problem (1.6) has a unique solution. The other possibility,

σmin([B, cγ]) = σmin(B),(3.1)

is important but subtle, so here we show just when this can happen. This will
lead us to a full understanding of the different possible meanings of STLS
problems.

The condition for (3.1) to hold is also the condition for the smallest
singular value of a full column rank matrix (hereB) to remain unchanged
whenwe append a column (herecγ) to thematrixB (or delete the columncγ
from thematrix[B, cγ]). The singular value0 is clearly unchanged ifB does
nothave full column rank.Clearly, asimilar conditioncanbe formulatedwith
respect to the rows of a matrix. This represents a general result independent
of the context of our paper. The proof is an extension of the following result.

Lemma 3.1 If the vectora has at least one element, the Hermitian arrow

matrix A ≡
[

0 a
aH α

]
is positive semi-definite (singular with no negative

eigenvalues) if and only ifa = 0 and the scalarα ≥ 0.

Proof. Supposea �= 0, then without loss of generality we can assume its
last element is nonzero. By considering the determinant, we see the last2×2
principal submatrix ofA has a negative eigenvalue, and by the interlacing
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property (see [23, Ch2,§47, pp. 103–4]) thewhole ofAmust have a negative
eigenvalue. Ifa = 0, A is singular but has no negative eigenvalue if and
only if α ≥ 0. ��
Theorem 3.1 Letγ > 0 be a scalar, and forn ≥ k ≥ 1 let [B, cγ] be ann
byk+ 1 matrix withn byk submatrixB. LetB have singular valuesσ1 ≥
. . . ≥ σj > σj+1 = . . . = σk ≡ σmin(B) > 0 with the corresponding left
singular vectorsu1, . . . , uk. Letρ = ‖r‖ be the minimum in (1.2), see (2.6),
(2.9). Then

σmin([B, cγ]) = σmin(B)(3.2)

if and only if (see (2.6))

αi ≡ uH
i c = 0, i = j + 1, . . . , k,(3.3)

and

ψj(σk, γ) ≥ 0, ψj(σ, γ) ≡ γ2‖r‖2−σ2−γ2σ2
j∑

i=1

|αi|2
σ2

i − σ2 .

(3.4)
The summation term is ignored if all singular values ofB are equal.

Proof. Write Σ1 ≡ diag(σ1, . . . , σj), Σ2 ≡ diag(σj+1, . . . , σk) = σkI,
a1 ≡ (α1, . . . , αj)T , a2 ≡ (αj+1, . . . , αk)T , a ≡ (aT

1 , a
T
2 )T . Σ1 anda1

need not exist (j can be zero), butΣ2 anda2 do (k − j > 0). To prove the
theorem, we need to show for any givenγ > 0,

σmin([B, cγ]) = σmin(B) ⇔ {a2 = 0 & ψj(σk, γ) ≥ 0}.(3.5)

Clearly (3.2) holds if and only ifσk is the minimum singular value ofN in
(2.7), that is, if and only if

NHN − σ2
kI =


Σ2

1 − σ2
kIj 0 Σ1a1γ

0 0 · Ik−j a2σkγ
γaH

1Σ1 γσka
H
2 γ2(aHa+ ρ2) − σ2

k


(3.6)

is positive semi-definite. Ifj > 0 the Schur complementM of positive
definiteΣ2

1 − σ2
kI in N

HN − σ2
kI is, see (2.10),

M =
[

0 a2σkγ
γσka

H
2 ψ

]
,

ψ ≡ γ2(aHa+ ρ2) − σ2
k − γ2aH

1 Σ1(Σ2
1 − σ2

kI)
−1Σ1a1

= γ2(aH
2 a2 + ρ2) − σ2

k − γ2σ2
ka

H
1 (Σ2

1 − σ2
kI)

−1a1

= ψj(σk, γ) + γ2aH
2 a2,



Scaled TLS fundamentals 127

using Lemma 2.1 withm = −1, andψj(σk, γ) in (3.4). From (2.12)

In(NHN − σ2
kI) = In(Σ2

1 − σ2
kI) + In(M),

so (3.2) holds if and only ifM is positive semi-definite. Buta2 has at
least one element, so from Lemma 3.1 this is true if and only ifa2 = 0
andψ = ψj(σk, γ) + γ2aH

2 a2 = ψj(σk, γ) ≥ 0. Thus (3.3) and (3.4)
are necessary and sufficient for (3.2). Ifj = 0 the same result follows by
applying Lemma 3.1 directly to (3.6). ��

Sinceσmin([B, c · 0]) = 0, this has proven forγ ≥ 0 (the left hand side
is (1.10))

{B full column rank &a2 �= 0} ⇒ σmin([B, cγ]) < σmin(B).(3.7)

The theorem also tells us that forB andc representing data from some real
world application, havingσmin([B, cγ]) = σmin(B) exactly is a rare event.
It requires all left singular vectors ofB corresponding to its smallest singular
valueσk to be orthogonal toc, as well as (3.4). The first condition (a2 = 0
in the theorem) is highly unlikely to be satisfied. Moreover, even when it is
true, we cannot necessarily findγ satisfying (3.4). For a particularB andc
it is possible to have

‖r‖2 − σ2
k

j∑
i=1

|αi|2
σ2

i − σ2
k

≤ 0,(3.8)

givingψj(σk, γ) < 0 for all γ > 0, see (3.4). In fact we have:

Corollary 3.1 Using the notation of Theorem 3.1, wherea2 �= 0 corre-
sponds toc �⊥ Umin in (1.10), ifB has rankk then

{a2 �= 0} or {a2 = 0 & (3.8)}
⇔ {σmin([B, cγ]) < σmin(B) ∀ γ ≥ 0},

{a2 = 0} & {∃ γ0 > 0 such thatψj(σk, γ0) = 0 in (3.4)}
⇔

{
σmin([B, cγ]) < σmin(B) ∀ 0 < γ < γ0,
σmin([B, cγ]) = σmin(B) ∀ γ ≥ γ0.

Proof. These follow from (3.5) and the form ofψj(σk, γ) in (3.4). ��
Remark 3.1From this we can see that for anarbitrary B and c with
σmin([B, cγ1]) < σmin(B) for someγ1 > 0, one cannot always get
σmin([B, cγ]) = σmin(B) by increasingγ. But sometimes for aB, c
andγ1 with σmin([B, cγ1]) < σmin(B) there existsγ0 > γ1 such that
σmin([B, cγ]) = σmin(B) for all γ ≥ γ0.
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4 The secular equation for singular values of[B, cγ]

When (1.10) holds, the smallest singular value of[B, cγ] is the STLS dis-
tance in (1.6). We now derive several forms of the secular equation for
this STLS distance. These forms will be useful for examining the limiting
behaviour in Sect. 6, and for obtaining bounds in [20].

Lemma 4.1 For anyn×kmatrixB andn-vectorc letσ(γ)≡σmin([B, cγ]).
If (1.10) holds, then for allγ ≥ 0 the STLS distance in (1.6) isσ(γ), which
is the smallest nonnegative scalarσ satisfying

0 = ψk(σ, γ) ≡ det([B, cγ]H [B, cγ] − σ2I)/det(BHB − σ2I)(4.1)

= γ2cHc− σ2 − γ2cHB(BHB − σ2I)−1BHc(4.2)

= γ2cH [I −B(BHB − σ2I)−1BH ]c− σ2(4.3)

= −γ2σ2cH(BBH − σ2I)−1c− σ2(4.4)

= γ2ρ2 − σ2 − γ2σ2aH(ΣΣH − σ2I)−1a(4.5)

= γ2‖r‖2 − σ2 − γ2σ2
k∑

i=1

|αi|2
σ2

i − σ2 ,(4.6)

where these last two lines use the notation of (2.4), (2.6), (2.9).

Proof. When (1.10) holds, we proved in Theorem 3.1 that (1.11) holds, so
σ(γ) is the STLS distance in (1.6) for allγ ≥ 0, see (1.9). But (1.11) shows
BHB − σ2(γ)I is positive definite, soσ(γ) is the smallest nonnegativeσ
satisfying (4.1). Since

[B, cγ]H [B, cγ] − σ2I =
[
BHB − σ2I BHcγ
γcHB γ2cHc− σ2

]
,

(4.1) and (2.11) show that

ψk(σ, γ) = det(([B, cγ]H [B, cγ] − σ2I)/(BHB − σ2I)),

which is the Schur complement ofBHB − σ2I in [B, cγ]H [B, cγ] − σ2I,
since theSchur complement is a scalar here. Thiswith the definition in (2.10)
proves (4.2). But (4.3) is just (4.2) rearranged, and (4.4) follows from (4.3)
by using Lemma 2.1 withm = −1. Finally (4.5) and (4.6) follow from (4.4)
by using the SVD ofB in (2.4), and the notation of (2.6) and (2.9).��

When the elementsαi of a are nonzero and theσi are distinct in (4.6)
(see [23,§39, pp. 94–6], which also handles the case when this last is not
so)all the singular values of[B, cγ] are given by thek+ 1 solutionsσ ≥ 0
of the secular equation0 = ψk(σ, γ). When someαi = 0, (2.6) and (2.7)
show bothB and[B, cγ] have the singular valueσi. However we are only
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interested inσ(γ), the smallest singular value, thus when (1.10) holds, we
see from (4.6)σ(γ) satisfies

0 = ψk(σ(γ), γ) = γ2‖r‖2 − σ(γ)2 − γ2σ(γ)2
k∑

i=1

|αi|2
σ2

i − σ(γ)2 .(4.7)

With γ = 1, (4.7) was derived in [11], see also [16, Thm. 2.7, & (6.36)],
where [16, (6.36)] corresponds to a more general case. These derivations
assumed the weaker condition (1.7), and so cannot be generalized to STLS
for all γ ≥ 0, see Remark 3.1.

It is of interest to examine howσ(γ) changes withγ.
Corollary 4.1 If (1.10) holds,γ > 0, andc is not in the range ofB, then
σ(γ) ≡ σmin([B, cγ]) increases asγ increases, and decreases asγ de-
creases, strictly monotonically.

Proof. (1.10) impliesn× k B has rankk. If finite γ > 0 andc is not in the
range ofB, thenσ(γ) ≡ σmin([B, cγ]) > 0. Differentiating ((4.7) divided
by γ2σ(γ)) with respect toγ gives

σ̇(γ)

[
σ(γ)

k∑
i=1

|αi|2
(σ2

i − σ(γ)2)2 +
‖r‖2

σ(γ)3

]
=

1
γ3 .

But when (1.10) holds, (3.7) showsσ(γ) < σk for all γ > 0, so the factor
[·] here represents a positive finite number, and thusσ̇(γ) > 0 for all γ > 0.
��

It is revealing to put the result of Theorem 3.1 in the context of work
on updating the SVD, or on rank-one modification of the Hermitian eigen-
problem (see for example [2], which is based on the ideas of Wilkinson
described in [23, Ch.2,§39, pp. 94–96]). Assume that the condition (3.3)
is satisfied. Then0 = ψj(σ, γ) represents the secular equation of the cor-
responding deflated problem (where thek − j deflation steps correspond
to αj+1 = . . . = αk = 0). Then[B, cγ] hask − j singular values equal
to σmin(B). The condition (3.4) guarantees that the deflated secular equa-
tion does not have a solutionσ less thanσmin(B) (whenψj(σk, γ) < 0,
it does have such a solution). Conversely, ifσmin([B, cγ]) = σmin(B),
then (3.3) must hold andσmin(B) must be deflated, otherwise the function
ψk(σ, γ) will have a pole atσmin(B) and a positive solutionσ(γ) strictly
less thanσmin(B) (which gives a contradiction). Moreover, the deflated
secular equation0 = ψj(σ, γ) must not have a positive solution less than
σmin(B), which gives (3.4). We see that we could have proved our Theo-
rem 3.1 directly using the ideas of Wilkinson, but we prefer our way above,
because it is logically simpler, and it also provides some algebraic relations
that we use later in the paper. Some related questions were also studied in
[6], but a statement similar to our Theorem 3.1 was not considered there.
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5 Alternative STLS and DLS formulations

When the minimum singular values of[B, c] andB are distinct, the SVD
approximation theory used to provide the TLS solution (see for example [11,
12,1,16]) is so powerful that two intermediate formulations which we need
are usually not mentioned. These hold even when the minimum singular
values are equal. The STLS and DLS versions are needed here to prove a
theoretical weakness of the formulations (1.3)–(1.6), andmayeven beuseful
otherwise.

For the generality of this paper we allow the data to be complex. This
leads to nontrivial proofs, since (1.6) is a constrained optimization problem,
but for example‖E‖2

F is not an analytic function of the elements of the
complex matrixE. Thus we avoid differentiation in our proofs. We learnt
a technique for doing this by listening to J. H. Wilkinson. The idea is to
start with the answer— perhaps found by differentiating the Lagrangian for
the real case and generalizing — and show that any change to the answer
increases the functional. This also allows us to give a rigorous proof of the
form of the DLS solution when the data can be complex.

For clarity in this analysis we definex ≡ zγ, so (1.6) becomes:
σ2

S ≡ min
s,E,x

‖[s,E]‖2
F , subject to (B + E)x = cγ − s.(5.1)

Suppose for a givenγ > 0 thatx̂ andŝ are thevectorsin the solution of the
STLS problem (5.1). We now show that the matrix part of the solution is

Ê = d̂x̂H/x̂H x̂, d̂ ≡ cγ −Bx̂− ŝ.(5.2)

For Ê and the solution vectorŝx andŝ, (5.1) simplifies to

σ2
S = min

F
{‖ŝ‖2 + ‖Ê + F‖2

F } s. t. (B + Ê + F )x̂ = cγ − ŝ.(5.3)

For anyF satisfying these constraints,

d̂ ≡ cγ −Bx̂− ŝ = (Ê + F )x̂ = d̂+ Fx̂,

soFx̂ = 0. ThusFÊH = Fx̂d̂H/x̂H x̂ = 0, and

‖Ê + F‖2
F = trace[(Ê + F )(Ê + F )H ] = ‖Ê‖2

F + ‖F‖2
F .

This shows that the unique minimum in (5.3) is atF = 0, and (5.2) is the
matrix part of the solution to (5.1). It follows that we can substitute

E = (cγ −Bx− s)xH/xHx(5.4)

in (5.1) to give the first alternative formulation of STLS :

σ2
S = min

s,x
{‖s‖2 + ‖cγ −Bx− s‖2/‖x‖2},(5.5)
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since the constraints in (5.1) are automatically satisfied byE in (5.4).
Supposêx andŝ solve (5.5). We will show that

ŝ = s̃ ≡ (cγ −Bx̂)/(1 + x̂H x̂), so thatÊ = ŝx̂H ,(5.6)

where the expression for̂E follows by substitutinĝs in (5.2). Define

d̃ ≡ cγ −Bx̂− s̃ = s̃(1 + ‖x̂‖2) − s̃ = s̃‖x̂‖2.(5.7)

Our proof that̃s solves (5.5) will also show that̃d = d̂ in (5.2). If x̂ is known,
we can replacex ands in (5.5) byx̂ ands̃+ t to give

σ2
S = min

t
ζ(t), ζ(t) ≡ {‖s̃+ t‖2 + ‖d̃− t‖2/‖x̂‖2},

ζ(t) = ‖s̃‖2 + s̃Ht+ tH s̃+ ‖t‖2 + (‖d̃‖2 − d̃Ht− tH d̃+ ‖t‖2)/‖x̂‖2.

(5.8)

But from (5.7)tH s̃ − tH d̃/‖x̂‖2 = 0, so the unique minimum of (5.8) is
given byt = 0. Thus if x̂ and ŝ solve (5.5), (5.6) holds, giving with (5.5)
our second alternative formulation of STLS (5.1):

σ2
S = min

x
‖cγ −Bx‖2/(1 + ‖x‖2).(5.9)

For the real case, this was derived in [11], see also [3, (3.21), p.57].
This is the result we need for our analysis of STLS, so we go no further

with solving STLS here, but we will continue with the solution of the DLS
formulation (1.4). SupposewD is the vector in the solution of the DLS
problem

σ2
D ≡ min

G,w
‖G‖2

F , subject to (B +G)w = c.(5.10)

Doing the analysis (5.1)–(5.5) while insistings = 0 proves the matrix part
of the solution of this is

G = dwH
D /w

H
D wD, d ≡ c−BwD,(5.11)

so that (5.10) simplifies to the unconstrained DLS formulation

σ2
D = min

w
‖Bw − c‖2/‖w‖2.(5.12)

For the real case, this was stated in [3, (4.47), p.120], with a proof in Ap-
pendix B of that Thesis.

Now we derive a closed form DLS solution. We assume that (1.10)
holds, and thatρ > 0 in (2.9). Using (2.4), (2.6), and remembering that
σ1 ≥ · · · ≥ σk ≡ σmin(B) > 0, consider the equation

0 = ψ(σ2) ≡ cH(BBH − σ2I)−1c

= cHU(UHUBΣ
2UH

B U − σ2I)−1UHc =
k∑

i=1

|αi|2
σ2

i − σ2 − ρ2

σ2 ,(5.13)
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where (1.10) ensures at least one of theαi corresponding toσmin(B) will
be nonzero. Clearlyψ(σ2) is unbounded below asσ2 ↘ 0, and unbounded
above asσ2 ↗ σ2

k. Thus (5.13) has its minimal solutionσ
2
M satisfying

0 < σ2
M < σ

2
k when (1.10) holds andρ > 0.(5.14)

In this case we will showσ2
D = σ2

M and the solution of (5.12) is

wD ≡ (BHB − σ2
MI)

−1BHc.(5.15)

ThiswD withm = −1 in (2.1) gives

BwD −c = [B(BHB−σ2
MI)

−1BH −I]c = σ2
M(BBH −σ2

MI)
−1c.

(5.16)
So using (2.1) withm = −2, and (5.13),

σ2
M‖wD‖2 − ‖BwD − c‖2

= σ2
Mc

HB(BHB − σ2
MI)

−2BHc− σ4
Mc

H(BBH − σ2
MI)

−2c

= σ2
Mc

H(BBH − σ2
MI)

−1c = 0.

This shows thatσM andwD are candidates for solving (5.12), since

σ2
M = ‖BwD − c‖2/‖wD‖2.(5.17)

It remains for us to show that any nonzero changev towD increasesthis
functional. Define

φ(v) ≡ ‖B(wD + v) − c‖2 − σ2
M‖wD + v‖2

= ‖BwD − c‖2 + (BwD − c)HBv + vHBH(BwD − c) + ‖Bv‖2

−σ2
M(‖wD‖2 + wH

D v + vHwD + ‖v‖2).

But if we use (5.15), we see that

vHBH(BwD − c) − σ2
Mv

HwD = vH [(BHB − σ2
MI)wD −BHc] = 0.

This with (5.17) and (5.14) gives for nonzerov

φ(v) = ‖Bv‖2 − σ2
M‖v‖2 > 0,

soσ2
M < ‖B(wD + v) − c‖2/‖wD + v‖2 if v �= 0. But this shows (5.17)is

the optimum. When (1.10) holds andρ > 0, wD in (5.15) andG in (5.11)
uniquely solve (5.10), andσ2

D = σ2
M is the minimumσ2 in (5.13).

Relations (5.9) and (5.12) represent a formulation of the STLS and DLS
problems (1.5) ((1.6)) and (1.4) analogous to the classical formulation of
the LS problem

‖r‖2 = min
y

‖c−By‖2.

These were known before, but we proved them for the complex case assum-
ing (1.10). The generalized total least squares approach used in [3–5] can
be extended to complex data in a similar way.
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6 Equivalence in the limit of STLS with LS, DLS

We need to prove that whenγ → 0 the STLS solution of the STLS formula-
tion (1.6) becomes the LS solution, andwhenγ → ∞ the STLS formulation
corresponds toDLS (1.4). For DLS this seems reasonable, since for any pos-
itive boundedγ, (1.5) and (1.6) are equivalent with the substitutionss ≡ s̃γ,
z ≡ z̃ andE ≡ Ẽ. Clearly (1.5) becomes DLS asγ → ∞, so it appears
that (1.6) becomes DLS too. Alternatively for any positive boundedγ we
can rewrite (1.6) as

STLS distance≡ min
s,E,z

‖[s,E]‖F s. t. (B + E)z = c− s/γ.

As γ → ∞ it appears that we can takes = 0, corresponding to DLS.
But neither of these arguments is rigorous, so we resort to the closed form
solution of (1.6) to prove these equivalences. For the case of real data, the
basic ideas forγ → 0 were given in [11, Corollary 4.2], and more precisely
in [22, Theorem 3.1]. This section is thus an extension of these works.

We will assume (1.10) holds, so in particular (1.11) holds, andB has
full column rank. For the case of (1.11), [16, Thm. 2.7] showed (for the
real case withγ = 1) that the closed form TLS solution of (1.6) is, with
σ(γ) ≡ σmin([B, cγ]),

z(γ)γ = [BHB − σ2(γ)I]−1BHcγ.(6.1)

If v ≡ (ṽT , ν)T withν �= 0 is a right singular vector of[B, cγ]corresponding
toσ(γ), then we knowz(γ)γ = −ṽ/ν. But{[B, cγ]H [B, cγ]−σ2(γ)I}v =
0, and the firstk elements of this give (6.1). This could also have been proven
from the formulation (5.9) (rememberingx ≡ zγ), see the proof of (5.15)
from (5.12).

The definitionσ(γ) ≡ σmin([B, cγ]) showslimγ→0 σ(γ) = 0, so

lim
γ→0

z(γ) = (BHB)−1BHc = the LS solutiony for (1.2).(6.2)

Next we relate thedistanceswhenγ → 0. The STLS distance is the smallest
singular valueσ(γ)of [B, cγ], see (1.9), and so is the smallest solutionσ ≥ 0
of (4.1). If we defineM ≡ I−B(BHB)−1BH =MH =M2, (4.3) shows
that for the LS residualr = c−By =Mc in (1.2),

lim
γ→0

STLS distance in (1.6)
γ

= lim
γ→0

σ(γ)
γ

=
√
cHMc =

√
rHr

= LS distance in (1.2).(6.3)

This completes our proof that asγ → 0, the STLS solution of the STLS
formulation (1.6) becomes the LS solution, and the STLS distance divided
by γ becomes the LS distance.
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For the DLS equivalence we have the added difficulty of unknown
σ(∞) ≡ limγ→∞ σ(γ). Taking the limitγ → ∞ in (4.4) shows that the
STLS distanceσ(∞)must be the smallest positive solutionσM < σmin(B)
of (5.13), see (5.14). But this means thatσ(∞) is also the DLS distanceσD.
Also from (6.1) and (5.15) we see in the limit the STLS solutionz(γ) of
STLS (1.6) becomes the solution vectorwD of (1.4). Summarizing:

lim
γ→∞STLS distance= DLS distance, lim

γ→∞ z(γ) = wD.(6.4)

This completes the proof that whenγ → ∞, the STLS formulation (1.6)
corresponds exactly to the DLS formulation (1.4).

7 Conditions for meaningful solutions

Here we show when the problem formulations (1.3)–(1.6) are not good for
solvingBx ≈ c in (1.1). Because (1.3) is a special case of (1.6), and (1.5) is
equivalent to (1.6) for boundedγ > 0, we need only consider the DLS (1.4)
and STLS (1.6) formulations. Of course the LS formulation (1.2) always
has a meaningful solution.

We first show that (1.3)–(1.6) are not good whenn byk B does not have
rankk. The functional in each case is nonnegative. Supposec does not lie
in the range ofB, so the functional is positive. For the STLS problem an
alternative formulation is (5.9) withx ≡ zγ. But takinganyx and adding to
it a large enough component in the null space ofB will make the functional
in (5.9) arbitrarily close to zero. A similar argument holds for DLS via
(5.12). Thus the formulations should at least demand the solution vectors
be orthogonal to the null space. It is preferable to eliminate the null space.

We argue that (1.3)–(1.6) are best restricted to problems of the form (1.1)
satisfying (1.10), that is,

then× k matrixB has rankk, and c �⊥ Umin,

whereUmin is the left singular vector subspace ofB corresponding to
σmin(B). If this holds, then Theorem 3.1 shows (1.11) holds, see (3.7),
and we have the standard, meaningful solutions. But if it does not hold, we
will show these four formulations either have solutions that do not make
sense as solutions to (1.1), or contain data which is irrelevant to the solution
and could cause unnecessary inaccuracieswith finite precision computation.
It is rarely possible to tell ahead of time which is the case, and we recom-
mend that the formulations (1.3)–(1.6) each come with the proviso thatB
andcmust obey (1.10).

Suppose the data can be unitarily transformed, see (2.3), so that

[
c̃ B̃

]
= PH

[
c BQ

]
=

[
c1 B11 0
0 0 B22

]
.(7.1)
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Note that in this case the SVD problems of[c̃, B̃] and ofB̃ each split into
two independent SVD problems. The approximation problemBx ≈ c then
represents twoindependentapproximation problems:

B11x1 ≈ c1, B22x2 ≈ 0, x ≡ Q
[
x1
x2

]
,(7.2)

in that the solution to each of these has no effect upon, and can be found
independently of, the other. Each of (1.2)–(1.6) applied toB22x2 ≈ 0 gives
zero distance andx2 = 0, an eminently meaningful solution.

If (1.10) does not hold, a transformation (2.3) clearly exists giving (7.1)
whereB22 contains all the singular values ofB equal toσmin(B). In the
worst case we will show, see (7.3)–(7.6), that (1.3)–(1.6) applied directly to
the combined problemBx ≈ c can give meaningless solutions. But even
in the best case these minimum singular values are irrelevant, and should
be removed from the problem, lest rounding errors effectively introduce
a nonzero vector belowc1 in (7.1), and so cause these irrelevant singular
values to contaminate the solution. This is more likely the smallerσmin(B)
is. Although (1.2) in theory givesx2 = 0, this last comment suggests we
might gain by insisting on (1.10) for LS too. The rest of this section will
further develop our argument justifying the fundamental role of (7.1).

The practical reader, who agrees that problemsBx ≈ c with data that
can be transformed to (7.1) should be solved as two independent problems,
can ignore the rest of this section and go to Sect. 8. That shows how transfor-
mations may be applied to produce[c1, B11] in (7.1) that cannot be reduced
any further.

We examine TLS. From (5.9) withγ = 1 we see that (1.3) corresponds
to

(TLS distance)2 = min
x

‖Bx− c‖2/(1 + ‖x‖2).(7.3)

Supposex1 solves

σ2
11 ≡ min

s,E,x
‖[s,E]‖2

F s. t. (B11 + E)x = c1 − s,

then from (7.3)

σ2
11 = ‖B11x1 − c1‖2/(1 + ‖x1‖2).(7.4)

Suppose (to give the worst case mentioned above, see (1.12) as a numerical
example of this),

σk ≡ σmin(B22) < σ11,(7.5)

B22v = uσk, uHB22 = σkv
H , vHv = uHu = 1.
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We now show takingx = Q

(
x1
v

)
in (7.3) with (7.1) gives a functional

value less thanσ2
11, soQ

(
x1
0

)
does not minimize (7.3) when (7.1) and

(7.5) hold. Using (7.4), the functional in (7.3) becomes

‖B11x1 − c1‖2 + σ2
k

1 + ‖x1‖2 + 1
=
σ2

11 + σ2
k/(1 + ‖x1‖2)

1 + 1/(1 + ‖x1‖2)
< σ2

11,(7.6)

sinceσ2
k < σ2

11. Thus the meaningful solutionx = Q

(
x1
0

)
does not

solve the combined problem correctly using the formulation (1.3). Using
(5.12) instead of (7.3) shows the DLS formulation (1.4) has exactly the
same weakness.

The case for STLS is more dangerous still, since Theorem 3.1 showed
that when (1.10) does not hold (giving (7.1)), we could haveσmin([B, c]) <
σmin(B), butσmin([B, cγ]) = σmin(B) for someγ, see Corollary 3.1. It
can be shown that this also allows the possibility that (7.5) holds — the
worst case above.

The fundamental difficulty revealed here in a clear way by the form
(7.1) has been noticed and described in various different ways before. Van
Huffel and Vandewalle [16] developed a rigorous and fascinating, but quite
complicated theory allowing them to construct a meaningful solution to the
approximation problemBx ≈ c. Later workers assumed (1.11), and applied
this theory in [16] directly to the STLS problem.

We argue for the criterion (1.10) for all the formulations (1.3)–(1.6),
since unlike (1.11) this criterion is independent ofγ, but it ensures (1.11)
holds; it is simpler than (1.11), it leads to a clear and consistent theory, and it
ensures that theminimumsingular value ofB is relevant to the solution. This
argument is easy to acceptwhenwe realize there is an elegant transformation
which produces the minimally dimensioned core problem obeying (1.10)
from any given[c,B].

8 The core problem withinBx ≈ c

Here we answer the following important question. Given a generaln by
k matrix B andn-vector c, how can the data be transformed so that the
problemBx ≈ c splits into two independent problems as in (7.1) and
(7.2), giving a trivial problemB22u2 ≈ 0 of maximal dimensions, and the
minimally dimensioned core problemB11u1 ≈ c1 satisfying (1.10). This
last condition ensures each of the formulations (1.2)–(1.6) has a unique
meaningful solution, which can be expressed via a simple closed form.
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The answer we give immediately suggests a very useful direct (that is,
not iterative) practical computation, but we only give the theoretical (exact
precision) version here.

Remember the STLS solution requires some knowledge of the SVD
of [cγ,B]. Our reduction leads to a core problem from which this SVD
information can be computed easily and efficiently. Choose unitarymatrices
P andQ to produce the following real bidiagonal matrix, see for example
[12, §5.4.3–5, pp. 251–254]. In the usual case ofn × k B with n > k
we obtain, where a blank means a zero element, and the bottom0 could
represent a zero vector or be nonexistent:

[c̃, B̃] ≡ PH
[
c B

] [
1
Q

]
=




γ1 β1
γ2 β2

· ·
γk βk

γk+1
0



.(8.1)

Noticehow theSVDof[cγ,B]canquicklybecomputed from thisbidiagonal
form for any choice ofγ, see for example [12,§8.6.2, pp. 452–456].

There are two ways this algorithm can terminate prematurely, so we
describe the relevant partial reductions. Initially we design unitaryP1 so
thatPH

1 c = e1γ1, then unitaryQ1 so that(eT1 P
H
1 B)Q1 = β1e

T
1 , etc.. After

the first half of thej-th step,j ≤ k + 1, we have

PH
j · · ·PH

2 P
H
1

[
c BQ1Q2 · · ·Qj−1

]
=



γ1 β1

· ·
γj × ×
0 × ×
0 × ×


 .(8.2)

Stop if γj = 0, since then the exact solution (zero STLS distance) can
be found by discarding columnsj + 1, . . . , k, and rowsj, . . . , n of the
transformed[c,B]. Otherwise ifj ≤ k, choose unitaryQj so that

PH
j · · ·PH

2 P
H
1

[
c BQ1Q2 · · ·Qj

]
=



γ1 β1

· ·
γj βj 0
0 × ×
0 × ×


 .(8.3)

Stop ifβj = 0, discarding columnsj+1, . . . , k and rowsj+1, . . . , n of the
transformed[c,B], leaving a STLS problem with aj by j upper bidiagonal
matrix [c̃, B̃]. In both these terminations we assume

γiβi �= 0, i = 1, . . . , j − 1.(8.4)
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Notice that in each of these early terminations, direct transformations have
split the SVD of[cγ,B] (and ofB) into two independent SVDs.

The computations described in [12,§5.4.3–5, pp. 251–254] are designed
for dense matrices. If we have large sparse[c,B], then we could consider
the iterative bidiagonalization suggested by Golub and Kahan in [9], see
also [17]. This iterative bidiagonalization is the basis for the valuable LSQR
algorithm in [18,19] which solves large sparse LS (as well as consistent)
problems. The bidiagonalization “Bidiag 1” of [18, p.47] is used for the
LSQRalgorithm (and code) in [19]. In theory afterj andahalf steps, “Bidiag
1” applied to[c,B] ([b, A] in [18]) produces the firstj + 1 columns ofP ,
the firstj columns ofQ, and the leadingj + 1 by j + 1 block of the right-
hand side in (8.1).̊Ake Björck [1, §7.6.5, pp.310-311] suggested applying
the iterative bidiagonalization (as in LSQR) to the TLS problem, see also
[7, Section 4.1]. Now we see this approach is also applicable to solving the
STLSproblem, aswell as (at least in theory) delivering the core problem, for
any large sparse linear systemBx ≈ c. The adaptation of LSQR for solving
large sparse STLS orDLS problems using finite precision computationswill
be further investigated. See Sect. 9 for the DLS solution using (8.1).

The main theoretical importance of the reduction (8.1) here is that if
(8.4) holds, then our main criterion (1.10) holds for the reduced bidiagonal
matrix. If γj = 0 this is the bidiagonal matrix in the top left corner of the
transformed[c,B] in (8.2); or if γj �= 0, it is the bidiagonal matrix in the
top left corner of the transformed[c,B] in (8.3) if βj = 0. Also (1.10) holds
for [c,B] in (8.1) if the algorithm is not stopped prematurely. We now prove
this.

Theorem 8.1 Supposen by k B has SVDB =
∑k

i=1 uiσiv
H
i , and there

exist unitary matricesP andQ giving [c̃, B̃] ≡ PH [c,BQ] where

[
c̃ B̃

] ≡




γ1 β1
γ2 β2

· ·
γk βk

γk+1
0



, γjβj �= 0, j = 1, . . . , k.(8.5)

Then we have a stronger condition than (1.10) for thisc andB:

rank(B) = k; cHui �= 0, i = 1, . . . , k.(8.6)

Thek singular values ofB are distinct and nonzero; thek + 1 singular
values of[c,B] are distinct, and all nonzero if and only ifγk+1 �= 0.

Proof. Clearly B̃ andB have the same singular values, as do[c̃, B̃] and
[c,B], and B̃ = PHBQ has the SVD B̃ =

∑k
i=1 ũiσiṽ

H
i ≡
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∑k
i=1 P

Huiσiv
H
i Q, so

cHui = cHPPHui = c̃H ũi, i = 1, . . . , k.

Write B̃ ≡ [b1, B1], thenB̃HB̃ is k × k tridiagonal with nonzero next to
diagonal elements, andBH

1 B1 remains when the first row and column are
deleted. Thus the eigenvalues ofBH

1 B1 strictly separate those of̃BHB̃, see
[23, Ch.5,§37, p.300], and the singular values ofB1 strictly separate those
of B̃. ThusB̃, and soB, has distinct singular values (see also [21, Lemma
7.7.1, p.134]). A similar argument holds for[c,B]. B clearly has rankk,
and[c,B] has rankk + 1 if and only if γk+1 �= 0. Supposeσ is a singular
value ofB̃ with singular vectorsu andv such that

c̃Hu = γ̄1eT1 u = 0, uσ = B̃v, σvH = uHB̃, ‖u‖ = ‖v‖ = 1,

then0 = eT1 uσ = eT1 B̃v = β1e
T
1 v, ande

T
1 v = 0. Writing v =

(
0
q

)
shows

B̃v = B1q = uσ, uHB1 = σqH , ‖u‖ = ‖q‖ = 1,

soσ is also a singular value ofB1. This is a contradiction since the singular
values ofB1 strictly separate those of̃B, so (8.6) holds. ��

Thus we need not derive results for the most general possible[cγ,B].
We can instead assume (1.10). Any more generalBx ≈ c problem can be
reduced to a core problem that satisfies (8.6) (and so (1.10)) by applying the
reduction (8.1) and stopping at the first zeroγj or βj . Suppose the resulting
core data is[c1, B11], see (7.1). Then the theorem also showed thatB11 has
no multiple singular values, so any singular value repeats must appear in
B22.

We do not insist on (8.6), because a problem only satisfying (1.10) will
in theory give the same solution and distance as it would if it were reduced
to one satisfying (8.6). This can be seen for example by using the transfor-
mations of (2.6) in (6.1) to give

z(γ) = V [Σ2 − σ2(γ)I]−1ΣUH
B c.

Clearly when (1.10) holds andαi ≡ uH
i c = 0 for somei, 1 ≤ i ≤ k, the

correspondingσi in Σ does not contribute to the solution, and need not, at
least in theory, be eliminated. In practice it is preferable to carry out the
reduction (8.1) leading to (8.6), see Sect. 9.
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9 Computing STLS and DLS solutions

In order to compute either STLS solutions or the DLS solution for given
data[c,B], we recommend first carrying out a reduction of the form (8.1) to
the core problem in Sect. 8 — unless there are clear reasons for not doing
so. The reasons for doing so are hard to reject. For general data we will
not know if the formulations (1.2)–(1.6) have unique meaningful solutions,
but the reduction will give us a subproblem for which this is so. Even if we
know the original data satisfies (1.10), it is (from the computational point
of view) highly preferable to remove all the irrelevant information from our
data as early in the solution process as possible, and this is exactly what the
transformation (8.1) does. In any case we still need some sort of SVD of the
data, and this will usually first perform a reduction as costly as that in (8.1).
But (8.1) allows us to find the SVD of[cγ,B] easily for different choices
of γ and so is the obvious choice. There are excellent fast and accurate
algorithms for finding all or part of the SVD of (8.1) withγ1 replaced by
γ1γ. We can find just the smallest singular value and its singular vectors,
fromwhich the solution vectorz(γ) can be simply attained, see (6.1) and the
two sentences following it. If we have some idea of the accuracy of our data,
then when we use numerically reliable unitary transformations in (8.1), we
will have a good idea of what element of (8.1) (if any) we can set to zero to
obtain one of the stopping criteria as soon as possible in (8.1)–(8.4). Thus
the crucial decisions can be madebeforeany SVD computations are carried
out. This is more efficient, but it is almost certainly more reliable to make
such decisions from unitary transformations of the original data than from
the elements of singular vectors, (see for example [16, p.23] or (10.1) later).
The remaining computations for STLS are fairly obvious. Finally (8.1) leads
to a solution to the DLS problem (1.4), which we now describe.

We saw from (5.13) and (5.15) that when (1.10) holds, the solutionwD

and distanceσD of the DLS problem (1.4) are

wD ≡ (BHB − σ2
MI)

−1BHc, σD = σM ≥ 0,(9.1)

whereσ2
M is the minimal solutionσ2 of

0 = ψ(σ2) ≡ cH(BBH − σ2I)−1c.(9.2)

Now suppose that the core part[c̃, B̃] of the transformed[c,B] has the
form in (8.5). This obviously applies to the usual case where the reduction
does not stop prematurely, but it also applies to the core problem in (8.2)
or (8.3) by replacingk here byj. We will solve the DLS problem for this
reduced, or core data. Now Theorem 8.1 proved (1.10) holds. Ifγk+1 = 0
the DLS distance is zero, and the solution is obvious. Otherwise, writing

[c̃|B̃] ≡
[
γ1 β1e

T
1

0 B2

]
,
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we see for this reduced problem thatσ2
M must be the minimal solutionσ2 of

0 = c̃H(B̃B̃H − σ2I)−1c̃ = |γ1|2eT1 (B̃B̃H − σ2I)−1e1

= |γ1|2 det(B2B
H
2 − σ2I)/det(B̃B̃H − σ2I),

since for nonsingularA,A−1 = adjugate(A)/det(A), see for example [23,
(36.3), p.39]. But because theγi andβi in (8.5) are nonzero fori = 1, . . . , k,
no singular value ofB2 is a singular value of̃B (by strict separation, see
the proof of Theorem 8.1), soσM must be the smallest singular value of
the nonsingular bidiagonal matrixB2. This is relatively easy to find, see for
example [12,§8.6.2, pp. 452–456].

Now let v be the right singular vector ofB2 corresponding toσM , then
eT1 v �= 0 (otherwiseσM would also be a singular value of̃B) and

wD = vγ1/(β1e
T
1 v), σD = σM = σmin(B2),(9.3)

are the DLS solution and distance in (1.4) for the reduced data[c̃, B̃]. We
seewD satisfies the equivalent of (9.1) for this reduced data, since

B̃HB̃ = |β1|2e1eT1 +BH
2 B2, B̃H c̃ = e1β̄1γ1, BH

2 B2v = vσ2
M ,

(B̃HB̃ − σ2
MI)wD = |β1|2e1eT1 vγ1/(β1e

T
1 v) = e1β̄1γ1 = B̃H c̃.

10 “Generic” TLS problems

It is useful in the light of our new knowledge to compare (1.10) with the
criterion for “generic” TLS [16] as applied to STLS (1.6), and we do this
now.We simplify the results of [16] to the case of a single right hand sidec in
(1.6), but allowγ �= 1 in order to extend their results to the STLS problem.

VanHuffel andVandewalle used the following definition of the “generic”
(S)TLS problem in [16, p.23]. Consider the singular value decomposition
of the extended matrix[B, cγ] for someγ > 0

[B, cγ] = U ′Σ′V ′H , with Σ′ ≡ [diag(σ′
1, . . . , σ

′
k+1), 0]T ,

for n × n unitaryU ′, (k + 1) × (k + 1) unitaryV ′ ≡ [v′
1, . . . , v

′
k+1] with

elementsν ′
ij , andn × (k + 1) Σ′, with σ′

1 ≥ . . . ≥ σ′
k+1 ≥ 0. The STLS

problem (1.6) is “generic” if forj ≤ k defined so that
σ′

j > σ
′
j+1 = · · · = σ′

k+1, we have[ν ′
k+1,j+1, . . . , ν

′
k+1,k+1] �= 0.

(10.1)
This includes the rank(B) < k case. The TLS solution of a “generic”
problem is called the “generic” TLS solution, and can be computed by the
algorithm of Golub and Van Loan [11].

Note (10.1) used the SVD of[B, cγ], whereas (1.10) used that ofB. Let
σ1 ≥ . . . ≥ σk ≥ 0 be the singular values ofB, see (2.4). The interlacing
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property for the eigenvalues of[B, cγ]H [B, cγ] and ofBHB [23, Ch2,§47,
pp. 103–4] tells us that

σ′
1 ≥ σ1 ≥ · · · ≥ σ′

j ≥ σj ≥ σ′
j+1 ≥ σj+1 ≥ · · · ≥ σ′

k ≥ σk ≥ σ′
k+1.

(10.2)
In their Lemma 3.1 and Corollary 3.4 in [16, pp. 64-5], Van Huffel and

Vandewalle proved another necessary and sufficient condition for (1.6) to
be “generic”. For a givenγ > 0 this condition can be stated in the following
way: if j ≤ k is defined so thatσ′

j > σ
′
j+1 = · · · = σ′

k+1 then the STLS
problem (1.6) is “generic” if and only if

σj > σ
′
j+1 = · · · = σ′

k+1.(10.3)

(In fact they consideredγ = 1, and proved that (10.3) is equivalent to
[ν ′

k+1,j+1, . . . , ν
′
k+1,k+1] �= 0). With (10.2), (10.3) becomes

σ′
j ≥ σj > σ

′
j+1 = σj+1 = · · · = σ′

k = σk = σ′
k+1,(10.4)

meaning the STLS problem (1.6) is “generic” if and only if

σmin(B) > σmin([B, cγ]) whenσmin([B, cγ]) is simple,(10.5)

or, whenσmin([B, cγ]) is multiple:(10.6)

multiplicity(σmin([B, cγ])) >multiplicity(σmin(B)).(10.7)

Since (10.5) is just (1.8), this new formulation (for a single right-hand
sidec) emphasizes that the purpose for using the “generic” TLS criterion
[16] is to provide solutions where possible in the subtle case where[B, c]
has a multiple minimum singular value.

Our criterion (1.10) is far more brutal than (10.5)–(10.7) — it rejects
some cases where (10.5) holds, see Corollary 3.1, and all cases where (10.6)
holds. This last because (10.6) impliesσmin([B, cγ]) = σmin(B), so that
a2 = 0 in Corollary 3.1, and (1.10) does not hold. Yet the intentions and
outcomes of the criteria in [16] and our criterion (1.10) are not very different.
In particular note that in nearly all practical problemsour restrictive criterion
(1.10)will hold, and so (10.5) will also hold, and any differences in the
criteria apply to a small number of problems at best.

If our data[c,B] does not meet the criterion (1.10), we do not wish to
reject it — we want to transform it to obtain a reduced problem that sat-
isfies (1.10). In fact, we go even further. We suggest that the data[c,B]
shouldalwaysbe transformed to a reduced system (7.1) withB11 of min-
imal dimensions. If we do this via the approach in Sect. 8, we discardall
the components of the SVD ofB that are irrelevant to the main approxi-
mation problem inBx ≈ c. But this is partly what is done in [16]. In the
case of isolatedσmin([B, cγ]), (10.5) shows ifσmin([B, cγ]) = σmin(B)
the “generic” STLS solution does not exist. Moreover, in Theorem 3.1
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σmin([B, cγ]) = σmin(B) implies a2 = 0 and thereforeσmin(B) ≡ σk

makesno contribution to themain approximation problem inBx ≈ c (which
is whywe eliminate it). For this case VanHuffel and Vandewalle [16,§3.4.1]
proposed a nongeneric TLS solution that effectively also discardsσmin(B).
So in this case of isolatedσmin([B, cγ]) the intentions are the same and the
outcomes are similar.

When (10.6) and (10.7) hold, the “generic” TLS solution exists but it is
not unique, and Van Huffel and Vandewalle construct the minimum norm
TLS solution [16, Thm. 3.7]. The “generic” solution exists because the
minimum eigenvalue of[

Σ2
1 Σ1a1γ

γaH
1Σ1 γ2(aHa+ ρ2)

]

is the minimum eigenvalue ofNHN in (3.6) (see (10.7)). It is not unique
because this minimum eigenvalue is also equal to the unwanted minimum
eigenvaluesσ2

j+1 = · · · = σ2
k of BHB in Theorem 3.1. This shows this

form of “generic” problem is extremely unlikely — and in STLS problems
any minute change inγ will upset this equality, see Corollary 4.1. Thus
such problems (even TLS problems) are not generic in the usual sense of
theword. One definition of generic is ‘general, not specific or special’, sowe
would expect a generic problem to satisfy (8.6) and so (10.5), but certainly
not (10.6) and (10.7).

For (10.6)–(10.7) our approach would first get rid ofall the unwanted
singular values ofB (not only those equal toσmin(B)), leading to a unique
solution of a reduced problem. This will provide unique solutions in all
cases. So again the intentions are the same, though the outcomesmay differ.
The philosophy here is to reduce the problem to one of minimal dimensions
with a unique meaningful solution. The tendency in [16] was more to seek
such solutions without such a reduction — but by applying orthogonality
conditions to the solution instead.

In summary, the stronger but simpler criterion (1.10) together with the
concept of the core problem in Sect. 8 has allowed us to achieve simply,
clearly, thoroughly, and with one uniform approach, what [16] sought to do,
and partially achieved through the ingenious use of several techniques.

11 Summary and conclusion

The total least squares (TLS) problem for the matrixB and the right-hand
sidecγ, γ > 0, represents a formulation (1.6) of the scaled TLS (STLS)
problem. For positive boundedγ it is equivalent to the usual formulation
(1.5) of the STLS problem forB and c, where the relative sizes of the
corrections inB andc are determined byγ. Our results bring, we believe,
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a new view to the theoretical foundations of STLS problems, and a new
understanding of these, including TLS problems, as well as of data least
squares (DLS) problems.

In Theorem 3.1 we proved the necessary and sufficient condition for
σmin(B) = σmin([cγ,B]), which reveals that this undesirable event must
be rare in practical STLS problems. This is a general matrix theory result
— it gives a necessary and sufficient condition for preserving the smallest
singular value of a matrix while appending or deleting a column. This led
us to a new criterion for scaled total least squares (STLS) problems, and
we showed that when this criterion is not obeyed, the standard formulations
can lead to computationally risky, or even meaningless solutions. We have
given algebraic proofs of alternative formulations of the STLS and DLS
problems, and proven the form of the DLS solution for the case of possibly
complex data. We proved how our formulation (1.6) of the STLS problem
corresponds to LS asγ goes to zero, and to DLS asγ goes to infinity. We
showed how to reduce any general LS, STLS or DLS problem to the core
and transparent problem where the system matrixB has full column rank
and distinct singular values, and the right-hand sidec is not orthogonal to
any left singular vector ofB. This removes any irrelevant information from
the data and it more than obeys our criterion (1.10). We briefly indicated
new algorithms for solving STLS and DLS problems, when the data[c,B]
is small and dense, and when it is large and sparse.

Van Huffel and Vandewalle [16, p.19] call the TLS problem “basic”
when it has only one right-hand side vector and a unique solution. If[B, c]
satisfies our criterion (1.10) then the STLS formulation (1.6) yields a unique
solution for anyγ > 0. The LS andDLS formulations then also yield unique
solutions. The reduction in Sect. 8 yields a core problem that has minimal
dimensions and satisfies (8.6). This last criterion is even stronger than (1.10).
So perhaps we could call such problems, or the general approximation prob-
lemBx ≈ c, “basic” when[B, c] satisfies (1.10), and “core”when it satisfies
(8.6).

If [B, c] satisfies (1.10), then in theory there is no need to perform the
reduction to theminimally dimensioned core problem satisfying (8.6). Both
the original problem satisfying (1.10) and the reduced minimally dimen-
sionedcoreproblemhave identical solutionsanddistances.Computationally
however, it seems always desirable to perform the proposed reduction.

Throughout this paper we have only dealt with problemsBx ≈ c with
one right-hand side vectorc. For this case Sect. 10 developed a new for-
mulation (10.5)–(10.7) of the existence condition for the “generic” TLS
solution in [16]. We used this to show that reducing the problem to one
which satisfied the simpler but stronger criterion (1.10) (or preferably the
even stronger (8.6)), then solving this problem, achieved everything that this
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difficult “generic” concept and its related solution methods did, and more.
In Sect. 9 we argued that the reduction in Sect. 8 to the core problem be
applied to any STLS problem unless there is a good reason not to do so.
Thus for problems with one right-hand side, if we use this reduction there is
no need for the subtle and sophisticated concept of “generic TLS” and the
related solution methods for special cases introduced in [16]. Perhaps this
reduction and the criterion (1.10) can be developed to apply to problems
with more than one right-hand side?

As we mentioned earlier, this paper deals with exact relationships. Our
next paper [20] follows on from this, and will deal with bounds and the
LS–STLS relationship whenγ > 0. A crucial element in that is the amount
by whichσmin([cγ,B]) is less thanσmin(B), and many of the results will
depend onδ(γ) ≡ σmin([cγ,B])/σmin(B).
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