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MAJORIZATION BOUNDS FOR RITZ VALUES OF HERMITIAN MATRICES ∗

CHRISTOPHER C. PAIGE† AND IVO PANAYOTOV‡

Abstract. Given an approximate invariant subspace we discuss the effectiveness of majorization bounds for
assessing the accuracy of the resulting Rayleigh-Ritz approximations to eigenvalues of Hermitian matrices. We
derive a slightly stronger result than previously for the approximation ofk extreme eigenvalues, and examine some
advantages of these majorization bounds compared with classical bounds. From our results we conclude that the
majorization approach appears to be advantageous, and thatthere is probably much more work to be carried out in
this direction.
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1. Introduction. The Rayleigh-Ritz method for approximating eigenvalues ofa Her-
mitian matrixA finds the eigenvalues ofY HAY , where the columns of the matrixY form
an orthonormal basis for a subspaceY which is an approximation to some invariant sub-
spaceX of A, andY H denotes the complex conjugate transpose ofY . HereY is called a
trial subspace. The eigenvalues ofY HAY do not depend on the particular choice of basis
and are called Ritz values ofA with respect toY. See Parlett [11, Chapters 10–13] for a
nice treatment. IfY is one-dimensional and spanned by the unit vectory there is only one
Ritz value—namely the Rayleigh quotientyHAy. The Rayleigh-Ritz method is a classical
approximation method. With the notation‖x‖ ≡

√
xHx write

spr(A) ≡ λmax(A) − λmin(A), A = AH ,

θ(x, y) ≡ arccos|xHy| ∈ [0, π/2], ‖x‖ = ‖y‖ = 1,

θ(x, y) being the acute angle betweenx andy. The classical result that motivates our research
is the following: the Rayleigh quotient approximates an eigenvalue of a Hermitian matrix with
accuracy proportional to thesquareof the eigenvector approximation error, see [12] and for
example [1]: whenAx = x · xHAx, ‖x‖ = ‖y‖ = 1,

|xHAx − yHAy| ≤ spr(A) sin2 θ(x, y). (1.1)

Let Ax = xλ, thenxHAx = λ so |xHAx − yHAy| = |yH(A − λI)y|. We now plug in
the orthogonal decompositiony = u + v whereu ∈ span{x} andv ∈ (span{x})⊥. Thus
(A − λI)u = 0 and‖v‖ = sin θ(x, y), which results in

|yH(A − λI)y| = |vH(A − λI)v| ≤ ‖A − λI‖ · ‖v‖2 = ‖A − λI‖ sin2 θ(x, y),

where‖ · ‖ denotes the matrix norm subordinate to the vector norm‖ · ‖. But ‖A − λI‖ ≤
spr(A), proving the result.

It is important to realize that this bound depends on the unknown quantityθ(x, y), and
thus is ana priori result. Such results help our understanding rather than produce computa-
tionally usefula posterioriresults. As Wilkinson [14, p. 166] pointed out,a priori bounds are
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of great value in assessing the relative performance of algorithms. Thus while (1.1) is very
interesting in its own right—depending onsin2 θ(x, y) rather thansin θ(x, y)—it could also
be useful for assessing the performance of algorithms that iterate vectorsy approximatingx,
in order to also approximatexHAx.

Now suppose an algorithm produced a succession ofk-dimensional subspacesY(j) ap-
proximating an invariant subspaceX of A. For example the block Lanczos algorithm of
Golub and Underwood [4] is a Krylov subspace method which does this. In what ways can
we generalize (1.1) to subspacesX andY with dimX = dimY = k > 1? In [7] Knyazev
and Argentati stated the following conjecture generalizing (1.1) to the multidimensional set-
ting. (See Section2.1for the definitions ofλ(·) andθ(·, ·)).

CONJECTURE1.1. Let X , Y be subspaces ofCn having the same dimensionk, with
orthonormal bases given by the columns of the matricesX andY respectively. LetA ∈ Cn×n

be a Hermitian matrix, and letX beA-invariant. Then

|λ(XHAX) − λ(Y HAY )| ≺w spr(A) sin2 θ(X ,Y). (1.2)

Here ‘≺w’ denotes the weak submajorization relation, a concept which is explained in Sec-
tion 2.2. Argentati, Knyazev, Paige and Panayotov [1] provided the following answer to the
conjecture.

THEOREM 1.2. Let X , Y be subspaces ofCn having the same dimensionk, with or-
thonormal bases given by the columns of the matricesX andY respectively. LetA ∈ Cn×n

be a Hermitian matrix, and letX beA-invariant. Then

|λ(XHAX) − λ(Y HAY )| ≺w spr(A)

(
sin2 θ(X ,Y) +

sin4 θ(X ,Y)

2

)
. (1.3)

Moreover, if theA-invariant subspaceX corresponds to the set ofk largest or smallest eigen-
values ofA then

|λ(XHAX) − λ(Y HAY )| ≺w spr(A) sin2 θ(X ,Y). (1.4)

REMARK 1.3. This is slightly weaker than Conjecture1.1—we were unable to prove the
full conjecture, although all numerical tests we have done suggest that it is true. In numerical
analysis we are mainly interested in these results as the angles become small, and then there
is minimal difference between the right hand sides of (1.3) and (1.2), so proving the full
Conjecture1.1 is largely of mathematical interest.

Having thus motivated and reviewed Conjecture1.1, in Section2 we give the necessary
notation and basic theory, then in Section3 prove a slightly stronger result than (1.4), since in
practice we are usually interested in the extreme eigenvalues. In Section4 we derive results
to show some benefits of these majorization bounds in comparison with the classicala priori
eigenvalue error bounds (1.1), and add comments in Section5. This is ongoing research, and
there is probably much more to be found on this topic.

2. Definitions and Prerequisites.

2.1. Notation. Forx = [ξ1, . . . , ξn]T , y = [η1, . . . , ηn]T , u = [µ1, . . . , µn]T ∈ R
n, we

usex↓ ≡ [ξ↓1 , . . . , ξ↓n]T to denotex with its elements rearranged in descending order, while
x↑ ≡ [ξ↑1 , . . . , ξ↑n]T denotesx with its elements rearranged in ascending order. We use|x| to
denote the vectorx with the absolute value of its components and use ‘≤’ to compare real
vectors componentwise. Notice thatx ≤ y ⇒ x↓ ≤ y↓, otherwise there would exist a first
i such thatx↓

1 ≥ · · · ≥ x↓
i > y↓

i ≥ · · · ≥ y↓
n, leaving onlyi−1 elementsy↓

1 , . . . , y↓
i−1 to

dominate thei elementsx↓
1, . . . , x

↓
i , a contradiction.
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For real vectorsx andy the expressionx ≺ y means thatx is majorized byy, while
x ≺w y means thatx is weakly submajorized byy. These concepts are explained in Sec-
tion 2.2.

In our discussionA ∈ Cn×n is a Hermitian matrix,X ,Y are subspaces ofCn, andX is
A-invariant. We writeX = R(X) ⊂ C

n whenever the subspaceX is equal to the range of
the matrixX with n rows. The unit matrix isI ande ≡ [1, . . . , 1]T . We useoffdiag(B) to
denoteB with its diagonal elements set to zero, whilediag of(B) ≡ B − offdiag(B).

We write λ(A) ≡ λ↓(A) for the vector of eigenvalues ofA = AH arranged in de-
scending order, andσ(B) ≡ σ↓(B) for the vector of singular values ofB arranged in de-
scending order. Individual eigenvalues and singular values are denoted byλi(A) andσi(B),
respectively. The distance between the largest and smallest eigenvalues ofA is denoted by
spr(A) = λ1(A) − λn(A), and the 2-norm ofB is σ1(B) = ‖B‖.

The acute angle between two unit vectorsx andy is denoted byθ(x, y) and is defined by
cos θ(x, y) = |xHy| = σ(xHy). LetX andY ⊂ Cn be subspaces of the same dimensionk,
each with orthonormal bases given by the columns of the matricesX andY respectively. We
denote the vector of principal angles betweenX andY by θ(X ,Y) ≡ θ↓(X ,Y), and define
it usingcos θ(X ,Y) = σ↑(XHY ); e.g., [3], [5, §12.4.3].

2.2. Majorization. Majorization compares two realn-vectors. Majorization inequal-
ities appear naturally, e.g., when describing the spectrumor singular values of sums and
products of matrices. Majorization is a well developed toolapplied extensively in theoretical
matrix analysis (see, e.g., [2, 6, 10]), but recently it has also been applied in the analysis of
matrix algorithms; e.g., [8]. We briefly introduce the subject and state a few theorems which
we use, followed by two nice theorems we do not use.

We say thatx ∈ Rn is weakly submajorized byy ∈ Rn, writtenx ≺w y, if

k∑

i=1

ξ↓i ≤
k∑

i=1

η↓
i , 1 ≤ k ≤ n, (2.1)

while x is majorized byy, writtenx ≺ y, if (2.1) holds together with

n∑

i=1

ξi =

n∑

i=1

ηi. (2.2)

The linear inequalities of these two majorization relations define convex sets inRn. Geo-
metricallyx ≺ y if and only if the vectorx is in the convex hull of all vectors obtained by
permuting the coordinates ofy; see, e.g., [2, Theorem II.1.10]. Ifx ≺w y one can also in-
fer thatx is in a certain convex set depending ony, but in this case the description is more
complicated. In particular this convex set need not be bounded. However ifx, y ≥ 0 then the
corresponding convex set is indeed bounded, see for examplethe pentagon in Figure3.2.

From (2.1) x ≤ y ⇒ x↓ ≤ y↓ ⇒ x ≺w y, butx ≺w y 6⇒ x↓ ≤ y↓. The majorization
relations ‘≺’ and ‘≺w’ share some properties with the usual inequality relation ‘≤’, but not
all, so one should deal with them carefully. Here are basic results we use. It follows from
(2.1) and (2.2) thatx + u ≺ x↓ + u↓ (see, e.g., [2, Corollary II.4.3]), so with the logical ‘&’

{x ≺w y} & {u ≺w v} & · · · ⇒ x+u+ · · · ≺ x↓ +u↓+ · · · ≺w y↓ +v↓+ · · · . (2.3)

Summing the elements shows this also holds with ‘≺w’ replaced by ‘≺’.
THEOREM 2.1. Letx, y ∈ Rn. Then

x ≺w y ⇔ ∃u ∈ R
n such thatx ≤ u & u ≺ y; (2.4)

x ≺w y ⇔ ∃u ∈ R
n such thatx ≺ u & u ≤ y. (2.5)
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Proof. See, e.g., [2, p. 39] for (2.4). If x ≺ u & u ≤ y, thenu↓ ≤ y↓ and from
(2.1) x ≺w y. Supposex = x↓ ≺w y = y↓. Defineτ ≡ eT y − eT x, thenτ ≥ 0. Define
u ≡ y − enτ , thenu ≤ y andu = u↓. But eT u = eT y − τ = eT x with

∑j

i=1 ξi ≤∑j

i=1 ηi =
∑j

i=1 µi for 1 ≤ j ≤ n−1, sox ≺ u, proving (2.5).
THEOREM 2.2. (Lidskii [9], see also, e.g., [2, p. 69]).

LetA, B ∈ Cn×n be Hermitian. Thenλ(A) − λ(B) ≺ λ(A − B).
THEOREM 2.3. (See, e.g., [6, Theorem 3.3.16], [2, p. 75]). σ(AB) ≤ ‖A‖σ(B) and

σ(AB) ≤ ‖B‖σ(A) for arbitrary matricesA andB such thatAB exists.
THEOREM 2.4. (“Schur’s Theorem”, see, e.g., [2, p. 35]).

LetA ∈ Cn×n be Hermitian, thendiag of(A)e ≺ λ(A).
For interest, here are two results involving ‘≺w’ that we do not use later.
THEOREM 2.5. (Weyl, see, e.g., [6, Theorem 3.3.13 (a), pp. 175–6]).

For anyA ∈ Cn×n, |λ(A)| ≺w σ(A).
Majorization inequalities are intimately connected with norm inequalities:
THEOREM 2.6. (Fan 1951, see, e.g., [6, Corollary 3.5.9], [13, § II.3]) . Let A, B ∈

C
m×n. Thenσ(A) ≺w σ(B) ⇔ |||A||| ≤ |||B||| for every unitarily invariant norm||| · |||.

3. The special case of extreme eigenvalues.In (1.1) we saw that ifx is an eigenvector
of a Hermitian matrixA andy is an approximation tox, xHx= yHy =1, then the Rayleigh
quotientyHAy is a superior approximation to the eigenvaluexHAx of A. A similar situ-
ation occurs in the multi-dimensional case. SupposeX, Y ∈ Cn×k, XHX = Y HY = Ik,
X =R(X), Y =R(Y ), whereX is A-invariant, i.e.AX = X(XHAX). Thenλ(XHAX)
is a vector containing thek eigenvalues of the matrixA corresponding to the invariantX .
Suppose thatY is some approximation toX , thenλ(Y HAY ), called the vector of Ritz val-
ues ofA relative toY, approximatesλ(XHAX). Theorem1.2 extends (1.1) by provid-
ing an upper bound ford ≡ |λ(Y HAY ) − λ(XHAX)|. The componentwise inequality
d↓ ≤ spr(A) sin2 θ(X ,Y) is false, but it can be relaxed to weak submajorization to give
Theorem1.2. For the proof of the general statement (1.3) of Theorem1.2and for some other
special cases not treated here we refer the reader to [1]. That paper also shows that the con-
jectured bound cannot be made any tighter, and discusses theissues which make the proof of
the full Conjecture1.1difficult.

Instead of (1.4) in Theorem1.2, in Theorem3.3we prove a stronger result involving ‘≺’
(rather than ‘≺w’) for this special case of extreme eigenvalues. We will prove the result for
X = R(X) being the invariant space for thek largest eigenvalues ofA. We would replace
A by −A to prove the result for thek smallest eigenvalues. The eigenvalues and Ritz values
depend on the subspacesX ,Y and not on the choice of orthonormal bases. If we chooseY
such thatY = R(Y ), Y HY = I, andY HAY is the diagonal matrix of Ritz values, then the
columns ofY are called Ritz vectors. In this section we choose bases which usually are not
eigenvectors or Ritz vectors, so we use the notationX̃, Ỹ to indicate this. We first provide a
general result forA = AH .

THEOREM 3.1. (See [1]). Let X , Y be subspaces ofCn having the same dimension
k, with orthonormal bases given by the columns of the matricesX̃ and Ỹ respectively. Let
A ∈ Cn×n be a Hermitian matrix,X beA-invariant, [X̃, X̃⊥] ∈ Cn×n unitary, and write
C ≡ X̃H Ỹ , S ≡ X̃H

⊥ Ỹ , A11 ≡ X̃HAX̃, A22 ≡ X̃H
⊥ AX̃⊥. ThenX̃ and Ỹ may be chosen

to give real diagonalC ≥ 0 with C2 + SHS = Ik, and

d ≡ λ(X̃HAX̃) − λ(Ỹ HAỸ ) = λ(A11) − λ(CA11C + SHA22S). (3.1)
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Proof. By using the singular value decomposition we can chooseỸ and unitary[X̃, X̃⊥]

to givek × k diagonalX̃H Ỹ H = C ≥ 0, and(n−k)× k S, in

X = R(X̃), Y = R(Ỹ ), [X̃, X̃⊥]H Ỹ =

[
X̃H Ỹ

X̃H
⊥ Ỹ

]
=

[
C
S

]
, C2 + SHS = Ik, (3.2)

where with the definition of angles between subspaces, and appropriate ordering,

cos θ(X ,Y) = σ↑(X̃H Ỹ ) = Ce,

sin2 θ(X ,Y) = e − cos2 θ(X ,Y) = λ(Ik − C2) = λ(SHS) = σ(SHS). (3.3)

SinceX is A-invariant and[X̃, X̃⊥] is unitary:

[X̃, X̃⊥]HA [X̃, X̃⊥] = diag(A11, A22), andA = [X̃, X̃⊥] diag(A11, A22)[X̃, X̃⊥]H ,

whereX̃HAX̃ = A11 ∈ Ck×k and(X̃⊥)HAX̃⊥ = A22 ∈ C(n−k)×(n−k).
We can now usẽY H [X̃, X̃⊥] = [CH , SH ] = [C, SH ] to show that

Ỹ HAỸ = Ỹ H
(
[X̃, X̃⊥] diag(A11, A22)[X̃, X̃⊥]H

)
Ỹ

=
[
C SH

] [A11 0
0 A22

] [
C
S

]
= CA11C + SHA22S.

The expression we will later bound thus takes the form in (3.1).
Now assumeA11 in Theorem3.1has thek largest eigenvalues ofA. We see that (3.1) is

shift independent, so we assume we have shiftedA := A−λmin(A11)I to make both the new
A11 and−A22 nonnegative definite, see Figure3.1, and we now have nonnegative definite
square roots

√
A11 and

√
−A22, giving

‖A11‖ + ‖A22‖ = spr(A). (3.4)

-‖A22‖ -‖A11‖

λn λk+1 λk−1
. . . λk =0 . . . λ1

FIGURE 3.1.Eigenvalues of the shifted matrix

We give a lemma to use in our theorem for the improved version of (1.4).
LEMMA 3.2. If −A22 ∈ C(n−k)×(n−k) is Hermitian nonnegative definite andS ∈

C(n−k)×k, then0 ≤ λ(−SHA22S) ≤ ‖A22‖σ(SHS).
Proof. With the Cholesky factorization−A22 = L2L

H
2 we have from Theorem2.3

0 ≤ λ(−SHA22S) = σ(−SHA22S) = σ2(LH
2 S) ≤ ‖L2‖2σ2(S) = ‖A22‖σ(SHS).

THEOREM3.3.Assume the notation and conditions of Theorem3.1, but now also assume
that theA-invariant X corresponds to thek largest eigenvalues ofA. If we shift so that
A := A−λmin(A11)I, then the newA11 and−A22 are nonnegative definite and

0 ≤ d ≡ λ(X̃HAX̃)−λ(Ỹ HAỸ ) ≺ u ≡ λ
(√

A11S
HS
√

A11

)
+ λ(−SHA22S)

≤ spr(A) sin2 θ(X ,Y). (3.5)
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Proof. Cauchy’s Interlacing Theorem showsd ≥ 0; see, e.g., [2, p. 59]. From (3.1)

d = {λ(A11) − λ(CA11C)} +
{
λ(CA11C) − λ(CA11C + SHA22S)

}
. (3.6)

Using Lidskii’s Theorem (Theorem2.2here) we have in (3.6)

λ(CA11C) − λ(CA11C + SHA22S) ≺ λ(−SHA22S), (3.7)

where since−A22 is nonnegative definite we see from Lemma3.2and (3.3) that

0 ≤ λ(−SHA22S) ≤ ‖A22‖σ(SHS) = ‖A22‖ sin2 θ(X ,Y). (3.8)

Next sinceAB andBA have the same nonzero eigenvalues, by using Lidskii’s Theorem,
C2 + SHS = I, and Theorem2.3, we see in (3.6) that (this was proven in [1]):

0 ≤ λ(A11)−λ(CA11C) = λ(
√

A11

√
A11) − λ

(√
A11C

2
√

A11

)

≺ λ
(√

A11

√
A11 −

√
A11C

2
√

A11

)

= λ
(√

A11

(
I−C2

)√
A11

)
= λ

(√
A11S

HS
√

A11

)
(3.9)

≤ ‖A11‖σ(SHS) = spr(A11) sin2 θ(X ,Y). (3.10)

Combining (3.6), (3.7) and (3.9) via the ‘≺’ version of (2.3) gives

d ≡ λ(X̃HAX̃) − λ(Ỹ HAỸ ) ≺ u ≡ λ
(√

A11S
HS
√

A11

)
+ λ(−SHA22S), (3.11)

and using the bounds (3.8) and (3.10) with (3.4) proves (3.5).
REMARK 3.4. Since0 ≤ d, we see from (2.5) that (3.5) implies (1.4), and (1.4) implies

(3.5) for someu. The improvement in Theorem3.3 is that it provides a useful suchu in
(3.11). This is a small advance, but any insight might help in this area.

0
-

6

sspr(A) · sin2 θ↓(X ,Y)

s

spr(A) · sin2 θ↑(X ,Y)

@
@

@
@

@
@

z ≺ spr(A) · sin2 θ(X ,Y)poss.d

u and poss.d

FIGURE 3.2.0 ≤ d ≺ u ≤ b ≡ spr(A) · sin2 θ↓(X ,Y), sod ≺w b, andd must lie in the pentagon.

Figure3.2 illustrates theR2 case of possibled andu if we know only the vectorb ≡
spr(A) · sin2 θ(X ,Y). Note that this illustrates possibled↑ as well asd↓. Later we show we
can do better by using more information aboutu ≡ λ

(√
A11S

HS
√

A11

)
+ λ(−SHA22S).
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4. Comparison with the classical bounds.Here we compare the present majorization
approach with the classical approach in the case where the conjectured bound (1.2) holds.
For comments on this see Remark1.3. We can add:

COROLLARY 4.1. If Conjecture1.1is true, then from [2, Example II.3.5 (iii)]

|λ(XHAX) − λ(Y HAY )|p ≺w spr(A)p sin2p θ(X ,Y) and

‖λ(XHAX) − λ(Y HAY )‖p ≤ ‖spr(A) sin2 θ(X ,Y)‖p, for p ≥ 1, (4.1)

where the exponent is applied to each element of a vector, (4.1) comes from the last inequality
in (2.1), and these are the standard vectorp-norms; see, e.g., [2, p. 84].

Given anA-invariant subspaceX and an approximationY, both of dimensionk, the
choice of respective orthonormal basesX andY does not change the Ritz values. TakeX =
[x1, . . . , xk], Y = [y1, . . . , yk], each with orthonormal columns so thatXHAX , Y HAY are
diagonal matrices with elements decreasing along the main diagonal. Thus thexi are (some
choice of) eigenvectors ofA corresponding to the subspaceX , while theyi are Ritz vectors
of A corresponding toY. Then the classical result (1.1) shows that

|xH
i Axi − yH

i Ayi| ≤ spr(A) sin2 θ(xi, yi), i = 1, . . . , k. (4.2)

Because it uses angles between vectors rather than angles between subspaces, this bound
can be unnecessarily weak. As an extreme example, ifx1 andx2 correspond to a double
eigenvalue, then it is possible to havey1 = x2 andy2 = x1, giving the extremely poor bound
in (4.2) of 0 = |xH

i Axi − yH
i Ayi| ≤ spr(A) for bothi = 1 andi = 2.

Settingc ≡ [cos θ(x1, y1), . . . , cos θ(xk, yk)]T , s ≡ [sin θ(x1, y1), . . . , sin θ(xk, yk)]T ,
andc2, s2 to be the respective vectors of squares of the elements ofc ands, here we can
rewrite thesek classical eigenvalue bounds as

d ≡ |XHAX − Y HAY |e = |λ(XHAX) − λ(Y HAY )| ≤ spr(A)s2. (4.3)

We will compare this to the conjectured (1.2) and the known (1.4):

d ≡ |λ(XHAX) − λ(Y HAY )| ≺w spr(A) sin2 θ(X ,Y). (4.4)

This does not have the weakness mentioned regarding (4.2), which gives it a distinct ad-
vantage. The expressions (4.3) and (4.4) have similar forms, but differ in the angles and
relations that are used. Notice thats2 = e − |diag of(XHY )|2e, whereassin2 θ(X ,Y) =
e − [σ2(XHY )]↑. HereXHY contains information about the relative positions ofX and
Y. In the classical case we use only the diagonal ofXHY to estimate the eigenvalue ap-
proximation error, whereas in the majorization approach weuse the singular values of this
product. Note in comparing the two bounds that in the inequality relation the order of the el-
ements must be respected, whereas in the majorization relation the order in which the errors
are given does not play a role.

Before dealing with more theory we present an illustrative example. Let

A =




1 0 0
0 0 0
0 0 0



 , X =




1 0
0 1
0 0



 , Y =




1√
3

0
1√
3

1√
2

1√
3

−1√
2


 ,

where the columns ofX = [x1, x2] are eigenvectors ofA corresponding to the eigenvalues 1
and 0 respectively. Since

Y HAY =

[
1
3 0
0 0

]
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is diagonal, the ordered Ritz values for the subspaceY = R(Y ) are just 1/3 and 0, with
corresponding Ritz vectors given by the columnsy1 andy2 of Y . Hencespr(A) = 1 and

[
cos θ(x1, y1)
cos θ(x2, y2)

]
=

[
1√
3

1√
2

]
⇒ s2 ≡

[
sin2 θ(x1, y1)
sin2 θ(x2, y2)

]
=

[
2
3
1
2

]
.

On the other hand we have forsin2 θ↓(X ,Y) and the application of (4.3) and (4.4):

cos θ↑(X ,Y) = σ(XHY ) = σ

([
1√
3

0
1√
3

1√
2

])
=

[
1
1√
6

]
⇒ sin2 θ↓(X ,Y) =

[
5
6
0

]
,

d ≡ |λ(XHAX)−λ(Y HAY )|=
[

2
3
0

]
≤ s2 =

[
2
3
1
2

]
, d=

[
2
3
0

]
≺w sin2 θ↓(X ,Y)=

[
5
6
0

]
,

showing how (4.3) holds, so this nonnegatived lies in the dashed-line bounded area in Fig-
ure4.1, and how (4.4) holds, so thatd lies below the thin outer diagonal line. We also see
how the later theoretical relationships (4.5), (4.8), and (4.9) are satisfied.

In this example we are approximating the two largest eigenvalues 0 and 1, so (3.5) must
hold. In this exampleA22 = 0, sou = λ(

√
A11S

HS
√

A11). To satisfy (3.2) we need the
SVD of XHY (hereX̃ = XU , Ỹ = Y V ):

UHXHY V =
1√
5

[
−2 1
1 2

] [
1/

√
3 0

1/
√

3 1/
√

2

] [
−
√

2
√

3√
3

√
2

]
1√
5

= C =

[
1/

√
6 0

0 1

]
.

The form ofC showsS = [
√

5/6, 0] in (3.2), givinguT = [2/3, 0] since

A11 = UHXHAXU = UHe1e
T
1 U =

1

5

[
4 −2
−2 1

]
, A2

11 = A11, u = λ

(
2

3
A11

)
.

Sinced ≺ u in (3.5), d must lieon the thick inner diagonal line in Figure4.1. In fact it is at
the bottom right corner of this convex set. It can be seen thatd ≺ u is very much stronger
thand ≤ spr(A) sin2 θ(X ,Y) in (3.5), and thatd ≺ u describes by far the smallest of the
three sets containingd.

0
- d1

6
d2

s

b ≡ sin2 θ(X ,Y) = [5/6, 0]T

s

[
0

5/6

]

@
@

@
@

@
@

@
@

@
@

@@

s

d=u=[2/3, 0]T

s

[
0

2/3

]

@
@

@
@

@
@

@
@

@@
�

�	

Majorization boundline segmentd ≺ u =

[
2/3
0

]

s2 =

[
2/3
1/2

]

Classical
bound area0 ≤ d ≤ s2,
inside dashed box

d ≺w b, weak
submajorization
bound area below
thin diagonal line

FIGURE 4.1.Majorization and classical bounds on the eigenvalue error vectord, spr(A)=1.

The next theorem and its corollaries illustrate situationswhere the general majorization
bound is superior to the classical bound.
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THEOREM 4.2. Let X = [x1, . . . , xk] be a matrix ofk orthonormal eigenvectors ofA,
andY = [y1, . . . , yk] a matrix ofk orthonormal Ritz vectors ofA. Then withX ≡ R(X)
andY ≡ R(Y ) and the notation presented earlier we have

j∑

i=1

sin2 θ↑i (X ,Y) ≤
j∑

i=1

sin2 θ↑(xi, yi), 1 ≤ j ≤ k. (4.5)

Proof. Notice thatc2 = |diag of(XHY )|2e ≤ diag of(Y HXXHY )e. Using Schur’s
Theorem (Theorem2.4here) we have

c2 = |diag of(XHY )|2e ≤ diag of(Y HXXHY )e

≺ λ(Y HXXHY ) = σ2(XHY ) = cos2 θ(X ,Y).

We apply (2.4) to this, then use (2.1), to give

c2 ≺w cos2 θ(X ,Y),

j∑

i=1

cos2 θ↑(xi, yi) ≤
j∑

i=1

cos2 θ↑i (X ,Y), 1 ≤ j ≤ k,

from which (4.5) follows.
Notice that the angles in (4.5) are given inincreasingorder. Thus (4.5) doesnot show

that sin2 θ(X ,Y) ≺w s2 for comparing (4.3) and (4.4). It is not important here, but the
majorization literature has a special notation for denoting relations of the form (4.5), whereby
(4.5) can be rewritten as

s2 ≺w sin2 θ(X ,Y).

Here ‘≺w’ means ‘is weakly supermajorized by’. In generalx ≺w y ⇔ −x ≺w −y, see for
example [2, pp. 29–30].

Theorem4.2has the following important consequence.
COROLLARY 4.3. The majorization bound (4.4) provides a better estimate for the total

error defined as the sum of all the absolute errors (or equivalentlyk times the average error)
of eigenvalue approximation than the classical bounds (4.3). That is

‖λ(XHAX) − λ(Y HAY )‖1 ≤ spr(A)‖ sin2 θ(X ,Y)‖1 ≤ spr(A)‖s2‖1. (4.7)

It follows that if we are interested in the overall (average)quality of approximation of the
eigenvalue error, rather than a specific component, the majorization bound provides a better
estimate than the classical one. The improvement∆2 in this total error bound satisfies

∆2/spr(A) ≡ eT s2 − eT sin2 θ(X ,Y) = eT cos2 θ(X ,Y) − eT c2

= eT σ2(XHY ) − eT c2

= ‖XHY ‖2
F − ‖diag of(XHY )‖2

F = ‖offdiag(XHY )‖2
F . (4.8)

Note that∆2 → 0 asY → X , but that∆2 can stay positive even asY → X . This is
a weakness of the classical bound similar to that mentioned following (4.2). Thus since
sin2 θ(X ,Y) = 0 ⇔ Y = X , the majorization bound is tight asY → X , while the classical
bound might not be.

Equation (4.8) also leads to a nice geometrical result. See Figure4.1for insight.
COROLLARY 4.4. The pointspr(A)s2 of the classical bound (4.3) is never contained

within the majorization bound (4.4) unlesss2 = 0, in which case|XHY | = I and both
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bounds are zero. So unless|XHY | = I the majorization bound always adds information to
the classical bound. Mathematically

|XHY | 6= I ⇔ s 6= 0, s 6= 0 ⇒ s2 6≺w sin2 θ(X ,Y). (4.9)

Proof. The first part of (4.9) follows from the definitions ≡ (sin θ(xi, yi)), and then
the second follows from (4.8) sinceeT s2 > eT sin2 θ(X ,Y) shows thats2 ≺w sin2 θ(X ,Y)
does not hold, see the definition of ‘≺w’ in (2.1).

From the previous corollary we see thatspr(A)s2 must lie outside the pentagon in Fig-
ure 3.2. It might be thought that we could still havespr(A)s2 lying between zero and the
extended diagonal line in Figure3.2, but this is not the case. In general:

COROLLARY 4.5. LetH denote the convex hull of the set

{P sin2 θ(X ,Y) : P is ak×k permutation matrix}.

ThenH lies on the boundary of the half-spaceS ≡ {z : eT z ≤ eT sin2 θ(X ,Y)}, ands2 is
not in the strict interior of this half-space.

Proof. For anyz ∈ H we havez = (
∑

i αiPi) sin2 θ(X ,Y) for a finite number of
permutation matricesPi with

∑
i αi = 1, all αi ≥ 0. ThuseT z = eT sin2 θ(X ,Y) and

z lies on the boundary ofS. ThereforeH lies on the boundary ofS. From (4.8) eTs2 =
eT sin2 θ(X ,Y)+‖offdiag(XHY )‖2

F ≥ eT sin2 θ(X ,Y), sos2 cannot lie in the interior ofS.

5. Comments and conclusions.For a given approximate invariant subspace we dis-
cussed majorization bounds for the resulting Rayleigh-Ritz approximations to eigenvalues of
Hermitian matrices. We showed some advantages of this approach compared with the classi-
cal bound approach. We gave a proof in Theorem3.3of (3.5), a slightly stronger result than
(1.4), proven in [1]. This suggests the possibility that knowing

u ≡ λ
(√

A11S
HS
√

A11

)
+ λ(−SHA22S)

in (3.5) could be more useful than just knowing its boundu ≤ spr(A) sin2 θ(X ,Y), and this
is supported by Figure4.1.

In Section4 the majorization result (4.4) with boundspr(A) sin2 θ(X ,Y) was com-
pared with the classical boundspr(A)s2 in (4.3). It was shown in (4.9) that s 6= 0 ⇒
s2 6≺w sin2 θ(X ,Y), so that this majorization result always gives added information. It was
also seen to give a stronger 1-norm bound in (4.7). From these, the other results here, and
[1, 7, 8], we conclude that this majorization approach is worth further study.

Care was taken to illustrate some of the ideas with simple diagrams inR2.

Acknowledgments. Comments from an erudite and very observant referee helped us to
give a nicer and shorter proof for Lemma3.2, and to improve the presentation in general.
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