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McGill University, School of Computer Science Slide 1/26, July 29, 2008



Precursors A unitary matrix The Householder connection Evolution The BBD Bidiagonalization

Outline

1 What led to this work?

2 A unitary matrix

3 Relationship with Householder matrices

4 The Evolution of This Idea

5 The Barlow, Bosner and Drmač Bidiagonalization
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What led to this work?

An observation by Charles Sheffield, conveyed by Gene Golub,
led to work with Åke Björck, Miro Rozložńık & Zdeněk Strakoš.

Then a paper given me by Jesse Barlow at “Householder 2005”:
Barlow, Bosner & Drmač, (LAA 2005),
“A new stable bidiagonal reduction algorithm”, showed a
new use of Sheffield’s observation, & motivated this write up.

Their paper combined the two bidiagonalization algorithms in:

Gene Golub & William Kahan,
”Calculating the singular values and pseudo-inverse of a matrix,”
J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965). *

* Understandably on Nick Trefethen’s list of
“13 classic papers in numerical analysis”.
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“A new stable bidiagonal reduction algorithm”, showed a
new use of Sheffield’s observation, & motivated this write up.

Their paper combined the two bidiagonalization algorithms in:

Gene Golub & William Kahan,
”Calculating the singular values and pseudo-inverse of a matrix,”
J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965). *

* Understandably on Nick Trefethen’s list of
“13 classic papers in numerical analysis”.

McGill University, School of Computer Science Slide 2/26, July 29, 2008



Precursors A unitary matrix The Householder connection Evolution The BBD Bidiagonalization

What led to this work?

An observation by Charles Sheffield, conveyed by Gene Golub,
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Notation

SUT means “strictly upper triangular”, (SLT –“lower”).

sut(V H
k Vk) is the SUT part of V H

k Vk .

‖x‖ ≡
√

xHx .

‖A‖2 = σmax(A), κ2(A) ≡ σmax(A)/σmin(A).

‖A‖F ≡
√

trace(AHA).

ej is the j-th column of the unit matrix I .
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The Main Characters

Many numerical algorithms are designed to compute
a sequence of orthonormal vectors:

v1, v2, . . . ∈ Cn, Vk ≡ [v1, . . . , vk ] ∈ Cn×k , V H
k Vk = Ik .

But in Gram-Schmidt and related computations, usually

‖V H
k Vk − Ik‖F is not at all small.

From now on let v1, v2, . . . ∈ Cn be any sequence with:

‖vj‖ = 1, j = 1, 2, . . . ; Vk ≡ [v1, . . . , vk ] ∈ Cn×k .
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The Main Result—Theory
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The Simple Theorem

Theorem

For any V ≡ [v1, . . . , vk ] ∈ Cn×k with ‖vj‖ = 1, j = 1, . . . , k,
there exists a unique strictly upper triangular matrix

S ≡ (I + U)−1U ∈ Ck×k , where U ≡ sut(V HV ),

such that Q is unitary in:

Q ≡
[
Q1 Q2

]
≡

[
S (I−S)V H

V (I−S) I−V (I−S)V H

]
;

also 0 ≤ ‖S‖2 ≤ 1, and

{
V HV = I ⇔ ‖S‖2 = 0,
V HV singular ⇔ ‖S‖2 = 1.

‖S‖2 is a superb measure of loss of orthogonality in v1, v2, . . . , vk .
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Key Part of Proof

Given V ∈ Cn×k with diag of(V HV ) = I , let S ∈ Ck×k be SUT.

Define U ≡ sut(V HV ), Q1 ≡
[

S
V (I−S)

]
.

Then QH
1 Q1 = I ⇔ S = (I + U)−1U.

Proof: Since V HV = I + U + UH , for M ≡ QH
1 Q1− I we have

M = SHS + (I−S)H(I−S) + (I−S)H(U + UH)(I−S)− I

= (I−S)H(U + UH)(I−S) + SHS + I − S − SH(I − S)− I

= (I−S)H(U + UH)(I−S)− (I − S)HS − SH(I − S),

(I − S)−HM(I − S)−1 = (U + UH)− S(I − S)−1 − (I − S)−HSH.

But U − S(I − S)−1 is SUT, so M = 0 if and only if

U = S(I −S)−1 i.e. S = U(I − S) = U −US so (I + U)S = U.

McGill University, School of Computer Science Slide 7/26, July 29, 2008
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What does it matter?

McGill University, School of Computer Science Slide 8/26, July 29, 2008



Precursors A unitary matrix The Householder connection Evolution The BBD Bidiagonalization

One Use of this Result—Theory
Giraud & Langou, IMAJNA (2002), proved under mild conditions
that Vk from MGS is well-conditioned.

The new theorem leads to the general result:
If ‖vj‖ = 1, j = 1, . . . , k, Vk ≡ [v1, . . . , vk ], then

σmin(Vk) ≥

√
1− ‖Sk‖2
1 + ‖Sk‖2

, and κ2(Vk) ≤ 1 + ‖Sk‖2
1− ‖Sk‖2

.

Bounding ‖Sk‖2 < 1 bounds κ2(Vk) for any orthogonalization
algorithm! (Effectively what Giraud & Langou did for MGS).

Vk is well conditioned even when significant orthogonality is lost.

E.g. if ‖Sk‖2 = .9, (a severe loss of orthogonality in Vk),
κ2(Vk) ≤ 19, which is surprisingly and pleasingly small.

Also we see how κ2(Vk) →∞ as ‖Sk‖2 ↗ 1.
‖Sk‖2 is a superb measure of loss of orthogonality!
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One Use of this Result—Theory
Giraud & Langou, IMAJNA (2002), proved under mild conditions
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1 + ‖Sk‖2
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.
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General Use of this Result—Practice

An algorithm produces v c
1 , . . . , v c

k , supposedly orthogonal,
& almost normalized (since last computation for each v c

j ).

Let Ṽ ≡ [ṽ1, . . . , ṽk ], where ṽj are the normalized v c
j .

If we can find the ideal expression involving

S ≡ (I + U)−1U where U ≡ sut(Ṽ H Ṽ ),

we might be able to show that the algorithm is
backward stable for an augmented problem involving unitary

Q ≡

[
S (I−S)Ṽ H

Ṽ (I−S) I−Ṽ (I−S)Ṽ H

]
.
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we might be able to show that the algorithm is
backward stable for an augmented problem involving unitary

Q ≡

[
S (I−S)Ṽ H
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Ṽ (I−S) I−Ṽ (I−S)Ṽ H

]
.

McGill University, School of Computer Science Slide 10/26, July 29, 2008



Precursors A unitary matrix The Householder connection Evolution The BBD Bidiagonalization

General Use of this Result—Practice

An algorithm produces v c
1 , . . . , v c

k , supposedly orthogonal,
& almost normalized (since last computation for each v c

j ).
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The Simple Theorem, with indexing

Theorem

For any Vk ≡ [v1, . . . , vk ] ∈ Cn×k with ‖vj‖ = 1, j = 1, . . . , k,
there exists a unique strictly upper triangular matrix

Sk ≡ (Ik + Uk)−1Uk , where Uk ≡ sut(V H
k Vk),

such that Q(k) is unitary, where:

Q(k) ≡
[
Q

(k)
1 Q

(k)
2

]
≡

[
Sk (Ik−Sk)V H

k

Vk(Ik−Sk) In−Vk(Ik−Sk)V H
k

]
.
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The change in Q(k) when append vk+1.
With sk+1 ≡ (Ik − Sk)uk+1, uk+1 ≡ V H

k vk+1, we have

Vk+1 = [Vk , vk+1], Sk+1 =

[
Sk sk+1

0 0

]
,

Q
(k+1)
1 ≡

[
Sk+1

Vk+1(Ik+1−Sk+1)

]
=

 Sk sk+1

0 0

Vk(Ik−Sk) vk+1−Vksk+1

.

We see that

Q(k) ≡
[
Q

(k)
1 Q

(k)
2

]
≡

[
Sk (Ik−Sk)V H

k

Vk(Ik−Sk) In−Vk(Ik−Sk)V H
k

]
is (n+k)× (n+k), so our sequence v1, . . . , vk

can go on forever, and we always have unitary matrices Q(k).

Think of the Lanczos process,
and Hestenes’ & Steifel’s method of conjugate gradients.
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The Householder connection
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Relationship with Householder matrices

Theorem

For any V ≡ [v1, . . . , vk ] ∈ Cn×k with ‖vj‖ = 1, j = 1, . . . , k,

define pj ≡
[
−ej

vj

]
∈ Cn+k , P(j) ≡ In+k − pjp

H
j ,

then the P(j) are Householder matrices, and with

S ≡ (I + U)−1U where U ≡ sut(V HV ),

we have:

Q ≡
[

S (I−S)V H

V (I−S) I−V (I−S)V H

]
= P(1)P(2) · · ·P(k).
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The Evolution of This Idea
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Charles Sheffield
Charles Sheffield realized the modified Gram–Schmidt (MGS)
orthogonalization algorithm for the QR factorization of B∈Rn×k

is numerically equivalent to the Householder QR factorization

applied to the (n + k)× k matrix

[
0
B

]
.

Sheffield’s observation was applied by:

Björck & Paige (1992, 1994) in their stability analyses of MGS;

Giraud & Langou (2002) to prove Vk well-conditioned in MGS;

Barlow, Bosner & Drmač (2005) in their stability analysis
of their bidiagonalization algorithm;

Paige, Rozložńık & Strakoš (2006) to prove the backward stability
of the MGS-GMRES algorithm of Saad & Schultz (1986).

Sheffield’s insight has thus been of great value in
the understanding of widely used numerical algorithms.
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Charles Sheffield, June 1935 – November 2002
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Sheffield’s Observation, continued.

It was originally assumed that the idea, and the structure of
P(1) · · ·P(k) = Q(k), was only relevant to the MGS algorithm.

We now see it is useful for analyzing any algorithm which in theory
produces orthonormal vectors, but in practice, because of
rounding errors, can fail to do so to a significant extent.

Since the ideas can be applied to any sequence of unit length
n-vectors, MGS is just a particular, but remarkable, case.

The theorem offers hope for the successful rounding error analyses
of other important algorithms, such as:
the eigenvalue algorithm of Lanczos,
the method of conjugate gradients of Hestenes & Steifel,
and other algorithms, particularly large sparse matrix algorithms.
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Bidiagonalization Algorithms
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Bidiagonalization—one important use

Now we switch to REALS

Orthogonally transform the given matrix X

so that with orthogonal matrices V and W :

V TXW → bidiagonal B, a direct computation,

B → SVD, a fast, cheap iterative computation.
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Golub & Kahan

Direct & “Iterative”

Bidiagonalization
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Direct upper bidiagonalization (ubd) of n ×m X , n ≥ m:

V TX W =

[
B
0

]
; B ≡


β1 α1

β2 ·
· αm−1

βm

 , m ×m.

V TX W = V (m) · · ·V (3)V (2)V (1) X W (1)W (2) · · ·W (m)

by Householder transformations. Writing
V ≡ [v1, . . . , vn], W ≡ [w1, . . . ,wm],

and “unravelling” → “Iterative” ubd: W (1) = Im so w1 = e1,

(∗) v1β1 = Xw1 → β1, v1

wkαk−1 = XT vk−1 − wk−1βk−1 → αk−1,wk

(∗) vkβk = Xwk − vk−1αk−1 → βk , vk

}
k = 2, 3, .

Try vk by (∗), but W a product of Householder transformations?
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Combined

Direct & “Iterative”

Bidiagonalization

BBD: Barlow, Bosner & Drmač, (LAA 2005),
“A new stable bidiagonal reduction algorithm”
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Direct & “Iterative” bidiagonalizations.

1 Golub & Kahan Direct algorithm V TXW =
[

B
0

]
, n×m:

stops in m steps and is backward stable;
ideal for small to moderately large dimensioned X .

2 Golub & Kahan Iterative algorithm: vj , wj “iterative”
→ loses orthogonality → NO m-step termination;
useful for very large dimensioned sparse X .

3 BBD Direct & “Iterative” alg.: W (j) Householder matrices
→ m-step termination; vj “iteratively”, lose orthogonality.
Can be faster than Direct algorithm.
Useful for moderately large problems where do not need
orthogonality in all “left” singular vectors of X
(from rounding error analysis of the algorithm).

All 3 algorithms → accurate singular values to O(ε)‖X‖2.
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A Rounding Error Result
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REA of BBD Bidiagonalization V T
m XW = B

Given X ∈ Rn×m, n ≥ m, seek Vm,W ,B so XW = VmB.

Ideally: V T
m Vm = Im, W−1 = W T , bidiagonal B.

Computationally: have Ṽm (correctly normalized), B̃, W̃ .

One REA result: Let U ≡ sut(Ṽ T
m Ṽm).

Exists Ŵ = Ŵ−T = W̃ +O(ε) (Householder transformations),

so with S ≡ (I + U)−1U; ‖E1‖2, ‖E2‖2 ≤ O(ε)‖X‖2;

Q1B̃ ≡
[

S

Ṽm(I−S)

]
B̃ =

[
E1

X + E2

]
Ŵ , c.f. VmB = XW .

The BBD B̃, & singular value, computations are backward stable!
See Barlow, Bosner & Drmač, (LAA2005) for the equivalent result.
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Computationally: have Ṽm (correctly normalized), B̃, W̃ .

One REA result: Let U ≡ sut(Ṽ T
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