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the generalized minimum residual method (GMRES) [15] is used here to
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1 Introduction

We will useR(B) to denote the range (column space) of a malixTwo
useful approaches to solving the overdetermined approximate linear system

(1.1) Bz =c¢, B annbyk matrix, cann-vector, ¢ ¢ R(B),

are ordinary least squares (LS, see for example [1], [5, Sect. 5.3]) and scaled
total least squares (STLS, presented in [14] where it was called weighted
total least squares, and developed further in [12]). STLS is a generalization
of total least squares (TLS, see [3,4], and for example [1, Sect. 4.6], [5,
Sect. 12.3], [9]).

In LS we seek (we usg- || to denote the vector 2-norm)

(1.2) LS distance = min||r| subjectto By =c—r.
r?y

In STLS, for a given parameter > 0, z, E ands are sought to minimize
the Frobenius (F) norm in

(1.3) STLS distance = IQEiH Ils, E]llr s.t. (B+ E)zy=cy—s.
s,E,z

We call thez = z(-y) which minimizes this the STLS solution of (1.3). Here
the relative sizes of the correctiofisands in B andcy are determined by
the real scaling parameter> 0. Asy — 0 the STLS solution approaches
the LS solution, and whef = 1 (1.3) coincides with the TLS formulation.
The formulation (1.3) is studied in detail in [12]. In applicationsan have
a statistical interpretation, see for example [12, Sect. 1], but here we regard
~ simply as a variable.

STLS solutions can be found via the singular value decomposition (SVD).
Let oin () denote the smallest singular value of a matrix, andAgbe
the orthogonal projector onto the left singular vector subspadg adrre-
sponding tar,,,;, (B). This paper will assume

(1.4) then x (k+ 1) matrix [B, c] has rankk + 1, and Pyc # 0.
We showed in [12, (3.7)] that this implied
(15) 0<0(y) =0omin([B,cy]) < omin(B) forally > 0.

In this case the unique solution of the STLS problem (1.3) is obtained from
scaling the right singular vector @B, ¢y] corresponding t@,,;, ([ B, ¢]),

and the norm of the STLS correction satisfies, for a given 0 (see for
example [12, (1.9)], or [5312.3] wheny = 1),

(1.6) STLS distance in (1.3)= opin([B, cy]).
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This paper is greatly simplified by only dealing with problems where
(1.4) holds. The assumption (1.4) is equivalent to that in [12, (1.10)] plus
the restrictionc ¢ R(B), which eliminates the theoretically trivial case
¢ € R(B). It is sufficient to note here that nearly all practical overde-
termined problems will already satisfy (1.4), but any overdetermined (and
incompatible) problem that does not can be reduced to one that does, see [12,
Sect. 8], and the bounds derived here with this assumption will be applicable
to the original problem.

It is known that (see for example [12, (6.3)])

(1.7) lim STLS distance in (1.3) lim Tmin([B; c7])
= ||r||, the LS distance in (1.2)

but here we examine the relationship between these distanag/for> 0.

This will bound the rate at which these quantities approach each other
for small v, as well as provide bounds on the LS distance in terms of
omin([B, ¢v]), andvice versafor all v > 0. To facilitate this study we
assume (1.4) holds, and introduce the scaled total least squares ratio (STLS
ratio) 7(~y) for all v > 0, where from (1.7)

(1.8) 7(7) (% —1asy — 0.

This7(~) is the ratio of the LS distance f@#x ~ ¢y to the STLS distance,
and summarizes the relative behaviour of the LS (1.2) and STLS (1.3) dis-
tances when (1.4) holds.

Remark 1.11t will help in reading this paper to realize there are three dif-
ferent items we examine, all as functionsof

1. The LS/STLS relationship, via the STLS ratipy) in (1.8).
2. Bounds on|r|| in terms ofc ., ([ B, ¢v]).
3. Bounds o, ([B, ¢y]) in terms of||r||.

The second item motivated this study, and is examined at length in Sect. 7,
but both the second and third follow from the firsta

Remark 1.2The casey = 0 will either be obvious, for example
omin([B,cy]) = 0 aty = 0, or undefined but with a limit, for example
7(v) in (1.8). It will in general simplify the presentation to assume 0,
since wheny = 0 is meaningful, the values will be obviousD

Van Huffel and Vandewalle [9] derived several useful bounds for TLS
versus LS (they = 1 case). Our results extend some of these to the case of
generaly > 0, as well as provide new bounds. This work was initiated by
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our research [13] on the finite precision convergence behaviour of GMRES
[15]. The results on the second item above are particularly useful for this and
also for the analysis of any iterative method which at the gtapnimizes

|| N7k || for some full column rank matridv.

The paper is organized as follows. In Sect. 2 we review some mathemati-
caltools thatwe use, and state the secular equation whigh[ B, ¢y]) must
satisfy. In Sect. 3 we introduce the important ratii(y) =
Omin([B, ¢])/omin(B), and use the secular equation to prove that when
(1.4) holdsé(~) is bounded away from unity for aff. We then study the
STLS ratior () and the relationship between the bounds-6n), ||| and
omin([B, ¢v]). In Sect. 4 we use the secular equation to derive such bounds,
in particular, bounds on the least squares residual npt(LS distance)
in terms of the scaled total least squares distangg ([B, ¢v])). We show
how good these bounds are, and how varyjmggves important insights into
the asymptotic relationship between the LS and scaled TLS distances. In
Sect. 5 we compare our bounds to previous results. In Sect. 6 we extend to
the casey # 1 aresult from [9], in order to obtain an expression#¢t) in
terms of the singular values &f and of| B, ¢v], as well as some related re-
sults. In Sect. 7 we briefly discuss the generalized minimum residual method
(GMRES) [15], since this is what first motivated the bounds in this paper,
and then present numerical results using GMRES to illustrate the theory.

2 Mathematical preliminaries

In this paper we will regularly use the following notation feand B in
(1.1), and forr andy solving the LS problem (1.2). Let > £k in (1.1). Let
then x k matrix B have rankk and singular values; with singular value
decomposition (SVD)

(2.1) B=Uz2V, ¥ =diagoy,...,01), 01> ...> 0 > 0.

HereUgzisn x k matrix,UgUB = I, Yisk x k,andk x k V is unitary.
Choose a unitary matrik = [Uz|Us| = [u1, ..., uk|ugt1,- - -, uy] SUCh
that(I — UsUL)e = upy1p, p > 0. Then

Y a
(2.2) vts.d |y 1| = [0 ).
0 0
az(al,...,ak)TE[ul,...,uk]Hc:U{jc.

The elements af are the components of the vector of observatioimsthe
directions of the left singular vectors of the data matBixWith (1.2) we
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4

gives the minimum fof|~||. Then for the LS solution and residual

see that
a— XVHy

p
0

Ulr =UH(c— By) =

k 2

_ Q;

(2.3) y=vsa 2= 1%
=1 i

(2.4) 7]l = p-

We will use some classical results. Whéhin G below is square and
nonsingular, the Schur complemént/C') of C'in G is defined below (see
for example [8, Sect. 0.8.5]), and the other results follow.

r-ae-n oL o i)

(25)  det(G) = det(C) - det(G/C).

Forthe analysis ofthe STLS problem (1.3), we will be interested in the singu-
lar valuesr of [B, ¢v], see (1.6), and so the eigenvaluésf [B, ¢y [B, ¢v].
When (1.4) holds, the smallest singular valué®fcy| is the STLS distance

in (1.3). We now state a useful form of the secular equation for this STLS
distance.

Lemma 2.1 Foranyn x k matrix B andn-vectorcleto (v) = opin ([ B, ¢])-
Assume (1.4) holds. Then using the notation in (2.1)—-(2.4), o(v) <
or = omin(B) holds for ally > 0, and the STLS distance in (1.3) is
o(v) = omin([B, ¢v]), which is the smallest positive solution of

0 =vi(o(7),7) = det([B, " [B, n] — 0(7)I)/ det(B"B — a(7)°I)

k

Q;

2.6) =PI = o = o) Y ;i
i=1

a

This was derived in [12, Sect. 4]. With= 1, (2.6) was derived in [4], see
also [9, Thm. 2.7, & (6.36)]. These latter derivations assumed the weaker
condition iy ([B, ¢]) < omin(B), and so do not generalize to STLS for
allv > 0, see [12].
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3 Two useful ratios,d(v) and ()

We wish to focus on the relationship between the STLS distance and the
LS distance, and its dependence on the scaling parametée ratiod ()
defined next is crucial for the bounds we develop. Foramyk matrix B

of rank k. andn—vectore, define for ally > 0

(3.1) 0(7) = omin([B, ), 6(7) = omin([B, 3]) /Omin(B)-

Clearlyo(0) = 6(0) = 0. The following lemma ord(y) was provenin [12,
Corollary 4.1].

Lemma 3.1 If (1.4) holds andy > 0, then0 < §(y) < 1, andd(y) in-
creases as increases, and decreasesyadecreases, strictly monotonically.
O

Since we are assuming (1.4) holds, it follows that (1.5) holds, and throughout
this paper we have

(3.2) 0<0(y)=0omin([B,Y])/omin(B) <1 forall~ > 0.

We will give several results in terms of the rati¢y). In particular, we
will get very tight bounds whe#(v) is small ¢(v) < 1). We see from
Lemma 2.1 that when (1.4) holds,

3.3)omin([B, 7)) <Allrll,  6(v) < Allrll/omin(B) forall =0,

and we can makeé(-y) arbitrarily small by decreasing.

Some of our bounds will contain the factar — §(v)?)~, and would
be useless if(y) = 1 and of limited value whed(v) ~ 1. We now show
that when (1.4) holdsi(-y) is bounded away from unitipr all -y, giving an
upper bound orf1 — §(v)?)~L. It is important that these bounds exist, but
remember they are worst case bounds, and give no indication of the sizes of
§(7) or (1 — 6(y)?)~! for the values ofy we will usually be interested in.

Theorem 3.1 With the notation and assumptions of Lemma 2.1pletk
B have singular valuesy > ... > 0; > 041 = ... = o > 0. Then
since (1.4) holds, and denotinty = || Pxc||,

k
B4)  B=Pcl?= Y |ail* >0,

i=j+1
2 in([B, 7)) [I7]?
35) §(y)?= Tmin (B, < <1 forall v >0,
(3.5) (7) U]% = ﬁg+ HTHQ 7=

(36) (1-8(1)2)"1 <1+ |r[?/5? forally > 0.
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Proof. Since (1.4) holds3? > 0 and the minimum positive solution(~)
of (2.6) iso () = omin([B, ¢7]) < o forally > 0. So

2 232
P =o o)+ 2 Z” Pl s o 220000

op —o(7)?
Multiplying by (o7 — o(7)?) > 0 and rearranging gives
a(2 (6 + 2N ? + ok — o (1)) < APlIrlPois

5(7)? = a(v) 72|72 O
of T P8R+ + o —o()? T BE4Ir|?

<1,

(3.7)
proving (3.5), from which (3.6) follows. O

This shows that when (1.4) hold¥,y) is bounded away from unity, so
omin([B, ¢]) is bounded away from,,;,, (B), for all ~.

The inequality (3.5) has a useful explanatory purpose. We cannot have
d(v) =~ 1unlessPyc, the projection of onto the left singular vector subspace
of B corresponding to@ i, (B), is very small compared ta When Py is
small compared te then replacingB by

k
B— Z UiOmin (B vl

i=j+1

in (1.2) would not increase the LS distance significantly. This confirms that
the criterion (1.4) in [12] is exactly what is needeed.
We now return to our second ratio, the STLS ratig) in (1.8).

Lemma 3.2 With the notation and assumptions of Lemma 2.17 (et =
Y7l /omin([cy, B]). Since (1.4) holds,

|oui|?
zm'n([C’V? B])

Proof. The equality follows from Lemma 2.1, while (3.5) shows each de-
nominator is bounded away from zero, so the inequality and limit follow.
ad

This STLS-LS relationshig(y) — 1 (see (1.7)) has been presented and
proven in [14] for an earlier form of STLS, and in [12, (1.6), (6.3)] for the
form (1.3) (neither giving any quantitative results).

We pointed outin Remark 1.1 that we are interested in three itef$,
|lr|| ando (), and their bounds. Since some results|fof ando () can
be found from those for(~), it will simplify the paper if we derive some

k
1<T(7)2=1+72202_G — 1lasy — 0.
i=1 ¢
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general relationships here, and apply them later. We will ugar lower
bounds andk for upper, as in

B8) 1< A <7(7) <pr, M| Spry, Ao < 0(v) < plo,

where for brevity the dependence of the boundsyas implied. Bounds
derived forr(v) give bounds orj|r|| or on o,,in([B, ¢y]) in the obvious
way, as we now document.

Lemma 3.3 Witho = o(v) = opmin([B, ¢y]) >0,7(v) = 7l|r|| /o, Ar > 1
and~ > 0,

Aro e
O <) < b =22 <l < g = 27}
Y Y
O PP )
Hr Ar

We can easily derivesingleupper bound on the relative gaps between each
pair of upper and lower bounds in Lemma 3.3.

Lemma 3.4 In Lemma 3.3 the relative gaps between upper and lower
bounds satisfy

(1r = Ae)/7 < (r = M) A
(e = M)/l = (e = Ar) /7 < (e = Ar)/Ar,
(:u'a - U)/U - (MT - )\’T)T/(:U”T T) = (,u’r - AT)/)\T a

The advantage here is that if we can find bounds #0y) such that
(ur — A7)/ A+ is sufficiently small, than we can conclude th#tthe bounds
in (3.8) are good. This is useful for simplifying the paper.

Lemma 3.2 gave an explicit expressionfior: 7(7)?—1 — 0asy — 0.
It seems natural to start with this result and to obtain bounds

(3.9) 0<AST(y)?=1<p.
Then the bounds for () can simply be given as
(3.10) A=A+ 1)3 < 1(7) < pr=(p+1)2

and the bounds offr|| ando determined via Lemma 3.3. The relative gap
of ther bounds (showing via Lemma 3.4 how good all these bounds are) is
examined in the following lemma.
Lemma 3.5 For v > 0 and7r = 7(v), if we have bounds (3.9) and (3.10),
then
ArrHl o, cpFTHL
T+1 T+1
R N e = A p=A _ p—=A
. < < :
(3.12) S VI W R NS

(3.11)

)
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Proof. With (3.9),

(w+T7+1)* = (r+ D>+ 1) = g+ 2u(r + 1) — p(r 4+ 1)2
= plp—(r* = 1)] >0,

A+7+1D)2 = (7 +1D2A+1) = 2+ 2X(7 + 1) = A7 + 1)?
=AM —(r2—1)] <0,

proving (3.11). Using (3.11),

MT*)\T< = A < p—A )
A T (DA T AFTHI

The rest of the proof is straightforwardOJ
The actual bounds, 1, and, consequently, pir, A, tir, Ay @andu,, are
developed in the following section.

4 The basic bounds

We have found the following results relating the LS distajfice with the
STLS distance,,;,, ([ B, ¢]) to be very useful.

Theorem 4.1 Given a scalary > 0, and ann by k + 1 matrix [B, ¢], use
o(+) to denote singular values anjd || to denote 2-norms. Iif andy solve
min,., ||r|| subjecttoBy = ¢ — r, and (1.4) holds, then

omin([B; 7)) ~ omin([B; 7))
Omax (B) - Omin (B)

and we have bounds ar{y)? — 1 wherer(y) = v||7|| /omin([B, ¢v]):

4.1) 0<0()

Il

N
(o)
—~
~—
Il

<1,

2 Vvl ey Al Yllyl?
L T e 1 X I B
4.2)
We also have individual bounds @iy), ||7|| and o, ([B, ¢v]):
A =(1+ 22l < (142 ”f‘j”;}
B ’VH?”H ki HyH2 .
1 2
Ar = Gmin((Bo 24 W2} < Omin(1Bs 1) {7‘2+ ”y'(' H
2
@4d) < vl < = omin((Boerl) 2+ Y33

1=4(v)



102 C. Paige, Z. Strako

[N

= I/ + Ty < ontiB )

@5 < Il + T < = 7+ i

Proof. Since (1.4) holds, (4.1) follows immediately from (3.2). Witfy) =
Omin([B, cv]) andr(y) = 7||r|| /o (), we see from Lemma 3.2,

k2112 2|12 2040112
7|l 77l p 2
E < E < —l=7(y)°"—-1=
o2 T a2(1-o(y)?/e}) T a(7)?
k

k 2 k 2 2
Z 7 |l _Z v |0%’ Z |0<z|
2 = 2
~ o; —o(7)? —oi(1-o(y )2/02) — o 2(1—o(y)%/0?)
(4.6)

which are apparently new boundsofy)? — 1. Using (2.3) and (4.1) shows
(4.6) is (4.2). We obtain (4.3) by addingto each term in (4.2) and then
taking the square root of each term. Both (4.4) and (4.5) follow directly from
(4.3), see Lemma 3.3.0

By subtractingy?||y||? from each termin (4.2), and then dividing B¥||y||?

we obtain bounds of a particularly simple form.

Corollary 4.1 With the conditions and assumptions of Theorem 4.1
0v)? _ t()? =L+l o 6()*
1—6(y)* ~ Y yll? T 1-6()2
0

(4.7)0 < 0(7)? <

We will now examine théightnessof the bounds (4.3)—(4.5), to indicate
just how good they can be. In fact we will show tladitthe relative gaps go
to zero (as functions of the scaling parametgat least as fast a3(14).

Corollary 4.2 Under the same conditions as in Theorem 4.1, witke
(7)) = omin([B, v]), T = 7(7), the notation in (4.3)-(4.5), and

nr = (1= A)/m e = (Il = A)/lrll, 10 = (0= Xs) /0,
(4.8)¢r = (ur = Ar)/70 G = (e = X)/lI7ll, o = (o — Ao)/0,
we have the following bounds

0<n<Cy  0<n <G, 0<nr <G,

2 2 2
Yyl 5(7)
49 0 < CT7€T7<O' < :
(4.9) 2+ 2P 1 3(7)2

where the upper bound goes to zero at least as faét(as).

—0asvy—0,
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Proof. Sinceu,., A, 1o andA, were derived from.- and) - asin Lemma 3.3,
we see from Lemma 3.4 that, ¢ and (, are all bounded above by
(r — Ar)/Ar. But A, andp, were obtained directly from and .. Based
on (4.2) the bounds and x from (3.9) can be set ta = ~?||y||*> and
=2 lylI?/(1 — &6(7)?). It follows from (3.12) that

pr—=Ae _p=A Pl ()
A T 2400 242yl 1-0(n)?

proving the inequalities. Applying (3.3) shows thibehaviour. O

Thus whend(y) < 1, or v is small, the upper and lower bounds in
(4.3)—(4.5) are not only very good, but very good irekative sense, which
is important for small|r|| or oy, ([B, ¢y]). We see Corollary 4.2 makes
precise a nice theoretical observation with practical consequences — small
~ ensures very tight bounds (4.4) on||. In particular, for smally we see

— 1
(4.10) Irll & Ar = omin (1B, en]) {372 + lyll*} 2,

and the relative error is bounded above®{*). Using (4.4) and (3.3) we
get another formulation of this result

712 = oin (B, N2+ Myl1?) _ omin (B, XD 19IP9 (1)
7] = I IPA=6(v)?)
Vlyl?o(? _ — AirlPlyl?
T (1=6(v)?) T onn(B)A=6()?)

A crucial aspect of Theorem 4.1 is that it gives both an upper and a lower
bound on the minimum residual noim||, or ono ., ([ B, ¢]), which is the
STLS distance in (1.3). The weaker lower bound in (4.4), or upper bound
in (4.5), is sufficient for many uses, and is relatively easy to derive, but the
upper bound in (4.4), or lower bound in (4.5), is what makes the theorem so
strong.

Remark 4.1Whené(v) < 1, [9, Thm. 2.7] showed (fory = 1) the closed
form TLS solutionzy = z(y)~y of (1.3) is

2(7)y = {B"B — 00, ([B,e)) I} ' B ey,

and withrgs,.s = ¢y — Bz(7)y, [9, (6.19)] showed (fory = 1)
(4.13) Irsrosll = omin((B, ) (1 + 2(3)7]2)2.

Relation (4.10) can be seen to give an analogue of this for the LS solution:
sincery = ¢y — Byyin (1.2), (4.11) and (4.12) show a strong relationship
between||r|| andoymn ([B, ¢v]) for smalls(y), ¥, [lyl| or ||r:

1
(4.14) Il % omin (B, er]) {1 +42yl*}2. O

(4.11)0 <

(4.12)
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Remark 4.2It is often useful but difficult to find (a lower bound to) the
smallest singular value of a linear operator or a large sparse matrix. These
bounds may help. For example suppose we want a lower boung 90B).

If we can solve some LS problem (1.2) then we know from (4.5) that

1+ T < (B < o)

However we have not looked further into using such bounds.

Remark 4.3The assumptioP,c # 0 in (1.4) is not necessary for proving
the bounds (4.2)—(4.5). From the proof of Theorem 4.1 it is clear that these
bounds only requiré(y) < 1. Howeverd(y) < 1 does not guarantee
Prc # 0. WhenPic = 0, ||r|| contains no information whatsoever about
omin(B), while the bounds do, see (4.6). By assumihg # 0 we avoid this
inconsistency. Moreover, we will consider various values of the parameter
~, and so we prefer the theorem’s assumption to be independent of]

We end this section by a comment on possible consequences of Theo-
rem 4.1 for understanding methods for large TLS problems. It can be shown
thatthe STLS distance, ;1 ([B, ¢y]) can be analysed via Rayleigh quotients
for [B, )" [B, ey]:

_ 7’lle — Bz|?
tallBen) = IB.erl (7 ) I/ ( 7)1 = e

wherez solves (1.3), see [2]. For smal},;,([B, ¢y]), 6(7), v or ||y, (4.5)
with (4.9) show

(B = T <y (VY (1) 1

14+ 72lyll?

so the STLS distance is well approximated using the Rayleigh quotient
corresponding to the unique LS solution Bfyy = ¢y — ry. This was
pointed out by,&ke Bjorck in a personal communication, and may help to
explain the behaviour of algorithms proposed in [2]. Alternatively, some
bounds here might be rederived via Rayleigh quotient theory.

5 Comparison with other bounds

We now relate our bounds to previous work. Kasenally and Simoncini [10]
examined a somewhat related problem for the case of Krylov subspace
methods, but did not develop any of the bounds given here. However in a
personal communication Simoncini pointed out that if we restrict our discus-
sion to Krylov subspace methods, the equivalent of our weaker lower bound
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Ar < |Jr]| in (4.4) can be obtained from their results too. An explanation of
this relationship would require a detailed description of the methods anal-
ysed in [10], which is beyond the scope of this paper. The best previously
published bounds appear to be those of Van Huffel and Vandewalle [9], and
we now show how the relevant bounds of that reference, and a new bound,
can be derived from (4.2).

Corollary 5.1 Under the same conditions and assumptions as in Theo-
rem 4.1, witho (7) = omin([B, e3]), 7(v) = Allr(l/o (),

2 2 2 2 2 2
Vllell® = o(v) 2 Vel —o(v)
5.1 o - —r ———~ 7 S QA || W VA
G 0= e =T s,
Proof. Remembero; = opu:(B) = ||Bl|, 0k = omin(B), 0(7) =

o(y)/o1 <6(v) = o(v)/or < 1from (4.1). Start with (4.2). To obtain the
upper bound, we first note from (2.2)—(2.4)

(5.2) lal?/of <llyll*> < llal*/og,  llall® = llell* = [Ir]I?,
2||p|12 2|[4,]12 2 2 2
giving L ||7“H2 <1+ Ly”Q <147 (”;H ||7”2H )
a(7) 1—-46(v) o} — a(7)
Al o el
2 3 s <1+ — 5
a(7) Oj. — a(7) oj — a(7)
Vlrl? o e APllel?
o(y)?* ~ U,% O']% ’

which proves the upper bound in (5.1).
To obtain the lower bound, again combine (4.2) and (5.2) to show

¥|Ir||? 72|y || Y2 (lle)l® = lIrlI?)
5 = 1+ — 0 5 2 1+ 5 3
a(v) 1—0(v) of —a(7)
¥ ||r]? o} ¥l
2 2 2 =1+ 2 2
o(y)? of—a(y) of —o(v)
o Ca()? APl
2 = 5+ 7 -
a(y) o5 o5

Also (7)? < +2||c||?, so the rest of (5.1) follows. O
Wheny = 1 the bound) < 7(y)2 — 1 and the upper bound ar{y)? — 1
in (5.1) are (rearrangements of) the equivalents for our situation of (6.34)
and (6.35) in [9]. The stronger lower bound seems new. A slightly weaker
upper boundwas derivedin [6, (2.3)]. Experiments show (see Sect. 7) that our
boundsin (4.2) can be significantly better thanthosein (5.1). The relationship
of these bounds is, however, intricate. While (5.1) was derived from (4.2),
it is notalwaystrue that the latter is tighter. Wheity) ~ 1 and||r|| = ||c
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it is possible for the upper bound in (5.1) to be smaller than that in (4.2).
But in this caser i, ([B, ¢y]) ~ omin(B), and then the upper bound in
(5.1) becomes the trividlr|| < ||c||. Summarizing, when the upper bound
in (5.1) is tighter than the upper bound in (4.2), the former becomes trivial
and the later is irrelevant. This behaviour is illustrated by our examples in
Sect. 7.

The bounds (5.1) and (4.2) differ because the easily availgj|en
(4.2) was replaced by its upper and lower bounds in (5.2) to obtain (5.1).
But there is another reason (4.2) is preferable to (5.1). The latter bounds
require knowledge of,,;,,(B), as well asr,,;, ([B, ¢v]). Admittedly (4.1)
shows we also need these to knoyw) exactly, but, assuming that (1.4)
holds, we know () < 1, and is bounded away frotnalways. In fact there
are situations where we kno¥vy) < 1 (we will show practical examples
in Sect. 7). Thus (4.2) is not only simpler and often significantly stronger
then (5.1), it is more easily applicable.

6 The STLS-LS relationship: equations forr(~) and d(v)

In the previous section we obtainédundsfor the STLS ratior (), the

LS residual norm|r||, and the STLS distance,.;,([B, ¢y]) by using as
little additional information as possible. We derived these from the secular
equation in Lemma 2.1. Here we look fexactrelationships. The elegant
Theorem 6.9 of Van Huffel and Vandewalle [9] took a different approach
than the secular equation, to relate (foe= 1) the TLS distance to the LS
residual norm{|r|| using full information on the singular values &f and

[c, B]. They treated the matrix equatidhX ~ C, but the proof is almost
identical to that for (1.1). We give the proof here for completeness (we allow
v # 1), relevance (we state it in terms of the STLS ratiey)) and for the
beauty and brevity of their technique.

Theorem 6.1 Letn x k B haveranki, v > 0,7 solve (1.2),and (-), o2(+),
... denote singular values in nonincreasing order, then

61) 7()= 2l _aillB.a))  awl((B.ea))

ok1([B, 7)) o1(B) ok (B)

Proof. With » and y solving (1.2), the Schur complement & B in
[B, cy)[B, cv] is, sinceBHr = 0,

Vee— 2 B(BYB) ' B e = 72 (cMe — M By) = y2cr = 47|

Using the Schur complement determinant property (2.5) we have

k+1
[ o2 (1B, 7)) = det([B, 7] [B, ey]) = det(B" B) »*|r|?
=1
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k
=[IoB) I,
i=1

giving the equality in (6.1). The bound (see also Lemma 3.2)) holds since
the singular values aB interlace those ofB, c¢y]. O

Note the difference of the squareéy)? — 1 of the left and right hand
sides of the inequality (6.1) is bounded in (4.2). The above leads to a new
expression and bounds féfy) in (4.1).

Corollary 6.1 Under the conditions of Theorem 6.1,

B _ Al Al B o)
W(B.c) = Bl = aB.e) oa(Boeal)  on(Br))
(B el el

©2 =7 m S Ba) S ennB)

Proof. (6.1) showsr;.1([B, ¢v]) < v||r|| so the lowest bound follows. The
equalities follow from the equality in (6.1), and the definitiod 6 ) in (4.1).
The remaining bounds hold since the singular valueB ofterlace those of
[B, ¢y]. The rightmost bound generalizes (3.3), since the requirements are
less restrictive than in (1.4). O

For what it is worth, these give a new expression reladifig to ()
via ratios of singular values.

Corollary 6.2 Under the conditions of Theorem 6.1,

- ok1([B, ) o(B)  ox-1(B)
©990) =) et oy ol lBal ™ o5l )

Proof. This follows from the equalities in (6.1) and (6.2)0
Note that the quantities in parenthedep are each less than or equal to
unity since the singular values & interlace those ofB, ¢v].

These relationships look very elegant, and the bounds are useful too.
In fact for £ = 1 the tightest upper and lower bounds &fy) in (6.2)
become equalities. We see from (6.2) that|if-|| is small compared with
ok([B, cvy]) thend(y) < 1, butif ||| is not small compared with B, ¢v]||
thend () cannot be small. If B, ¢v] is well-conditioned in the sense that
omin([B, cy]) is not too much smaller thalfi B, ¢v]||, then Corollary 6.1
gives us a very good idea 6f~).

The computations we have carried out so far, see for example Sect. 7,
suggest that the lower bounds in Corollary 6.1 are often very loose, but that
the tighter of the following gives (and usually both give) very good upper
bounds:

‘ A7l . gl
©4 o =minth G ot = oL
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Some other interesting relationships for the residual nfyrincan be
found in [11], but they are not motivated by the STLS—-LS comparison.

7 The GMRES relationship and numerical experiments

Inordertoillustrate our theoretical results on numerical experiments we need
examples representing various cases. Instead of giving several examples of
the matrix B and the right hand sidewe will generate sequences of LS-
STLS examples as parts of iterative processes.

It is well known that several iterative methods for solving linear alge-
braic systems form approximate solutions by generating and solving least
squares problems at each iteration step. Applying a properly choosen itera-
tive method to a linear system with the matrxand the right hand sidi
we get the right hand sideand the sequence of matricBg, on which our
results can be conveniently and thoroughly illustrated.

Butthere is also another and much deeper reason for using iterative meth-
ods in our experiments. Theorem 4.1 with its corollaries is very useful in the
analysis of iterative solutions of nonsingular linear systems. Considerations
on bounding the norm of the residual in iterative methods motivated our
work which led to the results presented in this paper.

This section very briefly describes the connection to iterative methods
and then illustrates our theoretical results with numerical experiments. As an
example of an iterative method we will consider the GMRES method [15].
The reader who does not wish to relate our results to iterative methods can
simply skip the brief description of GMRES and take the results described
later individually (independently for each individual iteration). For a fixed
iteration step the displayed results illustrate our theory for some right hand
side and some particular (iteration—dependent) matrix.

For a givenn by n unsymmetric nonsingular matrid and n-vector
b, we wish to solvedx = b using the GMRES method. Given an initial
approximationz, we form the residuaty = b — Az, po = ||rol|,v1 =
ro/po, and usev; to initiate the Arnoldi process. At step this forms
Awvy, orthogonalizes it against;, vo, ..., vg, and if the resulting vector
is nonzero, normalizes it to give,, 1, giving ideally (in exact arithmetic)

AV, = Vk+1Hk+17k, V,ﬁleH = Ik+1, Vk+1 = [vl, V2,..., Uk-i—l]‘ Here
Hyy1 is ak 4 1 by k upper Hessenberg matrix with elements where
hjt1; #0,7 =1,2,...,k — 1. If at any stagé;; , = 0 we would stop
with AV}, = Vj,H;, ;.. Computationally (in finite precision arithmetic) we
are unlikely to reach such/g and we stop when we assess the norm of the
residual is small enough.

In general, at each step we take = xo + Viyx as our approximation
to the solutionz, which gives the residual, = b — Az, = rg — AVpyr =
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v1po — Vi1 Hi41 1 yr Wherey,, solves the linear least squares problem
Irell = mgin leipo — Her1,1 9l = mgin lvipo — AVig||

(7.1) = pomin oy — AVi|.

At any iteration step the relative residual nofmy||/po can therefore be
viewed as the residual norm for the least squares problem with the matrix
AV}, and the right hand side,. Consider the STLS problem for the matrix
AV}, and the right hand side;~y, where we set the value of the scaling
parametety = 1. Assume that- is not orthogonal to the left singular vector
subspace ofAV}, corresponding t@,;,(AV;). Then [12, (3.7)] implies
that the smallest singular valug, . ([v1, AVy]) is less than the smallest
singular valuery, (AV%). Consequently, the STLS problem for the matrix
AV, and the right hand side; has a unique solution, with STLS distance
k1 (v, AVi]).

In this way GMRES produces sequences of LS and STLS problems
wherec = ro/pg = (b — Axg)/po = v1,7 = 1, andB = By = AV,
y = yr/po, andr = r;/po are changing at each step. Please note that
for each GMRES iteration we get a new LS, and corresponding STLS,
problem. GMRES experiments will therefore allow usto illustrate the variety
of situations which were analysed above in this paper.

We could have choosen different right hand sides (for exampter)
and different values of the scaling parametebut our present choice is
simple and sufficient for illustrating our theory. A detailed study of the
possible values of in relation to the analysis of GMRES will be presented
in [13].

In reasonable iterations with, increasing in dimension with, we will
usually haver,;,(Bx) — constant> 0, while o,,,;,,([v1, By]) eventually
becomes zero. Consequently

0 < 6k = omin([v1, Bi])/omin(Br) — 0,

and from Corollary 4.2

1
HTkH_Umin([ULHBk|]|){Pg+ loel}s o %
Tk

7.2)0 < _ %k
(7.20 < —1-62

where for each stefp, n;, corresponds tg,. in (4.8). This is a strong “asymp-
totic” relationship between the minimum residual norm and the minimum
singular value ofvy, By].

We will present results of three GMRES experiments, all of them using
matrices from the Rutherford-Boeing collection. In all experiments the mod-
ified Gram-Schmidt (MGS) orthogonalization was used for computing the
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modified Gram-Schmidt GMRES
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Fig. 7.1. Residual bounds: previous upper and lower bounds from (8aldgd line$, then

from (4.4) new upper boundléshed ling new lower bounddashed-dotted line for the
relative residual norm (points), computed by MGS GMRES applied to IMPCOLC. Except
for the (5.1) upper bound, all values are nearly the same (the corresponding lines coincide)
until orthogonality is completely lost (here at the iteration step 128), after which the values
are not computed accurately

basis vectors, vs, . .., vg. In the first experiment (using the matrix IMP-
COLC) the value ob;, never becomes close to one and the bounds provided
by Theorem 4.1 are very tight. In the second and third experiments (both of
them using the matrix WEST0132) is close to one in some, respectively
many, iteration steps. All experiments were performed on a SGI ORIGIN
200 Workstation using MATLAB 6.0, machine precisioe= 1.11 x 10716,

We first present results of the MGS GMRES algorithm applied to the
matrix IMPCOLC,n = 137, || A ~ 120, k(A) ~ 1.8 x 10*, b = Ae, e is
the vector of all ones, withy = randr(137, 1) from MATLAB.

In Fig. 7.1 we plot relative residual bounds, that is, bounds on the relative
residual normj|b — Ax||/||ro||, which is denoted by points. The upper and
lower bounds from the equivalent of (5.1) (the best previous bounds of Van
Huffel and Vandewalle) are denoted by the dotted lines, while the upper
bound from (4.4) is given by the dashed line, and the lower bound by the
dashed-dotted line. The upper bound from (5.1) is seen to be particularly
weak compared with that from (4.4). The lower bound from (5.1) and the
bounds from (4.4) almost coincide with the actual values of the relative
residual norm.

Figure 7.2 is devoted to the tightness parameters, which show how
tight our lower and upper bounds. and ., are for this test problem, see
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modified Gram-Schmidt GMRES
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Fig. 7.2. Values of the tightness parametérg (solid line), 7, (dashed-dotted lineand¢y,
(dashed lingfor MGS GMRES applied to IMPCOLC. The values have little meaning once
orthogonality is fully lost

(4.4), (4.8) and (4.9). The solid line shows the values,3fwhered; =
Omin([v1, Bk|)/omin(Bt), the dashed line the values@fand the dashed-
dotted line the values ofy. for each stef, wheredy, (, andn; correspond
tod(+) in (4.1) and ta;, andn, in (4.8). The values have little meaning once
the orthogonality among the basis vectors. . . , v is fully lost (here at the
stepk = 128), but until that point these computed results follow the theory.
For all of the stepég is satisfactory £ 1), while n, and;. (the relative gaps

of the bounds) are quite good (they are reasonably small throughout). But
they all decrease impressively when the norm of the relative residual drops
towards the machine precision level.

Finally Fig. 7.3 is devoted to bounds @i, which is represented by
points. The bounds are those in Corollary 6.1, the weaker upper bound is
denoted by the solid line, the stronger by the dashed line, and the tighter lower
bound by the dotted line. Note in every case the lower bound is particularly
weak, but this does not matter much as we are more interested in upper
bounds. The upper bounds are very tight (heris always significantly less
than 1).

The relationship of the new bounds developed in our paper to the best
previous bounds is further illustrated by the following two examples. They
present results of the MGS GMRES algorithm applied to the matrix
WEST0132,n = 132, ||4]| ~ 3.2 % 105, k(A) ~ 6.4 x 10*. We will
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modified Gram-Schmidt GMRES
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Fig. 7.3. Bounds foré;, from Corollary 6.1: weak upper boundd]id line), tighter upper

bound ¢lashed ling 0, (point9, all nearly the same; tighter lower boundofted ling,

computed by MGS GMRES applied to IMPCOLC

only present the normalized residual bounds with the same meaning and
notation as in Fig. 7.1.

Figure 7.4 corresponds to the choice- Ae, with zy = randr(132, 1)
from MATLAB. The upper bound from (5.1) is much weaker than the the
upper bound from (4.4). For the other bounds all values are nearly the same
except for the iterations 18-26 and 122—-125 whigre> 1. The maximal
value ofd; during this experiment wa$99998. Please note that even for
6k = Omin([v1, Bi])/0min(By) SO close to one the new bounds from (4.4)
were reasonable, and whenever the upper bound from (4.4) looses its tight-
ness, the upper bound from (5.1) becomes trivial (its value is graphically
indistinguishable from one).

Figure 7.5 shows that the upper bound from (5.1) may in some cases
be smaller than the upper bound from (4.4). Here we used e with
xo = 0 which resulted in a very slow decrease of the relative residual norm.
Consequently, whef), becomes extremely close to one (in this experiment
the maximal value ob; was0.999995) and the upper bound from (4.4)
looses its tightness, it may become larger tljagl| and therefore worse
then the upper bound from (5.1). The lower bound from (4.4) is (due to
the values ob;, close to one) not tight for most of the iterations, but it is
always (and often significantly) better then the lower bound from (5.1). Note
also that the tightness of the bounds from (4.4) tends to improve while the
tightness of the bounds from (5.1) tends to worsen as the relative residual
norm decreases.
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Fig. 7.4. Residual bounds: previous upper and lower bounds from (8dtdgd line$, then
from (4.4) new upper boundiashed ling new lower bounddashed-dotted line for the
relative residual normppintg, computed by MGS GMRES applied to WEST0132 with
z = e andzo = randr(132,1). The (5.1) upper bound is weak. For the other bounds all
values are nearly the same except for the iterations 18 — 26 and 122 — 125jwheré

8 Summary and conclusion

This paper analysed the relationship between the norm of the residual for
the least squares problem for the matfxand the right hand side and
the STLS distance,,;, ([ B, ¢y]), which is the norm of the corresponding
total least squares correction for the TLS problem for the mdrand the
right hand side-y. Here~ is a positive parameter which scales the relative
sizes of the corrections tB8 andc. Among other things, we derived new
bounds for the LS residual norjm|| = min, ||c— By|| interms ofthe STLS
distancer,,;, ([B, ¢y]), and proved several important corollaries describing
the tightness of the bounds and their dependence on the paramétes
bounds were seen to be very good whep,([B, cy]) was sufficiently
smaller tharv,,,;, (B). Wheno,in ([ B, ¢y]) & omin(B), it was shown that
the smallest singular valug,,;,,(B) and its singular vectors did not play a
significant role in the solution of the LS problem. The TLS problem for the
matrix B and the right hand sidey, v > 0 was shown in [12, Sect. 1] to be
equivalent to an earlier formulation [14] of the STLS problemBandc.

Our results quantify the relationship between the LS and STLS problems.
We illustrated our theory on the example of the GMRES algorithm which
produces sequences of LS and STLS problems. But the relationship between
GMRES and the LS and STLS results that has been proven and discussed in
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Fig. 7.5. Residual bounds: previous upper and lower bounds from (8dtgd line$, then

from (4.4) new upper boundiashed ling new lower bounddashed-dotted line for the
normalized residual nornp6inty, computed by MGS GMRES applied to WEST0132 with

b = eandxzo = 0. In this extreme situatiod, is close to one for most of the iterations.
Several times it becomes extremely close to one, and the new upper bound from (4.4) is then
weaker than the upper bound from (5.1) The new lower bound from (4.4) is always (and for
most of the iterations significantly) stronger than the lower bound from (5.1).

this paper is much deeper than shown by this illustration; this relationship is
truly fundamental. Our results allow us to explain the role of orthogonality
in the finite precision modified Gram-Schmidt GMRES computation and to
complete the numerical stability analysis of MGS GMRES started in [6]. In
this paper, however, we did not go into the effects of rounding errors (this
is why we used experiments in which the loss of orthogonality among the
computed Arnoldi basis vectors is minimal for most of the iterations). The
subsequent paper [13] will be devoted to the LS—-STLS-GMRES relation-
ship and the questions mentioned (but not addressed) here will be treated
there in full depth.
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