Solving large sparse Azx = 0.

Stopping criteria,
& backward stability of MGS-GMRES.

Chris Paige (McGill University);

Miroslav Rozloznik & Zdenék Strakos
(Academy of Sciences of the Czech Republic).

.pdf & .ps files of this talk are available from:
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Background

The talk starts on slide 9, after this background.

This talk discusses material that the three of us
have been interested in for many years.

About 1/2 of this talk was given by Chris Paige at
an excellent conference to celebrate Bob Russell —

The International Conference on Adaptivity and Beyond:

Computational Methods for Solving Differential Equations.
Vancouver, August 3—6, 2005.

The response motivated us to distribute it widely,
& to encourage writers to present the 1deas in

texts that applications-oriented people might turn to.
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Re: ““Backward Errors’’

The backward error (BE) material for this appears in
the literature. The backward error theory and history
1s given elegantly by Higham, 2nd Edn., 2002: §1.10;
pp. 29-30; Chapter 7, in particular §7.1, 7.2 and 7.7,
and also by Stewart & Sun, 1990, Section II1/2.3;
Meurant, 1999, Section 2.7; among others —

but this 1s not easily accessible to the non-expert.

The original BE references are:
Prager & Oettli, Num. Math. 1964,
for componentwise analysis, which led to:

Rigal & Gaches, J. Assoc. Comput. Mach. 1967,
for normwise analysis (used here).
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Re: “Stopping Criteria” (part 1)

The relation of BEs to stopping criteria for Ax = b
was described by Rigal & Gaches, 1967, §3,

and 1s explained and thoroughly discussed 1n
Higham, 2nd Edn., 2002, §17.5; and in
“Templates”, Barrett et al., 1995, §4.2.

These 1deas have been used for constructing stopping
criteria for years. For example, in Paige & Saunders,
ACM Trans. Math. Software 1982, the backward
error 1dea 1s used to derive a family of stopping
criteria which quantify the levels of confidence in A
and 0, and which are implemented in the generally
available software realization of the L.SQR method.
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Re: “Stopping Criteria” (part 1)

For other general considerations, methodology and
applications see
Arioli, Duff & Ruiz, STAM J. Mat. An. Appl. 1992;
Arioli, Demmel & Dutff,

SIAM J. Matrix Anal. Appl. 1989;
Chatelin & Frayssé, 1996;
Kasenally & Simoncini, SIAM J. Numer. An. 1997.

For more recent sources see

Arioli, Noulard & Russo, Calcolo, 2001;
Arioli, Loghin & Wathen, Numer. Math. 2005;
Paige & Strakos, STAM J. Sci. Comput. 2002;
Strakos & Liesen, ZAMM, 2005.
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Re: “Stopping Criteria” (part 1)

These 1deas are not widely used by the applications
community, apparently because very little attention
has been paid to stopping criteria in some major
numerical linear algebra or iterative methods text
books (e.g. Watkins, Demmel, Bau & Trefethen,
Saad), or reference books (e.g. Golub & Van Loan).
They are not spelt out in some other leading books

on iterative methods, (e.g. Axelsson, Greenbaum,
Meurant), but references are given in van der Vorst.
Deuflhard & Hohmann, §2.4.3, do introduce the topic.

It would be healthy for users and also for our
community if stopping criteria were considered
to be fundamental parts of iterative computations,
rather than as miscellaneous 1ssues (if at all).
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Re: “Stopping Criteria” (part 1)

This talk presents the backward error 1deas 1n a simple
form for use 1n stopping criteria for iterative methods.

It emphasizes that the normwise relative backward
error (NRBE) 1s the one to use when you know your
algorithm 1s backward stable. It should convince the
user that unless there 1s a good reason to prefer some
other stopping criterion, NRBE should be used in
science and engineering calculations.

For clarity we will mainly use the 2-norm here,
but other subordinate matrix norms are possible.

See e.g. Higham, 2nd Edn. 2002, §7.1.
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Re: “Stopping Criteria” (part 1)

An example when some other stopping criteria are
preferable:

Conjugate gradient methods
for solving discretized elliptic self-adjoint PDEs,

see:

Arioli, Numer. Math. 2004

Dahlquist, Eisenstat & Golub, J.Math.Anal. Appl.”72;
Dahlquist, Golub & Nash, 1978;

Hestenes & Stiefel, J. Res. Nat. Bur. St. 1952;
Meurant, Numerical Algorithms 1999;

Meurant & Strakos, Acta Numerica 20006;

StrakoS & Tichy, ETNA 2002;

StrakoS & Tichy, BIT 2005.
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Notation

Vectors a, b, x,...; 1iterates x1, X9,...
Vector norm  ||z||s = Valx
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Notation

Vectors a, b, x,...; 1iterates x1, X9,...

Vector norm  ||z||s = Valx

Matrices  nonsingular A € R""*": B, ...
Singular values o01(A) > ... > g,(A) >0

Bob-05 — p.10/6



Notation

Vectors a, b, x,...; 1iterates x1, X9,...

Vector norm  ||z||s = Valx

Matrices  nonsingular A € R™"; B, ...
Singular values o01(A) > ... > g,(A) >0
Condition number

ka(A) = a1(A)/on(A).
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Notation

Vectors a, b, x,...; 1iterates x1, X9,...

Vector norm  ||z||s = Valx

Matrices  nonsingular A € R™"; B, ...
Singular values o01(A) > ... > g,(A) >0
Condition number

ka(A) = a1(A)/on(A).

Computer precision € =~ 107! (IEEE double).
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Matrix norms

The results hold for general subordinate matrix norms.
For clarity, we just consider:

Spectral norm: || Al|s = max ||Az||s = 01(A).

|z|l2=1

Frobenius: ||Al|5 = trace(A' A) = Z o;

Matrix norms for rank-one matrices: if B = cd’ :

|Bll2 = lled [l2 = llcll2 ldllz = lled" lr = | B]| ¢
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Iterative methods — large Ax = b

Produce approximations to the solution =z :
L1y L2y ooy LTky «..
with residuals
S s g ’I“k:b—AQEk,

Each iteration 1s expensive, hope for << n  steps.
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Iterative methods — large Ax = b

Produce approximations to the solution =z :
L1y L2y ooy LTky «..
with residuals
S s g ’I“k:b—AQL‘k,

Each iteration 1s expensive, hope for << n  steps.

When do we STOP?

Bob-05 — p.15/6



Data accurate to O(c) (relatively).

We will first treat the case of finding an z; about as
good as we can hope for the given data A and b,
using computer precision e,

and a numerically stable algorithm.

[Later we will consider 1inaccurate data.
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Basic stopping criteria

o Test the residual norm, e.g.  ||rx|lo < O(e)
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Basic stopping criteria
o Test the residual norm, e.g.  ||rx|lo < O(e)

Whatif ||b], is huge 7/, or tiny ?
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Basic stopping criteria
o Test the residual norm, e.g.  ||rx|lo < O(e)

Whatif ||b] is huge 7, or tiny ?

 Test the relative residual, e.g.
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o Test the residual norm, e.g.  ||rx|lo < O(e)

Whatif ||b], is huge 7/, or tiny ?

 Test the relative residual, e.g.
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Basic stopping criteria
o Test the residual norm, e.g.  ||rx|lo < O(e)

Whatif ||b is huge 7/, or tiny ?

 Test the relative residual, e.g.

|72 _ b — Azg||2 0 7(7:7

» Test the Normwise Relative Backward Error, e.g.

I7xll2
< O(e)
10ll2 + [[Alla]|zx |2
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Basic stopping criteria
o Test the residual norm, e.g.  ||rx|lo < O(e)

Whatif ||b], is huge 7/, or tiny ?

 Test the relative residual, e.g.

Irells 16— Azl 299
— < Oe) 1!
Bl — ol (€)

» Test the Normwise Relative Backward Error, e.g.

I7xll2
< O(¢)
10ll2 + [[Alla]|zx |2

« Why use NRBE? (|- I, |- llo, || - |lp, etc.)
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A Backward Stable (BS) Alg.

will eventually give the exact answer to a
nearby problem, e.g. for the 2-norm case:
an iterate  xj  satisfying

(A + 5Ak) Ll — b + 5bk,

10Axll2 < O(e)[[All2, [|obrll2 < O(€)||0]l2.
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A Backward Stable (BS) Alg.

will eventually give the exact answer to a
nearby problem, e.g. for the 2-norm case:
an iterate  xj  satisfying

(A + 5Ak) Ll — b + 5bk,
10Ak]l2 < O(e)[|All2,  [[0b[]2 < O(e) |l

( J.H. Wilkinson 1950’s, for n step algorithms, e.g.
Cholesky: (A + 0A) z, = b, ||0A]2 < 12n%¢||Al|2).

Suchan x; 1s called a backward stable solution.

0A; and 0b; can be called backward errors.
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A Backward Stable (BS) Alg.

will eventually give the exact answer to a
nearby problem, e.g. for the 2-norm case:
an iterate  xj  satisfying

(A + 5Ak) Ll — b + 5bk,
10Ak]l2 < O(e)[|All2,  [10bk][2 < O(e)l|bll2-

Then the true residual 7, will satisty

T — b — Ailik — (5Ak Ll — 5bk,
Irell2 < O(e)([| All2 [z ll2 + 1|0]]2)-

Bob-05 — p.25/6



A Backward Stable (BS) Alg.

will eventually give the exact answer to a
nearby problem, e.g. for the 2-norm case:
an iterate  xj  satisfying

(A + 5Ak) Ll — b + 5bk,
10Ak]l2 < O(e)[|All2, [0z < O(e)[|b]l2.

Then the true residual 7, will satisty

T — b — Ailik — (5Ak Ll — 5bk,
I7xll2 < O() (| All2 [|zkll2 + [|b]]2)-

I7xll2
< O(e),
16ll2 4 | All2llzx |2

satistfying the simple 2-norm NRBE test.

& NRBE =
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If and only if?

Here a backward stable solution x;  satisfies

b — Axyllo
< O(e). (%)
16ll2 4[| Al2 ]|z |2

NRBE =
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If and only if?

Here a backward stable solution x;  satisfies

b — Azl
NRBE = < O(e). (*)
10]l2 + || All2]|zx]]2

But if an x; satisfies this,
1s 1t necessarily a backward stable solution?
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If and only if?

Here a backward stable solution x;  satisfies

b — Axyllo
< O(e). (%)
16ll2 4[| Al2 ]|z |2

NRBE =

But if an x; satisfies this,
1s 1t necessarily a backward stable solution?

YES. Rigal & Gaches, JACM 1967:
If . satisfies (*) then there exist
backward errors 0A; & 0br  such that

(A -+ 5Ak) Ll — b + (Sbk,
10Ak][2 < O(e)|All2,  [|6bk]l2 < O(e) |0l
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Proof: Suppose 2-norm NRBE < O(e).

A T
Take SA, — { |All2l|zk]l2 }rkxk

bll2 + [1All2llzkll2 ) Izl

( 10][2 }
and 5bk = — 4 T .
1Bl + [[All2]| 2k 2
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Proof: Suppose 2-norm NRBE < O(e).

Take 0A, = { [All2]|z |2 }Tkxf
bll2 + | All2llzxll2 ) llzxll5

( 16]]2 }
and 5bk = — 4 T .
16]]2 + [LAl2 |z |2

Then (5Ak Ll — (5bk — T — b — Aili'k s
SO (A+(5Ak) azk:b+5bk, &
10Akll2 < O(e)[|Allz,  l6bkll2 < O(e)|[b[2 -

O.E.D.
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Summary (2-norm case)

Stopping criterion: STOP IF

— A
”b ZIZ'ng < O(E)

NRBE <
16ll2 4 [l All2]l k2
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Summary (2-norm case)

Stopping criterion: STOP IF

10— Axyl|2
NRBE — < 0(e).
bll2 + || All2]|zx]|2

* A backward stable solution
will trigger this stopping criterion.
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Summary (2-norm case)

Stopping criterion: STOP IF

10— Axyl|2
NRBE — < 0(e).
bll2 + || All2]|zx]|2

* A backward stable solution
will trigger this stopping criterion.

* If this stopping criterion 1s triggered,
we have a backward stable solution. Optimal!
(Minimum number of steps for the chosen O(e)).
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Summary (2-norm case)

Stopping criterion: STOP IF

10— Az
NRBE — < 0(e).
bll2 + || All2| k|2

* A backward stable solution
will trigger this stopping criterion.

* If this stopping criterion 1s triggered,
we have a backward stable solution. Optimal!

* So use this stopping criterion for backward
stable algorithms (with data accurate to O(¢)).
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A BS iterative computation

A 1s FS1836 from the Matrix market:
183 x 183, 1069 entries, real unsymmetric.

Condition number 2 A) &~ 2 x 101

(Chemical kinetics problem from atmospheric
pollution studies. Alan Curtis, AERE Harwell, 1983).
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A BS iterative computation

A 1s FS1836 from the Matrix market:
183 x 183, 1069 entries, real unsymmetric.

Condition number 2 A) &~ 2 x 101
Solve two artificial test problems:

|

2: b:=e,

with the 1nitial approximation xy = 0 (there must al-

ways be a good reason for using a nonzero x !).
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In the following two graphical slides,
concentrate on the two immediate \, plots.

The  plot denotes (loss of) orthogonality in
MGS-GMRES.

The plots denote singular values
of supposedly orthonormal matrices V7,

& are of negligible interest to a general audience,
but crucial to the num. stability of MGS-GMRES.
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L Alrell2/ [0l v s llrall2/ ClONl2+ [ All2llzz ] 2) ——

MGS-GMRES implementation, b=A*ones(183,1)
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Irill2/11bll2 wovvee s Nrell2/ (bl ([ All2llzk][2) ——

MGS-GMRES implementation, b=ones(183,1)
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We see Hﬁ I can be VERY misleading.

But the normwise relative backward error

b — Axpl]

NRBE
10ll2 + [[All2 |zl

1s EXCELLENT, theoretically and computationally.
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We see Hﬁ I can be VERY misleading.

But the normwise relative backward error

10 — Azy ]2

NRBE
10ll2 + [[All2 |zl

1s EXCELLENT, theoretically and computationally.

A low at k£ =~ 45 for n = 183, then could increase!
A good stopping criterion 1s very important.
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can be VERY misleading.

But the normwise relative backward error

10 — Az |
10]2 + [[Alla]|zx |2

1s EXCELLENT, theoretically and computationally.

NRBE

A low at k£ =~ 45 for n = 183, then could increase!
A good stopping criterion 1s very important.

Similar 1deas can apply to iterative methods
for other problems, e.g. NLE, SVD, EVP, ..
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Inaccurate Data? Stop Early!

~

Usually A~ A, ba~b where A & b are
1deal unknowns.

~
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Inaccurate Data? Stop Early!

Usually A= A, b~b where A & b are
ideal unknowns. Suppose we know «, [ where

A=A+ A b=b+ db,
[0A]l2 < af|Allz, ||0bll2 < 5][]|2. €
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Inaccurate Data? Stop Early!

Usually A= A, b~b where A & b are
ideal unknowns. Suppose we know «, [ where
A= A+0A b= b+ db,
10Allz < af|All2,  [|0bll2 < Fllbll2. (%)

Stopping criterion:

Jb— Awils
STl + ATl

NOTE: Here “<1”. Previously “< O(e)”.

Now the “accuracy measures” are « and /7,

and they appear in the denominator.
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Inaccurate Data? Stop Early!

Usually A= A, b~b where A & b are
ideal unknowns. Suppose we know «, [ where
A= A+0A b= b+ db,
10Allz < af|All2,  [|0bll2 < Fllbll2. (%)

Justification for stopping criterion: If
- Awels |
Bllbllz + al| All2llze]l2
1 0Ag, 0b, satisfying (%), and
(A = 5Ak) xr. = b+ 0by.
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Inaccurate Data? Stop Early!

Usually A= A, b~b where A & b are
ideal unknowns. Suppose we know «, [ where
A= A+0A b= b+ db,
10Allz < af|All2,  [|0bll2 < Fllbll2. (%)

Justification for stopping criterion: If
- Awels |
Bllbllz + al| All2llze]l2
1 0Ag, 0b, satisfying (%), and
(A = 5Ak) xr. = b+ 0by.

x;. the exact answer to a possible problem Azy = 0.
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b— A
o~ Avilo |

Proof: 1r NRBE = <
B16]|2 + af|[All2||zx]|2

|| Alla| k]2 }
take 0A. =
' {ﬁubrmo«rmuxkuz |22

516l \
and b, = — S T
' {mrbuzquuzuxkuz, '

Then (5Ak Ll — 5bk =T = b — AZL’k :
SO (A—F(SAk) ZBk:b—l—(Sbk, &
10Ak]l2 < aflAll2,  [l0bk][2 < F11b]l2 -

O.E.D.
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Computing || A|l> ?
a = 8 = O(e) gives standard 2-norm BS criterion.

Write () = [|b — Az |2/ (B]|b]l2 + av|[z]]2).

Eventually want v = ||Alls, ux(v) < 1.
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Computing || A|l> ?
a = 8 = O(e) gives standard 2-norm BS criterion.

Write (1) = [|b — Awgl|2/(B]|bl]2 + avl|zk]|2).
Many iterative methods produce a matrix 5 at step

k such that to high accuracy || Bgl|l2 " ||A|l2
(almost always). In this case, although we do not

always have ||Bg||r — ||A||F, use the initial
criterion (|| Brllr) < 1.
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Computing || A|l> ?
a = 8 = O(e) gives standard 2-norm BS criterion.

Write (1) = [|b — Azgll2/(B|b]l2 + av|[z]]2).
Many iterative methods produce a matrix 5 at step
k such that to high accuracy || Bgl|l2 " ||A|l2
(almost always). In this case, although we do not
always have || By||r — ||A||F, use the initial
criterion (|| Br||r) < 1. When that is met,
estimate 1, = ||Bg||o at this and further steps using
some fast method, until () < 1.
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Computing || A|l> ?
a = 8 = O(e) gives standard 2-norm BS criterion.

Write fu,(v) = [|b — Axgll2/(B][b]]2 + o[ z]]2).
Many iterative methods produce a matrix 5 at step
k such that to high accuracy || Bgl|l2 " ||A|l2
(almost always). In this case, although we do not
always have ||Bg||r — ||A||F, use the initial
criterion (|| Br||r) < 1. When that is met,
estimate 1, = ||Bg||o at this and further steps using
some fast method, until () < 1.

B}, 1s structured — for example:
GMRES: upper Hessenberg; LSQR: bidiagonal;

SYMMLQ & MINRES & CG: tridiagonal.
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Direct use of || Al ?

For the 2-norm case, the Rigal & Gaches
minimal perturbations here are

_ af|All2fzx|l2 TRk
0A, = o
GlIblle + allAllallzell2 ) [lzkll2

511b]]2 \
5bk — —{ > Tk .
Blbll2 + ol All2[lzxll2,

0 Ay is arank one matrix, so |0 Ag|l2 = ||0AL]| F.
Andif ||Al|; 1isreplaced by ||A|lF,

they showed that the theory remains valid.

(They proved results for other norms to00.)

Consequently:
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A useful variant:

No,p(Tx) = = Al
h Olibllz 4 aflAll#llzx |2
= min {7n: (A+J0A) xr = b+ b,

17,0A,0b
10A]|r < na|lAllr, [|0bll2 < nplbll2 ]

This gives the directly applicable NRBE criterion

based on the Frobenius matrix norm.
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MGS-GMRES for Ax =b, A € R"™".

GMRES: “Generalized Minimum Residual”
algorithm to solve Az =b, A € R™ ", nonsing.

Y. SAAD & M. H. SCHULTZ, STAM J. Sci. Statist.
Comput., 7 (1986), pp. 856—869.

Based on the algorithm by W. ARNOLDI,
Quart. Appl. Math., 9 (1951), pp. 17-209.
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MGS-GMRES for Ax =b, A € R"™".

GMRES: “Generalized Minimum Residual”
algorithm to solve Az =b, A € R™ ", nonsing.

Y. SAAD & M. H. SCHULTZ, STAM J. Sci. Statist.
Comput., 7 (1986), pp. 856—869.

Based on the algorithm by W. ARNOLDI,
Quart. Appl. Math., 9 (1951), pp. 17-209.

The Modified Gram-Schmidt version (MGS-GMRES)
1s efficient, but looses orthogonality.

Some practitioners avoid it, or use reorthogonalization

(e.g. Matlab). Is this necessary?
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MGS-GMRES for Ax =b, A € R"™".

Take o = ||b|l2, v1 =b/o; generate columns of
Vigi = |1, ... ,0541] viathe (MGS) Arnoldi alg.:

AV; = Vi1 Hjpq g, V}THVJ'H = Lj41- %
Approximate solution x; = V;y; has residual
b— Ax; =b— AV,y,
= 10— Vi1 Hj1,y5 = Vivi(ero—Hjq1,v5).

Ty

The minimum residual 1s found by taking

= argmyin{Hb—AijHz = |leto—Hjy1v|[2}. *

* DIFFICULTY: Computed V| Vj1 # ;4.
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Stability of MGS-GMRES

For some k<n, the MGS—GMRES method is
backward stable for computing a solution x; to

Az =b, AcR™™, onin(A) > n’e|Allr;
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Stability of MGS-GMRES

For some k<n, the MGS—GMRES method is
backward stable for computing a solution x; to

Az =b, AcR™™, onin(A) > n’e|Allr;

as well as intermediate solutions y; to the LLSPs:

min [0 — AVy||s, g=1,...,k,
y

where 7; = flI(V;5;).

Bob-05 — p.60/6



Stability of MGS-GMRES

For some k<n, the MGS—GMRES method is
backward stable for computing a solution x; to

Ar=b, AcR"™", o,in(A) > HQEHAHF;

as well as intermediate solutions ¢; to the LLSPs:
min [0 — AVy||s, j=1,...k,
J

where z; = fl(V;y;).

“Modified Gram-Schmidt (MGS), Least Squares,
and backward stability of MGS-GMRES”

C. C. Paige, M. Rozloznik, and Z. Strakos,

Vol. 28, No. 1, 2006, pp. 264-284.
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Stability of MGS-GMRES, ctd.

For some k<n, the MGS—GMRES method is
backward stable for computing a solution x; to

Ar =b, AeR™™,  ommn(A) > n’c|Allp,

in that for some step £ < n,
and some reasonable constant c,
the computed solution ;. satisfies

(A + 5Ak) xr =b+ 0bg,
10 AL F < cknel| Al

0bi||2 < cknel|b]|s.

So we can use the F-norm NRBE’ stopping criterion!
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Conclusions. Solving Az =b.

For a sufficiently nonsingular matrix, e.g.

Omin(A) > nie|| Al F,

( this 1s “rigorous”, but unnecessarily restrictive,
a more practical requirement might be:

for large n, Omin(A) > 10n €||Al|p )
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Conclusions. Solving Az =b.

For a sufficiently nonsingular matrix, e.g.

Omin(A) > nie|| Al F,

* we can happily use the efficient variant
MGS-GMRES of the GMRES method,
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Conclusions. Solving Az =b.

For a sufficiently nonsingular matrix, e.g.

Omin(A) > nie|| Al F,
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